Responsive image
博碩士論文 etd-0118116-181712 詳細資訊
Title page for etd-0118116-181712
論文名稱
Title
水下靜態目標物搜尋作業模式之研究
Procedures and Safety Strategies for Divers on Underwater Objects Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-12-11
繳交日期
Date of Submission
2016-02-18
關鍵字
Keywords
水下環境、底床地貌特徵、掃描式聲納、水下失蹤人員、南港空難
underwater environment, benthic topographic features, scanning sonar, underwater missing personnel, Nan-Kong aviation accident
統計
Statistics
本論文已被瀏覽 5710 次,被下載 54
The thesis/dissertation has been browsed 5710 times, has been downloaded 54 times.
中文摘要
水下靜態目標物的搜尋作業是一項技術性、困難度與危險性均極高的工作。對於因意外事件而墜落至水下的人員或器材而言,如何在確保搜尋人員安全的前提下,迅速完成目標物搜尋作業,是消防與海巡相關單位人員努力的方向。目前對於位於水中之目標物而言,除了岸際與水面搜尋外,會適時派遣潛水人員,以視覺或觸覺方式進行水下搜尋作業。此種作業模式,除了效果不顯著外,對於潛水人員的人身安全也造成極大的威脅。
民國一○四年復興航空公司GE 235班機於基隆河墜機事件中(南港空難),國立中山大學水下搜尋團隊,以底床固定型掃描式聲納系統,針對南湖大橋區域,進行以底床細部探測作業為主體的失蹤人員搜尋作業,以協助釐清最後三名空難失蹤人員與此區域的關連性。此案例在應用水下聲學遙測技術進行水下搜尋作業而言,具有收集完整與細部底床資訊的功能。本文之主旨在於探討應用掃描式聲納系統進行水下搜尋之作業模式與策略。
根據探測與分析結果顯示,基隆河南湖大橋區段內水下環境與地貌特徵,按上游至下游的順序,可分為六個類型:流道區、上游區、潛堤區、堆積區、侵蝕區以及下游區等。其中流道區、潛堤區與侵蝕區等類型之外觀特徵,以裸露之混凝土質塊體為主體,地形崎嶇。而上游區、堆積區與下游區之外觀則以平坦的沉積物為主要特徵,未完全掩埋之混凝土質立方體則以散點狀的方式,分布於局部區域。針對失蹤人員進行的聲納影像判讀,共計標定出25組疑似目標物。
最後3名失蹤人員與南湖大橋區域的關連性,經水下聲學探測與潛水人員完整的驗證作業,得以證實。其中2名失蹤人員於潛堤區尋獲,第3名失蹤人員則經證實不在探測區域內。
此種以底床固定型掃描式聲納系統為主體之作業模式,預期可提昇水下目標物搜尋作業的效率,降低整體救溺或打撈作業時的困難度,並能夠達到保障潛水人員自身安全的目的。
Abstract
Disaster or accident happened in or related to the aquatic environment is much more difficulty and dangerous to the rescuers as compared to those happened in the terrestrial environment. In this circumstance, detection, location and salvage the victims under the water or on the water bottom are the major challenges faced by the rescuers. An efficient and reliable way of detecting and locating the victims is therefore a major component of the operation.
After the TransAsia Airways flight GE235 plane crash landed in Keelung River in February, 2015 (codenamed Nan-Kong Aviation Accident), 12 people were missing and were expected to have been pulled down the river. After exhausted searching operation by divers but in vain, the potential location of the 3 still missing people were seriously re-examined. It was concluded that the Nan-Hu bridge area is one of the most potential areas and a comprehensive underwater acoustic investigation of this specific area was recommended. A bottom fixed mechanically scanned imaging sonar was therefore employed for this specific searching for operation.
Based on underwater acoustic images collected, underwater environment and topographic features of the Nan-Hu bridge area can be divided into six distinctive regions, in a sequence from upstream to downstream, i.e., flow channel region, upstream region, submerged dike region, depositional region, erosion region, and downstream region. Based on outer appearance, composition and dimensions, a total of 25 potential or unidentified targets were recognized in the high resolution acoustic images.
