Responsive image
博碩士論文 etd-0119105-131846 詳細資訊
Title page for etd-0119105-131846
論文名稱
Title
以非線性光學散射與吸收研究強電荷轉移分子
Investigations of Strongly Charge Transfer Molecules Using Nonlinear Optical Scattering and Absorption
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
153
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-12-30
繳交日期
Date of Submission
2005-01-19
關鍵字
Keywords
非線性光學、光極化、超瑞力散射、電荷轉移發色團、第一超極化率、雙光子螢光、二倍頻、雙光子吸收截面積
Second harmonic generation, First molecule hyperpolarizability, Charge-transfer chromophore, Two-photon absorption cross section, Nonlinear optics, Optical poling, Two-photon fluorescence, Hyper-Rayleigh scattering
統計
Statistics
本論文已被瀏覽 5708 次,被下載 2487
The thesis/dissertation has been browsed 5708 times, has been downloaded 2487 times.
中文摘要
本論文以超瑞利散射深入的研究電荷轉移發色團的分子第一超極化率beta。所研究的電荷轉移發色團,其電子受體是tricyanohydrofuran(TCF)結構,某些在pi-電子橋更帶有thiophene結構。TCF 是很強的電子受體,而thiophene則大大的降低共振能量,這些結構使得發色團的 b值增大許多,因此提高了其應用價值。以可調波長的雷射光源進行超瑞利散射可測量頻率相關的beta值,實驗結果顯示beta在雙光子共振區域有重要的色散現象。以線性吸收光譜且配合理論的計算,可以利用Kramers-Kronig (K-K)轉換關係得到在雙光子共振範圍的beta值。在雙光子共振區域,傳統Oudar-Chemla公式不適用,但K-K轉換計算法的應用可延伸到此區域,此外更可以此方法估算出準確的電荷轉移發色團的本質超極化率beta zero。從整理beta zero與分子結構關係中,我們洞察出提高電荷轉移發色團的第一超極化率的原由,本論文以此角度檢驗分子結構與本質超極化率。我們也將此方法應用在以電荷轉移非線性光學發色團組成的樹狀分子(dendrimer),比較實驗測量到的頻率相關beta值與從線性吸收光譜利用K-K轉換計算的beta值。比較樹狀分子的beta zero值與類似樹狀分子中的單一發色團分子的 beta zero值,結果顯示3D樹狀結構能提供足夠的空間區隔發色團,減少發色團間的交互作用,如此可避免發色團因為互相吸引造成的聚集。
研究超瑞利散射時發現有些發色團有雙光子螢光,因此在瞭解分子超極化率後接著研究雙光子螢光現象。雙光子螢光強度一般是與入射光強的平方成正比。經由仔細的偵測非線性光學發色團的雙光子螢光強度並借助輔助參數可作為測量雙光子吸收截面積的技術。本論文以不同的雷射強度探測雙光子螢光強度,在低雷射強度時,雙光子螢光強度遵守與入射光強的二次關係;但當雷射增強時,發現螢光強度的增加情形脫離此二次關係。我們也觀察到吸收單光子與雙光子誘發螢光光譜的輪廓相同,因此可以三能階模型描述不同入射光強的雙光子螢光。實驗測量到的雙光子螢光強度可以三能階模型建立的關係式覓合,可得到非線性光學發色團在溶液中的雙光子吸收截面積。此新建立的技術已經過Rhodamine B/Chloroform溶液的測試,得到的雙光子吸收截面積與文獻上的相同。經過測試此技術的適用性後,更將此方法應用在決定新穎的非線性光學發色團的雙光子吸收截面積上。以新技術測量到的雙光子吸收截面積與以非線性穿透法得到的雙光子吸收截面積相比較,其結果一致,顯示應用此技術的可行性。由於傳統的低激發強度雙光子螢光測量法需要輔助的參數,其中某些參數不易取得,故新開發技術使得雙光子吸收截面積的測量更方便。
發色團與高分子形成的薄膜在經過光學極化後可產生二倍頻效應,此極化的入射光源是雷射基頻光和同調的二倍頻光同時入射到薄膜樣品。研究發現二倍頻訊號增加速率與入射光強呈四次方關係,且二倍頻訊號能到達的最高平台強度與入射光強的二次方成正比。此發現與文獻上的理論不同,然而造成不一致的原因還有待澄清,這些資訊有助於發展非線性光學元件。
Abstract
This thesis provides an extensive study of the first molecular hyperpolarizability b of charge-transfer chromophores using hyper-Rayleigh scattering (HRS). The charge-transfer chromophores used in present work involve the tricyanohydrofuran(TCF)group as an electron acceptor, and/or thiophene in the pi-electron bridge. TCF is a very strong electron acceptor and thiophene greatly lowers the resonance energy. Their presence significantly increases the beta value of the chromophore, therefore enhancing potentials in applications. In hyper-Rayleigh scattering experiments, the laser radiation with tunable wavelengths is used as an excitation source for measuring the frequency dependence of beta. The experiment shows beta exhibiting a significant dispersion in the two-photon resonance region. Using the linear absorption spectrum in coordination with theory, we show that it is possible to use Kramers-Kronig (K-K) transform to reproduce the experimental beta value in the two-photon resonance region. The K-K approach provides an extension to the conventional Oudar-Chemla equation, which is invalid in the spectral region in which two-photon resonance occurs. Using the new approach, it is shown that reliable values of intrinsic hyperpolarizabilities beta_zero of charge-transfer chromophores can be extracted. The coordination of beta_zero with molecular structure provides one with an insight for the origin of the enhancement of the first molecular hyperpolarizability of charge-transfer chromophores. This thesis examines the variation of beta_zero with molecular structure. The same technique is also applied to a dendrimer that has charge-transfer nonlinear optical chromophores incorporated in the