Responsive image
博碩士論文 etd-0118110-120744 詳細資訊
Title page for etd-0118110-120744
論文名稱
Title
原水以液氯消毒之淨水程序與配水管網之微生物控制探討
The microorganism control of raw water disinfected by chlorine in processes of water treatment and distribution systems of treated drinking water
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-12-14
繳交日期
Date of Submission
2010-01-18
關鍵字
Keywords
原水、生物可利用性有機碳、液氯消毒
raw water, chlorine disinfection, Assimilable Organic Carbon(AOC)
統計
Statistics
本論文已被瀏覽 5662 次,被下載 569
The thesis/dissertation has been browsed 5662 times, has been downloaded 569 times.
中文摘要
傳統淨水程序處理,添加液氯消毒可氧化腐植酸及黃酸,同時產生小分子有機化合物,造成有機碳濃度升高;而膠凝混凝則可顯著降低生物可利用性有機碳(Assimilable organic carbon, AOC)之濃度。本研究以坪頂淨水場為例,在97年12月至98年11月的十二次月採樣中,均可明顯看出前加氯以及膠凝混凝兩操作單元上,對於AOC的影響,相較於淨水場內,配水管網中AOC呈穩定變化。
觀察月採樣之平均濃度對操作單元的數據上,總有機碳(Total Organic Carbon, TOC )和溶解性有機碳(Dissolved Organic Carbon, DOC)和AOC在淨水程序內有相同的趨勢,顯示出在坪頂淨水場內,TOC&DOC與AOC有相關性,但若仔細觀察個別月採樣,則可發現TOC&DOC在最高值期間,AOC卻沒有同步出現高值,因此可推論影響AOC主要是TOC中分子量較小的有機物。
連續採樣方面,以枯水期及豐水期的氣候影響因素做為區分,本研究在結果與討論後段以TOC、DOC、UV254、UV254/DOC及AOC等五個分析項目去探討,基本上在豐水期(七月)顯示出,上述五個分析項目之平均濃度均較為枯水期(三月)來的高,表示在降雨的時候,坪頂淨水場其原水所含有機碳濃度較平常來的高,因此連帶顯示出UV254、UV254/DOC及AOC在原水採樣點上濃度偏高。
Abstract
In the process of traditional water treatment, the humic acid and fulvic acid can be oxidized by chlorination; besides, it also produces small molecular organic compounds at the same time. Coagulation, flocculation, and sedimentation can reduce the concentration of the Assimilable Organic Carbon (AOC) significantly. An example of Ping-Ding water treatment plant was performed with sampling twelve times monthly from December 2008 to November 2009, the strong influence of chlorine, and coagulation, flocculation on the AOC can be observed. Comparing to the removal efficiency of water process in Ping-Ding water treatment plant, the AOC presented much stably in the distribution systems.
We observed the data on the mean concentration of monthly sampling related to the operation unit in the water treatment plant. The Total Organic Carbon (TOC), and the Dissolved Organic Carbon (DOC) had the same trend with AOC in the water treatment process; it showed that TOC, and DOC had well relation to AOC in Ping-Ding water treatment plant. However, scrutinizing single monthly sampling, we found that the concentration of AOC did not fix out with the concentration of TOC and DOC at the same time. Therefore, results indicate that the AOC is mainly related to the smaller organic molecules of the TOC.
In the series of sampling, we divided the influence of climate factor into the dry season and the pour season. The research discussed the five analysis items in the final results and discussion:TOC, DOC, UV254, UV254/DOC, and AOC. Basically, the concentration of the five analysis items on the pour season is higher than the dry season; it indicates that the raw water’s concentration of organic carbon in Ping-Ding water treatment plant is higher during raining days. This can express the high concentration of the UV254, UV254/DOC, and AOC in water treatment plant in our work.