The 25 potential targets positioned in Nan-Hu bridge area were further identified and proved individually by divers. In this case, two of the 3 unaccounted personnel were located at the submerged dike region. All the other potential targets were proved to be either concrete blocks or logs. In addition, it was also concluded that the last unaccounted personnel was not located in this specific bridge area.
From a time series point of view, the dates that the unaccounted personnel were detected and salvaged in this accident could be grouped into two categories. At flat and muddy bottom regions, searching for operations by divers could be completed effectively and comprehensively in a short period of time. However, prominent technical limitations existed for locating those missing personnel by divers at the rugged regions which might detain the progress of the whole searching for operation.
目次 Table of Contents
謝誌..................................................................................................................................i
中文摘要.........................................................................................................................ii
英文摘要.......................................................................................................................iii
目錄................................................................................................................................iv
圖目錄............................................................................................................................vi
表目錄...........................................................................................................................vii
第一章 緒論.................................................................................................................1
1-1 前言...........................................................................................................1
1-2 研究動機...................................................................................................3
1-3 研究目的...................................................................................................4
1-4 研究架構與章節內容...............................................................................5
第二章 儀器設備與研究理論.....................................................................................6
2-1 水下探測技術與儀器工作原理...............................................................8
2-1-1 聲學儀器......................................................................................8
2-1-2 聲納系統水中工作原理..............................................................8
2-1-3 掃描式聲納系統工作原理........................................................12
2-1-4 磁力儀原理與技術....................................................................21
2-1-5 全球衛星定位系統工作原理....................................................25
2-2 目標物辨識準則.....................................................................................26
2-2-1 目標物偵測能力之影響參數....................................................26
2-3 聲納聲學影像辨識準則.........................................................................35
2-3-1 影響聲納影像品質之因素........................................................35
第三章 前人研究與文獻回顧...................................................................................40

第四章 復興空難水下失蹤人員搜尋.......................................................................45
4-1 聲納功能與初期探測結果.....................................................................46
4-1-1 掃描式聲納系統之功能....................................................................46
4-1-2 初期探測結果…………....................................................................46