dendritic structure. The measured frequency dependent hyperpolarizability of the dendrimer is compared with that calculated from the linear absorption spectrum by the KK transform technique. The intrinsic hyperpolarizability beta_zero of the dendrimer obtained is compared with that of the single chromophore having a structure similar to that incorporated in the dendrimer. The comparison shows that the 3D dendritic structure is effective in reducing the interaction between chromophores by providing sufficient space between them, hence avoiding the possibility of aggregation formation due to attractive interactions between chromophores.
The topic of two-photon fluorescence (TPF), which is related to HRS, is also investigated. The intensity of TPF is generally proportional to the square of the incident excitation intensity. Careful measurements of the TPF intensity of a nonlinear optical chromophore in conjunction with required auxiliary parameters have been used as a technique for determining the two-photon absorption cross-section. The TPF intensity measurement carried out in this thesis uses a variety of intensities. At low intensity excitation, the TPF intensity follows the usual quadratic intensity law (QIL), whereas deviations from the QIL are observed at higher incident intensities. The observation of similar lineshape associated with one- and two-photon fluorescence spectra suggests a 3-level model for the description of TPF excited by the incident intensity at various strengths. It is shown that by fitting the observed TPF intensity to an equation developed from the three-level model, it is possible to deduce the two-photon absorption cross section of the nonlinear optical chromophore in solution. The new technique developed using the three-level model is tested on a Rhodamine B/Chloroform solution. The two-photon absorption cross-section obtained by using the new technique is found in agreement with that reported in the literature. Having demonstrated the suitability of the new technique, it is used to determine the two-photon absorption cross-section of a novel nonlinear optical chromophore. The two-photon absorption cross-section using the new technique is then compared with that obtained by the nonlinear transmittance method. The two results are in good agreement, indicating the applicability of the new technique. The new technique is more convenient than the conventional low excitation TPF method as it does not require various auxiliary parameters, some of them are difficult to obtain.
The second harmonic generation (SHG) of a chromophore/polymer film which is optically poled by using a coherent superposition of a fundamental and its second harmonic beams. The growth rate of the SHG intensity is found to be proportional to the fourth power of the incident intensity of the fundamental beam, and the plateau intensity SHG is proportional to the square of the incident intensity. These observations are not in agreement with the published theory. While the reason for disagreement is yet to be clarified, the information obtained is useful for the development of nonlinear optical devices.
目次 Table of Contents
摘要 i
Abstract iii
目錄 vi
圖目錄 viii
表目錄 xi
前言 1
第一章 非線性光學極化率 9
1.1 巨觀與微觀的非線性光學極化率 10
1.2 量子力學的密度矩陣微擾解 12
第二章 電荷轉移型分子的第一超極化率 21
2.1 強電荷轉移分子第一超極化率的色散關係 22
2.2 分子結構特性 33
2.2.1 電荷轉移染料單分子 33
2.2.2 Dendrimer(樹狀分支巨分子) 36
第三章 超瑞利散射 42
3.1 超瑞利散射實驗 43
3.1.1 1064 及 1907 nm 系統 43
3.1.2 1 ~ 2 mm 連續可調系統 49
3.2 實驗結果與討論 53
3.2.1 DSCF系列樣品 53
3.2.2 PATFP樣品 67
3.2.3 DTCF系列樣品 72
3.2.4 樹狀分支巨分子 81
第四章 由雙光子吸收誘發之螢光現象 94
4.1 三能階模型 95
4.2 吸收-螢光實驗架設 102
4.3 實驗結果與討論 105
4.3.1 Rhodamine B 105
4.3.2 DSCF樣品 108
4.3.3 CDMF樣品 114
第五章 光極化 122
5.1 光極化實驗 123
5.2 結果與討論 124
結論 132
參考文獻 References
[1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118(1961).
