Responsive image
博碩士論文 etd-0118116-185443 詳細資訊
Title page for etd-0118116-185443
論文名稱
Title
氦氣電漿及電噴灑雙游離源系統於質譜分析之應用
Dual Ion Source Composed of Helium Plasma and Electrospray Ionizations for Ambient Mass Spectrometry Detections
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-28
繳交日期
Date of Submission
2016-06-29
關鍵字
Keywords
電噴灑游離法、環境質譜游離法、大氣壓化學游離法、雙游離源、常壓電漿游離法
Atmospheric Plasma Ionization, Electrospray Ionization, Ambient Mass Spectrometry, Atmospheric Pressure Chemical Ionization, Dual Ion Source
統計
Statistics
本論文已被瀏覽 5664 次,被下載 0
The thesis/dissertation has been browsed 5664 times, has been downloaded 0 times.
中文摘要
本研究開發出一個創新的對稱型同軸式雙游離源,該系統整合了平衡常壓氦氣電漿游離源以及電噴灑游離源,以同時游離極性和非極性的分析物。傳統直線型同軸式雙游離源因為電漿出口將殘留的淨電壓,因此在雙游離源模式下,電噴灑游離將受到該淨電壓之干擾,而無法與電漿游離源穩定共存。本研究透過對稱式電極設計,其利用兩電極上之反向高壓交流電,使電漿產生中心處之電位為零,以消除電漿出口之淨電壓,成功地解決雙游離源無法共存的問題。結果顯示,本研究所發展之雙游離源,可穩定操作長達100分鐘,且平均離子濃度高達109 ion∙cm-3,足以適用於大部分質譜游離偵測之應用。本研究亦測試四個影響該雙游離源系統之四項參數進行實驗分析,其包含電漿與電噴灑源之幾何設計、電噴灑電壓、電噴灑溶液注射速率以及產生電漿之氦氣流量,並以數位顯微鏡觀察噴灑情形,成功地優化該雙游離源系統之穩定性,並增加產生之總離子濃度。本研究並配置易揮發的化合物、市售農藥、市售成藥、長碳鏈烷類和水溶性及脂溶性之維他命標準品以及複方中草藥天然物做為待測物,以驗證該雙游離源之質譜偵測效能,結果顯示該系統可在單電漿模式、單電噴灑模式以及雙游離源模式下,成功量測到分析物的成份,並可同時量測到適合電噴灑游離偵測之極性物質和適合電漿游離之非極性物質,大幅增加質譜系統之偵測能力。本研究所發展之系統,未來將可應用於食品安全檢測、空氣汙染監控、藥品成分分析…等領域。
Abstract
This work develops an innovative symmetric coaxial dual ion source combining a balanced atmospheric helium plasma ion source and an electrospray ion source to simultaneously detect both polar and nonpolar chemical compounds. The traditional linear-type coaxial dual ion source suffers the drawback of floating voltage at the plasma outlet of the glass tube. When the dual ion source is working at dual ion source mode, the high floating voltage at the plasma outlet of the glass tube will interfere the ESI source which leads to unstable signals. In order to solve this problem, the balanced electrode design of the symmetric coaxial dual ion source was introduced to eliminate the floating voltage by changing the drive phase of the plasma generator. The results show that after 100 minutes of continuous testing in the dual source mode, the ESI source can constantly produce ions with the existence of plasma source due to the elimination of floating voltage and the dual source can provide more than 109 ion∙cm-3 ion intensity that can apply for most of the ambient mass spectrometry applications. In order to optimize the symmetric coaxial dual source’s stability and increase the total ion intensity, four important parameters including the geometric design of the plasma source and the ESI source, ESI spray voltage, the injection rate of ESI solutions, and the flow rate of helium as the carrier gas for producing plasma have been studied through the results of MS results and the pictures were taking by the digital microscope. Standards of volatile organic compounds, pesticide, cold syrup, Chinese herbal medicine, vitamins, tetradecane and hexadecane were used for testing in three different modes including plasma-only, ESI-only, and dual ion source modes. Results show that the developed dual source successfully detect the analytes and can both detect polar and nonpolar compounds which substantially improve the abilities of MS system. The developed system can apply in food safety testing, air pollution monitoring, and pharmaceutical composition analysis.