4-2 南湖大橋區段水下探測作業.................................................................49
4-2-1 水下環境與作業構想........................................................................48
4-2-2 南湖大橋區段水下環境與地貌特徵................................................50
4-2-3 南湖大橋區段水下疑似目標物........................................................53
4-3 水下搜尋作業成果.................................................................................53
4-3-1 水下環境與地貌特徵........................................................................53
4-3-2 疑似目標物位置與分布狀態............................................................55
4-4 搜尋結果討論與結論.............................................................................58
第五章 討論、結論與未來方向...............................................................................64
5-1 掃描式聲納解析度之探討與理想搜尋模式.........................................58
5-2 潛水人員水下移動路徑、搜索範圍與活動位態.................................68
5-3 結論…………………………………………………………….………68
5-4 未來研究方向.........................................................................................69
參考文獻.......................................................................................................................71
附錄一 臺北市0204復興航空事故救災初步報告...................................................74
附錄二 復興航空事故聲學影像圖集.......................................................................90
附錄三 復興航空事故現場作業影像紀錄...............................................................97
參考文獻 References
1. 田文敏(1996),「側向掃描聲納系統之基本工理」,國立中山大學海洋環境及工程學系海上實習課程教材。
2. 田文敏(1998),「水下靜態目標物之搜尋、辨識、定位與監測」,國際海洋年「海洋海軍科技」研討會;海軍軍官學校,民國八十七年十一月十九日至十一月二十日。
3. 田文敏(2000),「水下靜態目標物之搜尋、辨識與定位」,海下技術季刊第十卷第二期,28頁-36頁。
4. 田文敏(2002),「中華搜救總隊水下探測技術訓練課程教材」,銳昌企業股份有限公司,114頁。
5. 田文敏(2006),「水下目標物搜尋作業原理與要點」,第15屆國防科技學術研討會暨95年度國防科技學術合作計畫成果發表會論文集,第147-154頁。
6. 田楷寅(2010),「水下目標物之偵搜與辨識原理」,第32屆海洋工程研討會論文集,第761-766頁。
7. 田文敏、林奕廷(2008),「溺水人員之偵搜辨識原理」,消防月刊,97年7月,第20-26頁。(內政部消防署編著)。
8. 田文敏、李依倫、李英璋(2008),「水下靜態目標物搜尋與定位作業實例探討」,第十屆水下技術研討會暨國科會成果發表會論文集。第117-125頁。
9. 鄭勝文、邱逢琛(1997),「水下技術概論」,國立編譯館,398頁。
10. 沈志勇(2005),「水下靜態目標物搜尋、偵測、辨識與定位之研究」,國立中山大學海洋環境及工程研究所碩士論文,137頁。
11. 李英璋(2011),「側掃聲納影像人為目標物自動化辨識分析之研究」,國立中山大學海洋環境及工程研究所碩士論文,184頁。
12. 沈育佳(1999),「都會區空載多譜掃描影像紋理分析之研究」,國立中興大學土木工程學系研究所碩士論文,54頁。
13. 林俊宏(2003),「應用影像增加處理之邊界偵測演算法」,中華技術學院學報,第二十六期,310~317頁。
14. 林榮章(1999),「都會區多解像力遙測影像之紋理分析」,國立中興大學土木工程學系研究所碩士論文,71頁。
15. 林奕廷(2009),「溺水人員之偵搜與辨識原理」,國立中山大學海洋環境及工程學系碩士論文,102頁。
16. 唐德誠(2002),「灰度共現矩陣於多波段多極化SAR影像分類之研究」,國防大學中正理工學院軍事工程研究所碩士論文,114頁。
17. 郭孟維(2008),「應用側掃聲納影像進行海床靜態目標物自動化辨識與分析之研究」,國立中山大學海洋環境及工程學系碩士論文,136頁。
18. 曹士亮(2008),「墾丁現生珊瑚礁自動化分類與描繪之研究」,國立中山大學海洋環境及工程學系碩士論文,117頁。
19. 蔡營寬(2006)「水下靜態目標物之偵搜與辨識原理」,國立中山大學海洋環境及工程學系碩士論文,45頁。
20. 黃偉碩(2005),「利用貝氏分類與因子分析法於半導體製程錯誤偵測與診斷」,中華大學科技管理學系暨科技管理研究所碩士論文,51頁。
21. 鄭勝文、邱逢琛(1997),「水下技術概論」,國立編譯館,398頁。
22. 蕭博元(2005),「水下目標物搜尋作業原理與要點」,國立中山大學海洋環境及工程學系碩士論文,198頁。
23. 劉金源(2001),「水中聲學ー水聲系統之基本操作原理」,國立編譯館,619頁。
24. A.P.M. Michel, K.L. Croff, K.W. McLetchie, J.D. Irish (2002), “A Remote Monitoring System for Open Ocean Aquaculture”, OCEANS '02 MTS/IEEE, vol. 4, pp. 2488 – 2496.
25. Bradley G. Stevens, “Use of Video and Sector Scannign Sonar for Studying Tanner Crab Aggregations”, Report of the National Marine Fisheries Service Workshop on Underwater Video Analysis August 4-6, 2004, pp. 6-7 pages.
26. Bjarke Pedersen and Mark V. Trevorrow (1999), “Continuous monitoring of fish in a shallow channel using a fixed horizontal sonar”, J. Acoust. Soc. Am. 105(6), pp. 3126-3135.
27. Debby L. Burwen, Steve J. Fleischman, James D. Miller (2007), “ Evaluation of a Dual-Frequency Imaging Sonar for Detecting and Estimating the Size of Migrating Salmon”, Fishery Data Series No.07-44.
