Responsive image
博碩士論文 etd-0119106-165028 詳細資訊
Title page for etd-0119106-165028
論文名稱
Title
光子晶體光纖元件之分析及設計
Analysis and Design for the Photonic-Crystal-Fiber Components
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-16
繳交日期
Date of Submission
2006-01-19
關鍵字
Keywords
極化分光器、光子晶體光纖、時域有限差分、空氣佔有率、向量邊界元素法、單模態
Air Filling Fraction, Polarization Beam Splitter, Vector Boundary Element Method, Photonic-Crystal-Fiber, Single-Mode, Finite-Difference Time-Domain
統計
Statistics
本論文已被瀏覽 5747 次,被下載 1581
The thesis/dissertation has been browsed 5747 times, has been downloaded 1581 times.
中文摘要
本論文針對最新之光子晶體光纖(PCF)於光纖被動元件的應用進行分析及設計。論文中利用向量邊界元素法(VBEM)和時域有限差分(FDTD)法,以模擬分析光子晶體光纖元件的傳播特性。兩種新穎的光子晶體光纖元件於論文中提出。第一種元件為八邊形(octagonal) microstructured fiber (OMF),其具有相當寬的單模態操作波長範圍、近似圓形分布場與較少的損耗。第二種為雙橢圓核心(TEC) PCF小型極化分光器,其在相當短的分光器長度即展現高極化分離率和寬頻的優點。前述之設計概念與耦合機制皆依據正規模態耦合理論及VBEM。
Abstract
The dissertation focuses on the analysis and design for the new fiber-optic passive components based on the photonic-crystal-fiber (PCF). The vector boundary element method (VBEM) and the finite-difference time-domain (FDTD) method are employed to the propagation characteristics of PCF components. A novel octagonal microstructured fiber (OMF) with eight air-holes in the first ring has been proposed. The OMF has significantly wider wavelength range for single-mode operation, more circular-like field distribution, and less confinement loss. In addition, a novel compact polarization beam splitter (PBS) based on the twin-elliptical-core PCF (TEC-PCF) has also been proposed. It behaves with high extinction ration and broad bandwidth with significantly short splitter length. The design concept and the coupling mechanism are presented in this dissertation based on the normal-mode coupling theory and VBEM.
目次 Table of Contents
Contents

Abstract i
Contents iii
List of Figures v
List of Tables ix

1 Introduction 1
1.1 Background 1
1.2 Photonic-Crystal-Fiber (PCF) 1
1.3 Contributions 4
1.4 Organization of the Dissertation 5

2 Numerical Methods 6
2.1 Vector Boundary Element Method (VBEM) 6
2.1.1 Theory and Formulation 7
2.1.2 Examples of the Analysis of PCF 12
2.2 Finite-Difference Time-Domain (FDTD) Method 19
2.2.1 Theory and Formulation 19
2.2.2 Examples of the Analysis of PCF 28

3 Octagonal Microstructured Fiber (OMF) 36
3.1 Design of OMF and Geometrical Parameters 36
3.2 Propagation Characteristics 40
3.2.1 Guided Modes 40
3.2.2 Single-Mode 48
3.2.3 Field Confinement 54
3.3 Summary 58

4 Polarization Beam Splitter Base on Twin-Elliptical-Core PCF 59
4.1 Polarization Beam Splitter (PBS) 59
4.2 Analysis and Design of the TEC-PCF 64
4.3 Improved Design of the TEC-PCF 70
4.4 Summary 81

5 Conclusion 82


Bibliography 84
參考文獻 References
[1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, May 1987.
[2] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486-2489, June 1987.
[3] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-sillica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547-1549. October 1996.
[4] K. Saitoh, and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, no. 7, pp. 927-933, July 2002.
[5] D. Ouzounov, D. Homoelle, and W. Zipfel, “Dispersion measurements of microstructured fibers using femtosecond laser pulses,” Opt. Commun., vol. 192, pp. 219-223, June 1997.
[6] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, T. A. Strasser, “Grating resonances in all-sillica microstructured optical fibers,” Opt. Lett., vol. 24, pp. 1460-1462. November 1999.
[7] J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: A new class of optical waveguies,” Opt. Fiber Technol., vol. 5, pp. 305-330, July 1999.
[8] P. J. Bennett, T. M. Monro, and D. J. Richardson, “A robust, large air fill fraction holey fibre,” The Conference on Lasers and Electro-Optics (CLEO’99), vol. 1, pp. 293, May 1999.