目次 Table of Contents
論文審定書 i
論文授權書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
符號表 xiii
簡寫表 xiv
第一章 緒論 1
1.1 前言 1
1.2 環境質譜游離法 5
1.3 電噴灑游離法簡介 6
1.3.1 脫附電噴灑游離法 7
1.3.2 直接式電噴灑探針 8
1.4 常壓電漿游離法簡介 9
1.4.1 即時直接分析法 10
1.4.2 低溫電漿游離法 11
1.4.3 介電質放電游離法 11
1.4.4 介電質放電游離法 12
1.5 論文架構 13
第二章 動機目的及原理 15
2.1 電噴灑游離原理 15
2.1.1 霧化 15
2.1.2 去溶劑 16
2.1.3 游離 16
2.2 電漿游離原理 17
2.3 電噴灑游離與電漿游離之比較 18
2.4 現有之複合游離源介紹 19
2.4.1 市面上已存在之複合型游離源 19
2.4.2 同軸式雙游離源 20
2.5 對稱型介電質放電電漿游離源 21
2.6 研究動機與目的 22
2.6.1 研究動機 22
2.6.2 研究目的 22
第三章 實驗與方法 23
3.1 實驗藥品及樣品 23
3.2 實驗裝置 23
3.2.1 氦氣流量計 23
3.2.2 方型撓式超薄電熱片 24
3.2.3 光譜儀 24
3.2.4 離子阱質譜儀 25
3.2.5 數位攝影設備 26
3.2.6 電漿高壓交流模組及電噴灑直流高壓輸出 26
3.3 同軸雙游離源裝置的設計 27
3.4 熔融矽毛細管口徑對電噴灑之影響 28
3.5 同軸雙游離源系統架構 29
3.6 同軸雙游離源之參數探討 30
3.6.1 毛細管與玻璃管出口間距對離子濃度之影響 30
3.6.2 電噴灑電壓對離子濃度之影響 32
3.6.3 電噴灑溶液注射速率 33
3.6.4 氦氣流量對離子濃度之影響 33
第四章 實驗結果與討論 35
4.1 光譜量測 35
4.2 兩種裝置之離子濃度比較圖 36
4.3 三種模式下之特徵背景質譜圖 37
4.4 單電漿模式樣品分析 40
4.4.1 量測易揮發之小分子化合物 40
4.4.2 量測複方中草藥之成分 41
4.5 單電噴灑模式樣品分析 42
4.5.1 市售農藥之成分量測 42
4.5.2 市售感冒糖漿之成分量測 43
4.6 雙游離源模式樣品分析 44
4.6.1 水溶性及脂溶性維他命量測 44
4.6.2 兩種裝置對氧化物的影響 46
第五章 結論與未來展望 48
5.1 結論 48
5.2 未來展望 49
參考文獻 50
自述 53
參考文獻 References
[1] R. G. Cooks, Z. Ouyang, Z. Takats, and J. M. Wiseman, "Ambient mass spectrometry," Science, vol. 311, pp. 1566-1570, 2006.
[2] A. Dempster, "LII. The ionization and dissociation of hydrogen molecules and the formation of H 3," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 31, pp. 438-443, 1916.
[3] M. S. Munson and F.-H. Field, "Chemical ionization mass spectrometry. I. General introduction," Journal of the American Chemical Society, vol. 88, pp. 2621-2630, 1966.
[4] M. Posthumus, P. Kistemaker, H. Meuzelaar, and M. Ten Noever de Brauw, "Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules," Analytical Chemistry, vol. 50, pp. 985-991, 1978.
[5] H. R. Morris, M. Panico, M. Barber, R. S. Bordoli, R. D. Sedgwick, and A. Tyler, "Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis," Biochemical and Biophysical Research Communications, vol. 101, pp. 623-631, 1981.
[6] S. J. Pachuta and R. Cooks, "Mechanisms in molecular SIMS," Chemical Reviews, vol. 87, pp. 647-669, 1987.