目次 Table of Contents
目 錄
誌謝..............................................................................................................I
中文摘要......................................................................................................II
英文摘要......................................................................................................IV
目錄..............................................................................................................VI
表目錄..........................................................................................................IX
圖目錄..........................................................................................................X
第一章 前言..............................................................................................1-1
1.1 研究緣起...................................................................................... 1-1
1.2 研究目的及內容.......................................................................... 1-2
第二章 文獻回顧....................................................................................... 2-1
2.1 大高雄地區自來水供水現況...................................................... 2-1
2.2 坪頂淨水場現況.......................................................................... 2-3
2.3 傳統淨水程序.............................................................................. 2-5
2.4 水中生物有機質之測定.............................................................. 2-7
2.5 影響AOC 的因素....................................................................... 2-8
第三章 研究方法....................................................................................... 3-1
3.1 採樣規劃......................................................................................... 3-1
3.2 採樣程序........................................................................................ 3-2
3.3 前置作業........................................................................................ 3-3
3.4 水質項目與分析方法.................................................................... 3-6
3.4.1 pH 分析原理......................................................................... 3-7
3.4.2 餘氯分析原理......................................................................3-8
3.4.3 導電度分析原理..................................................................3-10
3.4.4 大腸桿菌群分析原理........................................................... 3-12
3.4.5 AOC 分析方法...................................................................... 3-15
3.4.6 TOC 與DOC 分析方法...................................................... ..3-23
3.5 品保及品管作業............................................................................. 3-24
第四章 結果與討論.................................................................................... 4-1
4.1 生物可利用碳(AOC)及相關水質參數探討................................... 4-1
4.1.1 月採餘氯趨勢 .................................................................... 4-1
4.1.2 月採TOC 趨勢&DOC 趨勢................................................ 4-3
4.1.3 月採UV254 趨勢................................................................ 4-6
4.1.4 月採AOC 趨勢.................................................................... 4-8
4.2 AOC 與UV254 的關係.................................................................... 4-11
4.3 AOC 與TOC 的關係......................................................................4-11
4.4 枯水期與豐水期之影響及操作策略探討.....................................4-12
4.5 淨水場程序之生物可利用碳(AOC)處理效能之探討..................4-16
4.6 生物可利用碳控制之最佳化操作及控制策略探討.....................4-17
第五章 結論與建議.................................................................................... 5-1
5.1 結論................................................................................................. 5-1
5.2 建議................................................................................................ 5-1
參考文獻......................................................................................................參-1
附錄A ........................................................................................................A-1
表 目 錄
表2.1 坪頂淨水場供水區域與供水量現況表........................................2-1
表3.1 淨水處理程序與配水管網之微生物控制探討分析彙整表........3-6
表3.2 A、B、C 礦物培養基配製表.......................................................3-17
表3.3 LLA 培養基配製表.......................................................................3-18
圖 目 錄
圖2.1 大高雄地區淨水場位置示意圖I .................................................2-2
圖2.2 大高雄地區淨水場位置示意圖II ................................................2-2
圖2.3 坪頂淨水場處理流程圖I .............................................................2-4
圖2.4 坪頂淨水場處理流程圖II ............................................................2-4
圖4.1 月採平均餘氯濃度對各採樣點趨勢圖........................................4-1
圖4.2 各月份採樣餘氯濃度對各採樣點趨勢圖....................................4-2
圖4.3 月採平均TOC 濃度對各採樣點趨勢圖......................................4-4
圖4.4 月採平均DOC 濃度對各採樣點趨勢圖.....................................4-4
圖4.5 各月份採樣TOC 濃度對各採樣點趨勢圖..................................4-5
圖4.6 各月份採樣DOC 濃度對各採樣點趨勢圖.................................4-5
圖4.7 月份採樣平均UV254 濃度各採樣點趨勢圖................................4-6
圖4.8 各月份採樣DOC 濃度對各採樣點趨勢圖.................................4-7
圖4.9 月採平均AOC 濃度對各採樣點趨勢圖.....................................4-9
圖4.10 各月份採樣AOC 濃度對各採樣點趨勢圖.................................4-9
圖4.11 枯水期與豐水期間TOC 平均濃度對操作單位趨勢圖..............4-13
圖4.12 枯水期與豐水期間DOC 平均濃度對操作單位趨勢圖.............4-13
圖4.13 枯水期與豐水期間UV254 平均濃度對操作單位趨勢圖..........4-14
圖4.14 枯水期與豐水期間UV254/TOC 平均濃度對操作單位趨勢圖.4-14
圖4.15 枯水期與豐水期間AOC 平均濃度對操作單位趨勢圖...........4-15
參考文獻 References
AWWARF (1993a), Characterization of natural organic matter and its relationship to treatability, AWWA Research Foundation and American Water Works Association, Denver, CO.
AWWARF (1993b), Assimilable organic carbon measurement techniques, AWWA Research Foundation and American Water Works Association, Denver, CO.
Batterman, S., Zhang, L. & Wang, S. (2000), Quenching of chlorination disinfection by-products formation in drinking water by hydrogen peroxide, Water Research, 34(5), 1652-1658.
Becker, W. C. & O`Mellia, C. R. (2001), Ozone: its effect on coagulation and filtration, Water Science & Technology: Water Supply, 1(4), 81-88.