Robert W. Boyd, Nonlinear Optics, Academic Press, San Diego, CA, 1992.
[2] T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, J. Mater. Chem. 7, 2175(1997).
[3] L. Dalton, "Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications," in Polymers for Photonics Applications I, K.S. Lee eds. (Springer, 2001).
[4] H. Ma and A. K.-Y. Jen, Adv. Mater. 13, 1201(2001).
[5] P. Schwille, U. Haupts, S. Maiti, and Watt W. Webb, Biophysical J. 77, 2251(1999).
[6] M, Gu, J.O. Amistoso, A. Toriumi, M. Irie, and S. Kawata, Appl. Phys. Lett. 79, 148(2001).
[7] B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666(1975).
[8] K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980(1991).
[9] C. H. Wang, J. Chem. Phys. 112, 1917(2000).
[10] K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980(1991).
[11] M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, J. Chem. Phys. 102, 6400(1995).
[12] M. A. Pauley and C. H. Wang, Chem. Phys. Lett. 280, 544(1997). M. A. Pauley and C. H. Wang, Rev. Sci. Inst. 70, 1277 (1999).
[13] G. Berkovic, G. Meshulam, and Z. Kotler, J. Chem. Phys. 112, 3997(2000).
C. H. Wang, J. N. Woodford, C. Zhang and L. R. Dalton, J. Appl. Phys. 89, 4209, (2001).
C.C. Hsu, S. Liu, C. C. Wang and C. H. Wang, J. Chem. Phys. 114, 7103(2001).
[14] B. G. Tiemann, L.-T. Cheng, and S. R. Marder, J. Chem. Soc., 735(1993).
[15] T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, J. Am. Chem. Soc. 116, 9320(1994).
[16] H. Ma, B. Chen, T. Sassa, L. R. Dalton, A. K.-Y. Jen, J. Am. Chem. Soc. 123, 986(2001).
[17] Y. Okuno, S. Yokoyama, and S. Mashiko, J. Phys. Chem. B 105, 2163(2001).
[18] H. Ma and A. K.-Y. Jen, Adv. Mater. 13, 1201(2001).
[19] W. Kaiser and C.G. B. Garret, Phys. Rev. Lett. 7, 229(1961).
[20] J. P. Hermann and J. Ducuing, Opt. Commun. 6, 101(1972).
[21] W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73(1990).
[22] P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, Biophys. J. 77, 2251(1999).
[23] D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843(1989).
[24] G. S. He, G. C. Xu, and P. N. Prasad, Opt. Lett. 20, 435(1995).
J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rockelm, S. R. Marder, and J. W. Perry, Opt. Lett. 22, 1843(1997).
G. Zhou, X. Wang, D. Wang, Z. Shao, and M. Jiang, Appl. Opt. 41, 1120(2002).
[25] P. S. Dittrich and P. Schwille, Anal. Chem. 74, 4472(2002).
G. Jung, C. Brauchle, and A. Zumbusch, J. Chem. Phys. 114, 3149(2001).
P. Schwille and K. G. Heinze, ChemPhysChem 2, 269(2001).
[26] T. F. Boggess, K. M. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quant. Electron. 22(1986).
[27] M. Sheik-Bahae, A. A. Said, T. Wei, D. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[28] J. P. Hermann and J. Ducuing, Phys. Rev. A 5, 2557(1972).
[29] C. Xu, and W. W. Webb, J. Opt. Soc. Am. B, 13, 481(1996).
[30] D. J. Bradley; M. H. R. Hutchinson; H. Koetser; T. Morrow; G. H. C. New; M. S. Petty, Proc. R. Soc. Lond., Ser. A 328, 97(1972).
[31] A. Fischer, C. Cremer, and E. H. Stelzer, Appl. Opt. 34, 1989(1995).
[32] K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, and S. J. Lalama, Appl. Phys. Lett. 53, 1800(1988).