[7] M. Yamashita and J. B. Fenn, "Electrospray ion source. Another variation on the free-jet theme," The Journal of Physical Chemistry, vol. 88, pp. 4451-4459, 1984.
[8] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, et al., "Protein and polymer analyses up to m/z 100 000 by laser ionization time? of? flight mass spectrometry," Rapid Communications in Mass Spectrometry, vol. 2, pp. 151-153, 1988.
[9] M. Karas and F. Hillenkamp, "Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons," Analytical Chemistry, vol. 60, pp. 2299-2301, 1988.
[10] D. Carroll, I. Dzidic, R. Stillwell, K. Haegele, and E. Horning, "Atmospheric pressure ionization mass spectrometry. Corona discharge ion source for use in a liquid chromatograph-mass spectrometer-computer analytical system," Analytical Chemistry, vol. 47, pp. 2369-2373, 1975.
[11] Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, "Mass spectrometry sampling under ambient conditions with desorption electrospray ionization," Science, vol. 306, pp. 471-473, 2004.
[12] G. J. Van Berkel, S. P. Pasilis, and O. Ovchinnikova, "Established and emerging atmospheric pressure surface sampling/ionization techniques for mass spectrometry," Journal of Mass Spectrometry, vol. 43, pp. 1161-1180, 2008.
[13] A. Venter, M. Nefliu, and R. G. Cooks, "Ambient desorption ionization mass spectrometry," TrAC Trends in Analytical Chemistry, vol. 27, pp. 284-290, 2008.
[14] H. Chen, G. Gamez, and R. Zenobi, "What can we learn from ambient ionization techniques?," Journal of the American Society for Mass Spectrometry, vol. 20, pp. 1947-1963, 2009.
[15] R. M. Alberici, R. C. Simas, G. B. Sanvido, W. Romão, P. M. Lalli, M. Benassi, et al., "Ambient mass spectrometry: bringing MS into the “real world”," Analytical and Bioanalytical Chemistry, vol. 398, pp. 265-294, 2010.
[16] M.-Z. Huang, C.-H. Yuan, S.-C. Cheng, Y.-T. Cho, and J. Shiea, "Ambient ionization mass spectrometry," Annual Review of Analytical Chemistry, vol. 3, pp. 43-65, 2010.
[17] M.-Z. Huang, S.-C. Cheng, Y.-T. Cho, and J. Shiea, "Ambient ionization mass spectrometry: a tutorial," Analytica Chimica acta, vol. 702, pp. 1-15, 2011.
[18] G. A. Harris, A. S. Galhena, and F. M. Fernández, "Ambient sampling/ionization mass spectrometry: applications and current trends," Analytical Chemistry, vol. 83, pp. 4508-4538, 2011.
[19] J. Zeleny, "The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces," Physical Review, vol. 3, p. 69, 1914.
[20] J. Zeleny, "Instability of electrified liquid surfaces," Physical Review, vol. 10, p. 1, 1917.
[21] J. Zeleny, "Industry application of electrospray technology," Phys. Rev, vol. 10, p. 1, 1917.
[22] L. L. Mack, P. Kralik, A. Rheude, and M. Dole, "Molecular beams of macroions. II," The Journal of Chemical Physics, vol. 52, pp. 4977-4986, 1970.
[23] M. Dole, L. Mack, R. Hines, R. Mobley, L. Ferguson, and M. d. Alice, "Molecular beams of macroions," The Journal of Chemical Physics, vol. 49, pp. 2240-2249, 1968.
[24] S. Wong, C. Meng, and J. Fenn, "Multiple charging in electrospray ionization of poly (ethylene glycols)," The Journal of Physical Chemistry, vol. 92, pp. 546-550, 1988.
[25] C. Meng, M. Mann, and J. Fenn, "Of protons or proteins," Zeitschrift für Physik D Atoms, Molecules and Clusters, vol. 10, pp. 361-368, 1988.
[26] C. M. Hong, C. T. Lee, Y. M. Lee, C. P. Kuo, C. H. Yuan, and J. Shiea, "Generating electrospray from solutions predeposited on a copper wire," Rapid Communications in Mass Spectrometry, vol. 13, pp. 21-25, 1999.