Cantor, K. P., Lynch, C. F., Hildesheim, M. E., Dosemeci, M., Lubin, Alavanja, J. & Craun, G., (1998), Drinking water source and chlorination by-products: I. Risk of bladder cancer, Epidemiology, 9(1), 21–28.
Crozes, G., White, P. & Marshall, M. (1995), Enhanced coagulation: its effect on NOM removal and chemical costs, Journal American Water Works Association, 87(1), 78-89.
Escobar, I. C., Hong, S. & Randall, A. A. (2000), Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membrane, Journal of Membrane Science, 175, 1-17.
Escobar, I.C. & Randall, A.A. (2000), Sample storage impact on the assimilable organic carbon (AOC) and biostability, Water Research, 34(5), 1680-1686.
Garcia-Villanova, R. J., Gacia, C., Gomes, J. A., Gacia, M. P. & Ardanuy R. (1997), Formation, Evolution and Modeling of Trihalomethanes in the Drinking Water of a Town: I- at the Municipal Treatment Utilities, Water Research, 31(6), 1299-1308.
Giller, S., Le, C. F., Erb, F. & Marzin, D. (1997), Comparative genotoxicity of halogenated acetic acids found in drinking water, Mutagenesis, 12(5), 321-328.
Grossman, L. H., Manka, J., Relis, B. L., & Rebhum, M. (1993), Formation and Distribution of Haloacetic Acids, THM and TOX in Chlorination of Bromide-Rich Lake Water, Water Research, 27(8), 1323-1331.
Günder, B.(2001), The membrane-coupled activated sludge process in municipal wastewater treatment, Technomic Publishing Co. Inc., Lancaster, PA, USA ,.
Hong, S., Escobar, I. C., Hershey-Pyle, J., Hobbs, C. & Cho, J. (2005), Biostability characterization in a full scale nanofiltration / reverse osmosis (NF/RO) treatment system, Journal American Water Works Association. 97(5), 101-110.
Hsu, C. H., Jeng, W. L., Chien, R. M. & Ham, B. C. (2001), Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan. Environmental Research, 85(2), 77-82.
Huang, H., Lee, N. H., Young, T., Gary, A., Lozier, J. C. & Jacangelo, J. G. (2007), Natural organic matter fouling of low-pressure, hollow-fiber membranes: effects of NOM source and hydrodynamic conditions, Water Research, 41(17), 3823-3832.
Isabel C. E, Seungkwan H.,& Andrew A. R. (2000), Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes. Journal of Membrane Science, 175, 1-17.
Jacangelo, J. G., Demarco, J., Owen, D. M. & Randtke, S. J. (1995), Selected processes for removing NOM: an overview, Journal American Water Supply Work Association, 87(1), 64-77.
Jekel, M. R. (1998), Effects and mechanisms involved in preoxidation and particle separation processes, Water Science and Technology, 37(10), 1-7.
Johnson, J. D. & Jensen J. M. (1986), THM and TOX Formation: routes, rates and precursors, Journal American Water Works Association, 78(4), 156-162.
Khan, E., R. W. Babcock, Suffet I. H. & Stenstorm, M. K. (1998), Biodegradable dissolved organic carbon for indicating wastewater reclaimation plant performance and treated wastewater quality, Water Environmental Research, 70(5), 1033-1040.
Kitis, M., Karanfil, T., Wigton, A. & Kilduff, J. E. (2002), Probing Reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation, Water Research, 3834-3848.
Krasner, S.W. (1999), Chemistry of disinfection by-products formation on formation and control of disinfection by-products in drinking water, Chapter 2. American Water Works Association.
Langlais, B. & Reckhow, D. A. (1991), Ozone in water treatment: application and engineering, Lewis Publisher, Inc., Chelsea, MI (Eds.).
Lars, J.Hem. & Harry, Efraimsen. (2000), Assimilable organic carbon in molecular weight fraction of naturL ORGnic matter, Water Research, 35(4), 1106-1110.
Marhaba T. F. & Washington M. B. (1998), Drinking water disinfection and byproducts: history and current practice, Advances in Environmental Research, 2(1), 103-115.
Martin, M. B., Croue, J. P., Lefebvre, E. & Legube, B. (1997), Distribution and characterization of dissolved organic matter of surface waters, Water Research, 31, 541-553.
Miller, J. H., Minard, K., Wind, R. A., Oener, G. A., Sasser, L. B. & Bull, R. J. (2000), In vivo MRI measurements of tumor growth induced by dichloroacetate. Implications for mode of action, Toxicology, 145(2-3), 115-125.
Nazim, C., Hans, W., Makram, T. S. , Brian, E. W., Vincent, U. & Jacque , M. (1998), Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds, Water Research, 32(5), 1553-1563.