[33] M. A. Pauley, H. W. Guan, and C. H. Wang, J. Chem. Phys. 104, 6834(1996).
[34] M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, Macromolecules 29, 7064(1996).
[35] F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, Opt. Lett. 15, 941(1993).
[36] C. Fiorini, F. Charra, and J.-M. Nunzi, J. Opt. Soc. Am. B 11, 2347(1994).
[37] C. Fiorini, F. Charra, and J.-M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469(1995).
[38] W. Chalupczak, C. Fiorini, F. Charra, and J.-M. Nunzi, P. Raimond, Opt. Comm. 126, 103(1996).
[39] V. M. Churikov, M. F. Hung, and C. C. Hsu, Opt. Lett. 25, 960(2000).
[40] G. Xu, J. Si, X. Liu, Q. G. Yang, P. Ye, Z. Li, and Y. Shen, J. Appl. Phys. 85, 681(1999).
[41] N. Matsuoka, K. Kitaoka, J. Si, K. Fujita, and K. Hirao, Opt. Comm. 185, 467(2000).
[42] G. Xu, Q. G. Yang, J. Si, X. Liu, P. Ye, Z. Li, and Y. Shen, Opt. Comm. 159, 88(1999).
[1.1] Robert W. Boyd, Nonlinear Optics, Academic Press, (Academic, San Diego, Calif., 1992), pp. 101-157.
[1.2] M. A. Pauley, C. H. Wang and A. K.-Y. Jen, J. Chem. Phys. 102, 6400(1995).
[2.1] Robert W. Boyd, Nonlinear Optics, Academic Press, San Diego, CA, 1992.
[2.2] C. H. Wang, J. Chem. Phys. 112, 1917(2000).
[2.3] J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66 , 2664 (1977). J. L. Oudar, J. Chem. Phys. 67, 446 (1977).
[2.4] A. M. Kelley, J. Opt. Soc. Am. B 19, 1890(2002).
[2.5] S. R. Marder, D. N. Beratan, and L.-T. Cheng, Science 252, 103(1991).
[2.6] B. G. Tiemann, L.-T. Cheng, and S. R. Marder, J. Chem. Soc. Chem. Commun. 735(1993).
[2.7] C. H. Wang, J. N. Woodford, and Alex K.-Y. Jen, Chem. Phys. 262, 475(2000).
[2.8] C. Zhang, L. R. Dalton, M.-C. Oh, H. Zhang, and W. H. Steier, Chem. Mater. 13, 3043(2001).
C. Zhang, A. S. Ren, F. Wang, J. Zhu, L. R. Dalton, J. N. Woodford, and C. H. Wang, Chem. Mater. 11, 1966(1999).
[2.9] K.-S. Lee, Polymers for photonics applications II, Springer.
[2.10] P. E. Froehling, Dyes and Pigments 48, 187(2001).
[2.11] H. Ma, B. Chen, T. Sassa, L. R. Dalton, and A. K.-Y. Jen, J. Am. Chem. Soc. 123, 986(2001).
[2.12] M. S. Wong, J.-F. Nicoud, C. Runser, A. Fort, M. Barzoukas, and E. Marchal, Chem. Phys. Lett. 253, 141(1996).
S. Yokoyama, T. Nakahama, A. Otomo, and S. Mashiko, J. Am. Chem. Soc. 122, 3174(2000).
[2.13] E.J.H. Put, K. Clays, A. Persoons, H.A.M. Biemans, C.P.M. Luijkx, and E.W. Meijer, Chem. Phys. Lett. 260, 136(1996).
[3.1] T. Verbiest, K. Clays, C. Samyn, J. Wolff, D. Reinhoudt, and A. Persoons, J. Am. Chem. Soc. 116, 9320(1994).
[3.2] E. J. H. Put, K. Clays, A. Persoons, H. A. M. Biemans, C. P. M. Luijkx, and E. W. Meijer, Chem. Phys. Lett. 260, 136(1996).
[3.3] R. W. Terhune, P. D. Maker, and C. M. Savage, Phys. Rev. Lett. 14, 681(1965).
[3.4] J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664(1977).
[3.5] C. C. Teng and A. F. Garito, Phys. Rev. B 28, 6766 (1983).
[3.6] See C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, J. Appl. Phys. 89, 4209 (2001), for the discussion of bHRS for DR1.
[3.7] K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980(1991).
[3.8] S. F. Hubbard, R. G. Petschek, and K. D. Singer, Opt. Lett. 21, 1774 (1996).