28. Haralick, R.M., Shanmugam, K. ,Dinstenin I. (1973), “Texture Features for Image Classification”, IEEE Transactions on System, Vol-SMC-3, No.6 Nor 1973, pp. 610-621.
29. Imagenex Technology Corp. (2002), “Sonar Theory and Applications”, excerpt from Imagenex model 855 color imaging sonar user’s manual, 8 pages.
30. Imagenex Technology Corp. (2003), “Imagenex model 881A Digital Multi-Frequency Imaging Sonar user’s manual”, 54 pages.
31. KonsbergMesotech, Ltd. (2002), “Use of Scanning and Side-scan Sonar for Body Recovery”, Technical Notes, V1.1, pp. 11-14 pages.
32. Kongsberg Mesotech, Ltd. (2008), “Sonar for Harbour Surveillance and Intruder Detection”, Technical Notes, V1.1, 20 pages.
33. Mario Zampolli, Finn B. Jensen, Alessandra Tesei (2008), “Review of target strength information for waterside security applications” ,NURC Reprint Series.
34. Mazel ,C. (1985), “Side Scan Sonar Training Manual”, Klein Associates, Inc.pp 144.
35. Mark V. Trevorrow (1998), “Salmon and herring school detection in shallow waters usingsidescan sonars”, Fisheries Research 35, pp. 5-14 pages.
36. Mark V. Trevorrow and Ross R. Claytor (1998), “Detection of Atlantic herring (Clupeaharengus) schools in shallow waters using high-frequency sidescansonars”, Can. J. Fish. Aquat. Sci. 55, pp. 1419-1429.
37. M.J. Chantler, D.M. Lane, D. Dai, N. Williams (1996), “Detection and tracking of returns in sector-scan sonar image sequences”, IEE Proc.-Radar, Sonar Navig., Vol.143, No. 3, pp.157-162.
38. Nils Olav Handegard and Kresimir Williams (2008), “Automated tracking of fish in trawls using the DIDSON (Dual frequency Identification SONar)”, ICES Journal of Marine Science. 65, pp. 636-644.
39. Paul Baxter (2006), “3D Sonar in Object Detection”, Archive, Vol. 10, No.6
40. R.M. Starr and R.E. Thorne (1998), “Acoustic assessment of squid stocks”, FAO Fisheries Technical Paper No.376, pp. 181-198 pages
41. Ronald T. Kessel and Reginald D. Hollett (2006), “Underwater Intruder Detection Sonar for Harbour Protection: State of the Art Review and Implications”, NATO Undersea Research Centre.
42. Reed, T.B. and Hussong, D.(1989), “Digital Image Processing Techniques for Enhancement and Classifition of SeaMARCII Side Scan Sonar Imagery”, Journal of Geophysical Research, Vol. 94, no. B6, pp. 7469~7490.
43. Stephane G. Conti (2006), “Acoustical monitoring of fish density, behavvior, and growth rate in a tank”, Aquaculture Vol. 251, pp. 314-323.
44. Thomas Edgar Curtis (2011), “Underwater Sureillance”, United States Patent Application Publication.
45. Vasilis Trygonis, Stratis Georgakarakos, E. John Simmonds (2009), “An operational system for automatic school identification on multibeam sonar echoes”, ICES journal of Marine Science, pp.935-949.
46. W. Tesler, R. Kieser, J.M. Preston (2004), “Use of seabed classification methodology to obtain species information from fisheries acoustic data”, ICES CM.
47. Wikantika, K., Harto, A. B., Tateishi, R., Wihartini, J. Tetuko S. S., Park, J. H.(2000), “An Investigation of Textual Characteristics Associatedwith Spectral Information for Land Use Classification,” InternationalGeoscience and Remote Sensing Symposium, pp. 2915-2917.
48. Weszka, J. S., Dyer C. R., Rosenfeld, A.(1976), “A ComparativeStudy of Texture Measures for Terrain Classification,” IEEETrans. on Syst., Man and Cybern., SMC, 6(4), pp. 269-285.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code