Nishilima, W., Kim, W. H., Shoto, E. & Okada, M. (1998), The performance of an ozonation-biological activated carbon process under long term operation, Wat. Sci. Tech. 38(6), 163-169.
Ogoshi, M. & Suzuki, y. (1999), Application of membrane separation to an easily installed municipal wastewater treatment plant, International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Japan, 250-255.
Pierre Cote Herve Buisson (1997), Charles pound immersed membrane activated sludge for the reuse of municipal wastewater, Desalination, 113, 189-196.
Sadiq, R. & Rodriguez, M. J. (2004), Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review, Science of The Total Environment, 321, 21-46.
Sagbo, O., Sun, Y. X., Hao, A. L., & Gu, P. (2008), Effect of PAC addition on MBR process for drinking water treatment, Separation and Purification Technology, 58(3), 320-327.
Seo, G. T., Moon, C. D., Chang, S. W. & Lee, S. H. (2004), Long term operation of high concentration powdered activated carbon membrane bioreactor for advanced water treatment, Water Science Technology, 50(8), 81-87.
Siddiqui, M. S., Amy, G. L. & Murphy, B. D. (1997), Ozone enhance removal of organic matter from drinking water sources, Water Research, 31(12), 3098-3106.
Singer, P. (1994), Control of disinfection by-products in drinking water, Journal of environment Engineering, 120(4), 727-774.
Stacpoole, P. W. (1989), The pharmacology of dichloroacetate, Metabolism, 38(11), 1124-1144.
Stevens, A. A., Moore, L. A. & Miltner, R. J. (1989), Formation and control of non trihalomethane disinfection by-products, Journal American Water Works Association, 81(8), 54-59.
Su, D. J. & Gao, N. Y. (2005), A study of removing organic matters in slightly -polluted water by an ozone-active carbon combined process, Ind.WaterWaste-water, 32, 26-28.
Tatsuki Ueda and Kenji Hata (1999), Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration, Water Research, 33(12), 2888-2892.
Tian, J. Y., Liang, H., You, S. J., Tian, S. & Li ,G. B. (2008), Membrane coagulation bioreactor(MCBR) for drinking water treatment, Water Research, 42, 3910-3920.
Tom, S., Simon, J., Bruce, J. & Keith, B. (2000), Membrane bioreactors for wastewater treatment, IWA, LONDON.
Toth, G. P., Kelty, K. C., George, E. L., Read, E. J. & Smith, M. K. (1992), Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate, Funfamental & Applied Toxicology, 19(1), 57-63.
Van der Kooij, D., Hijnen, W.A.M. & Kruithof, J.C. (1989), The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water, Ozone: Science & Engineering, 11, 297-311.
Wang, X. D., Wang, L., Liu, Y. & Duan, W. S. (2007), Ozonation pretreatment for ultrafiltration of the secondary effluent, Journal of Membrane Science, 287(2), 187-191.
Wen, C., Huang, X. & Qian, Yi. (1999), Domestic wastewater treatment using an anaerobic bioreactor coupled with membrane filtration, Process biochemistry, 35, 335-340.
Williams, D., LeBel, G.L. & Benoit, F. (1997), Disinfection by-products in Canadian drinking water, Chemosphere, 34(29), 299-316.
Zhang, B., Yamamoto, K., Ohgaki, S. & Kamiko, N. (1997), Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment reclamation, Water Science and Technology, 35(6), 37-44.
Zhang, M. M., Li, C., Benjamin, M. M. & Chang, Y. J. (2003), Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment, Environmental Science and Technology, 37(8), 1663-1669.

賴文亮,(2002),各種淨水程序對生物可分解有機質及消毒副產物之控制,國立成功大學環境工程研究所。
黃文鑑,(1997),混凝、吸附對溶解性有機物去除及受預氯影響之研究,國立成功大學環境工程研究所博士論文。
黃鈺茹、黃登福,(2007),自來水中氯化消毒副產物之飲用安全性,自來水協會會刊,26(3),23-37。
葉宣顯,(1999),淨水程序與清水水質生物穩定性間關係之研究,中華民國自來水協會。
葉宣顯,(1998),本省自來水水源溶解性有機物成份之分析及現有淨水程序對其去除率之評估,國立成功大學環境工程學系研究報告。
鄭又寧,(2008),生物可利用碳分析條件之探討與水質分析之研究,國立中山大學環境工程研究所碩士論文。
樓基中,(2008),淨水處理程序與配水管網微生物控制指標性之探討,台灣省自來水股份有限公司專案服務計畫書(97TWC01)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code