[3.9] S. H. Jang and Alex. K.-Y. Jen (unpublished).
[3.10] W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, and A. Persoons, Nature (London) 363, 58(1993).
[3.11] M. A. Pauley, H.-W. Guan, C. H. Wang, and A. K.-Y. Jen, J. Chem. Phys. 104, 7821 (1996).
[3.12] N. Woodford, C. H. Wang, and A. K.-Y. Jen, Chem. Phys. 262, 475(2000).
[3.13] C. H. Wang, J. N. Woodford, C. Zhang, and L. R. Dalton, J. Appl. Phys. 89, 4209(2001).
[3.14] C.-C. Hsu, S. Liu, C. C. Wang, and C. H. Wang, J. Chem. Phys. 114, 7103(2001).
[3.15] J. N. Woodford, C. H. Wang, A. E. Asato, and R. S. H. Liu, J. Chem. Phys. 111, 4621(1999).
[3.16] J. N. Woodford and C. H. Wang, Chem. Phys. 271, 137(2001).
[3.17] S. T. Hung, C. H. Wang, and A. M. Kelley, (manuscript in preparation).
[3.18] H. Ma, B. Chen, T. Sassa, L. R. Dalton, and A. K.-Y. Jen, J. Am. Chem. Soc. 123, 986(2001).
[3.19] M. A. Pauley and C. H. Wang, Chem. Phys. Lett. 280, 544(1997).
[3.20] M. A. Pauley and C. H. Wang, Rev. Sci. Instrum. 70, 1277(1999).
[3.21] C. H. Wang, J. Chem. Phys. 112, 1917(2000).
[3.22] A. M. Kelley, J. Opt. Soc. Am. B 19, 1890(2002).
[3.23] C. H. Wang, Y. C. Lin, O. Y. Tai, and A. K.-Y. Jen, J. Chem. Phys. 119, 6237(2003).
[3.24] H. Ma and A. K.-Y. Jen, Adv. Mater. (Weinheim, Ger.) 13, 1201(2001).
[4.1] Y. Wang, O. Y.-H. Tai, C.H. Wang, and A. K.-Y. Jen, J. Chem. Phys. 121, 7901(2004).
[4.2] H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, Photochemistry and Photobiology 68, 141(1998).
[4.3] C. Xu, and W. W. Webb, J. Opt. Soc. Am. B 13, 481(1996).
[4.4] A. Fischer, C. Cremer, and E. H. Stelzer, Appl. Opt. 34, 1989(1995).
[5.1] K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, and S. J. Lalama, Appl. Phys. Lett. 53, 1800(1988).
[5.2] M. A. Pauley, H. W. Guan, and C. H. Wang, J. Chem. Phys. 104, 6834(1996).
[5.3] M. A. Pauley, C. H. Wang, and A. K.-Y. Jen, Macromolecules 29, 7064(1996).
[5.4] F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and E. Idiart, Opt. Lett. 15, 941(1993).
[5.5] C. Fiorini, F. Charra, and J.-M. Nunzi, J. Opt. Soc. Am. B 11, 2347(1994).
[5.6] C. Fiorini, F. Charra, and J.-M. Nunzi, I. D. W. Samuel, and J. Zyss, Opt. Lett. 20, 2469(1995).
[5.7] W. Chalupczak, C. Fiorini, F. Charra, and J.-M. Nunzi, P. Raimond, Opt. Comm. 126, 103(1996).
[5.8] J. Si, and J. Qiu, Appl. Phys. Lett. 77, 3887 (2000).
[5.9] A. Etile, C. Fiorini, F. Charra, J. Nunzi, Phys. Rev. A, 56, 3888 (1997).
[5.10] K. Kitaoka, J. Si, and T. Mitsuyu, Appl. Phys. Lett. 75, 157 (1999).
[5.11] S. Brasselet and J. Zyss, J. Opt. Am. B, 15, 257 (1998).
[5.12] G. Xu, X. Liu, J. Si, and P. Ye, Opt. Lett. 25, 329 (2000)
[5.13] C. Fiorini, F. Charra, J. Nunzi, and P. Raimond, J. Opt. Am. B 14, 1984 (1997).
[5.14] C. Fiorini, and J. Nunzi, Chem. Phys. Lett. 286, 415 (1998).
[5.15] B. Z. Tang, X. X. Kong, X. H. Wan, H. Peng, W. Y. Lam, Macromolecules 31, 2419 (1998).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code