[27] C.-P. Kuo and J. Shiea, "Application of direct electrospray probe to analyze biological compounds and to couple to solid-phase microextraction to detect trace surfactants in aqueous solution," Analytical Chemistry, vol. 71, pp. 4413-4417, 1999.
[28] J. Jeng, C.-H. Lin, and J. Shiea, "Electrospray from nanostructured tungsten oxide surfaces with ultralow sample volume," Analytical Chemistry, vol. 77, pp. 8170-8173, 2005.
[29] https://en.wikipedia.org/wiki/Atmospheric-pressure_chemical_ionization
[30] R. B. Cody, J. A. Laramée, and H. D. Durst, "Versatile new ion source for the analysis of materials in open air under ambient conditions," Analytical Chemistry, vol. 77, pp. 2297-2302, 2005.
[31] J. D. Harper, N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks, and Z. Ouyang, "Low-temperature plasma probe for ambient desorption ionization," Analytical Chemistry, vol. 80, pp. 9097-9104, 2008.
[32] N. Na, M. Zhao, S. Zhang, C. Yang, and X. Zhang, "Development of a dielectric barrier discharge ion source for ambient mass spectrometry," Journal of the American Society for Mass Spectrometry, vol. 18, pp. 1859-1862, 2007.
[33] H. Hayen, A. Michels, and J. Franzke, "Dielectric Barrier Discharge Ionization for Liquid Chromatography/Mass Spectrometry," Analytical Chemistry, vol. 81, pp. 10239-10245, Dec 15 2009.
[34] J. Iribarne and B. Thomson, "On the evaporation of small ions from charged droplets," The Journal of Chemical Physics, vol. 64, pp. 2287-2294, 1976.
[35] L. Konermann, E. Ahadi, A. D. Rodriguez, and S. Vahidi, "Unraveling the mechanism of electrospray ionization," Analytical Chemistry, vol. 85, pp. 2-9, 2012.
[36] R. T. Gallagher, M. P. Balogh, P. Davey, M. R. Jackson, I. Sinclair, and L. J. Southern, "Combined electrospray ionization-atmospheric pressure chemical ionization source for use in high-throughput LC-MS applications," Analytical Chemistry, vol. 75, pp. 973-977, 2003.
[37] S. M. Fischer, D. L. Gourley, and J. L. Bertsch, "Multimode ionization source," ed: Google Patents, 2003.
[38] A. Mordehai, "Multimode ion source with improved ionization," ed: Google Patents, 2008.
[39] L. M. Lang, P. W. Dalsgaard, and K. Linnet, "Quantitative analysis of cortisol and 6β‐hydroxycortisol in urine by fully automated SPE and ultra‐performance LC coupled with electrospray and atmospheric pressure chemical ionization (ESCi)‐TOF‐MS," Journal of Separation Science, vol. 36, pp. 246-251, 2013.
[40] http://www.agilent.com/en-us/products/mass-spectrometry/gp32106
[41] S.-C. Cheng, S.-S. Jhang, M.-Z. Huang, and J. Shiea, "Simultaneous Detection of Polar and Nonpolar Compounds by Ambient Mass Spectrometry with a Dual Electrospray and Atmospheric Pressure Chemical Ionization Source," Analytical chemistry, vol. 87, pp. 1743-1748, 2015.
[42] 江政鴻, "創新對稱型介電質放電大氣電漿游離源於質譜分析之應用," 國立中山大學, 2012.
[43] A. K. Y. Ralchenko, J. Reader, and N. A. S. D. Team, "NIST Atomic Spectra Database (version 3.1. 5)," National Institute of Standards and Technology, 2008.
[44] N. Na, Y. Xia, Z. Zhu, X. Zhang, and R. G. Cooks, "Birch Reduction of Benzene in a Low‐Temperature Plasma," Angewandte Chemie International Edition, vol. 48, pp. 2017-2019, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.60.35
論文開放下載的時間是 校外不公開

Your IP address is 18.217.60.35
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code