[9] T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey Optical Fibers: An Efficient Modal Model,” J. Lightwave Technol., vol. 17, pp. 1093-1102, June 1999.
[10] K. Saitoh and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett., vol. 14, pp. 1291-1293, September 2002.
[11] A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A, vol. 17, pp. 1333-1340, July 2000.
[12] T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961-963, July 1997.
[13] M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Experimental measurement of group velocity in photonic crystal fibers,” Electron. lett., vol. 35, pp. 63-64, January 1999.
[14] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. lett., vol. 34, pp. 1347-1348, June 1998.
[15] N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearlity in holey optical fibers: Measurement and future opportunities,” Opt. Lett., vol. 24, pp. 1395-1397, October 1999.
[16] T. A. Birks, J. C. Knight, B. J. Mangan, and P. St. J. Russell, “Photonic crystal fibers: An endless variety,” IEICE Trans. Electron., vol. E84-C, pp. 585-592, May 2001.
[17] B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Peak, and G.-H. Yang, "Photonic crystal fiber coupler," Opt. Lett., vol. 27, pp. 812-814, May 2002.
[18] H. Kim, J. Kim, U.-C. Peak, and B. H. Lee, "Tunable photonic crystal fiber coupler based on a side-polishing technique," Opt. Lett., vol. 29, pp. 1194-1196, June 2004.
[19] J. Lægsgaard, O. Bang, and A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett., vol. 29, pp. 2473-2475, November 2004.
[20] M. Stevenson, C. Martelli, J. Canning, B. Ashton and K. Lyytikainen, “Photonic crystal fibre optical attenuators,” Electron. lett., vol. 41, pp. 1167-1169, October 2005.
[21] L. Zhang and C. Yang, "Polarization splitter base on photonic crystal fibers," Opt. Express, vol. 11, pp. 1015-1020, May 2003.
[22] K. Saitoh, Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express, vol. 11, pp. 1015-1020, December 2003.
[23] L. Zhang and C. Yang, "Polarization-dependent coupling in twin-core photonic crystal fibers," J. Lightwave Technol., vol. 22, pp. 1367-1373, May 2004.
[24] L. Zhang and C. Yang, "A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores," IEEE Photon. Technol. Lett., vol. 16, pp. 1670–1672, July 2004.
[25] K. Saitoh, Y. Sato, and M. Koshiba, "Polarization splitter in three-core photonic crystal fiber couplers," Opt. Express, vol. 12, pp. 3940-3946, August 2004.
[26] A. Witkowska and M. Marciniak, “Nonlinear PCF as Dispersion Compensator in High-Bitrate Fiber Links,” The 6th International Conference on Transparent Optical Networks (ICTON 2004), vol. 2, pp. 234-237, July 2004.
[27] J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807-809, July 2000.
[28] M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett., vol. 26, pp. 488-490, April 2001.
[29] P. Russell, "Photonic Crystal Fibers," Science, vol. 299, pp. 358-362, January 2003.
[30] N. Guan, S. Habu, K. Tatsuhiro, K. Himeno, and A. Wada, “Boundary Element Method for Analysis of Holey Optical Fibers,” J. Lightwave Technol., vol. 21, pp. 1787-1792, August 2003.
[31] T. L. Wu and C. H. Chao, “Photonic Crystal Fiber Analysis through the Vector Boundary-Element Method: Effect of Elliptical Air Hole,” IEEE Photon. Technol. Lett., vol. 16, pp. 126-128, January 2004.
[32] J. C. Knight, T. A. Birks, P. St. J. Russell, and J.-P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A, vol. 15, pp. 748-752, March 1998.
[33] A. Bjarklev, J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, Norwell, MA: Kluwer Academic, 2003.
[34] A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, “Full-vector analysis of a realistic photonic crystal fiber,” Opt. Lett., vol. 24, pp. 276-278, March 1999.
[35] M. Koshiba, “Full-Vector Analysis of Photonic Crystal Fibers Using the Finite Element Method,” IEICE Trans. Electron., vol. E85-C, pp. 881-888, April 2002.
[36] N. Morita, “A method extending the boundary condition for analyzing guided modes of dielectric waveguides of arbitrary cross-sectional shape,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 6-12, January 1982.


[37] W. Yang and A.Gopinath, “A boundary integral method for propagation problems in integrated optical structures,” IEEE Photon. Technol. Lett., vol. 7, pp. 777-779, July 1995.
[38] S.-Y. Lin and C. C. Lee, “A full wave analysis of microstrips by the boundary element method,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1977-1983, November 1996.
[39] P. Cecchini, F. Bardati, and R. Ravanelli, “A general approach to edge singularity extraction near composed wedges in boundary-element method,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 730-733, April 2001.
[40] C. C. Su, “A surface integral equation method for homogeneous optical fibers and coupled image lines of arbitrary cross section,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1114-1120, November 1985.
[41] G. P. Agrawal, Nonlinear Fiber Optics, Boston: Academic Press 1989.
[42] M. Koshiba and K. Saitoh, “Finite-element Analysis of Birefringence and Dispersion Properties in Actual and Idealized Holey-fiber Structures,” Appl. Opt., vol. 42, pp. 6267-6275, November 2003.
[43] T. L. Wu, J. S. Chiang, and C. H. Chao, “A Novel Approach for Calculating the Dispersions of Photonic Crystal Fibers," IEEE Photonic Technology Letters, Vol. 16, No. 6, pp. 1492-1494, June 2004.
[44] A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method. Boston, MA: Artech House, 1995.
[45] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., Vol. AP-14, pp. 302-307, May 1966.
[46] P. R. Villeneuve and M. Piché, "Photonic band gap in two-dimensional square and hexagonal lattices," Phys. Rev. B, vol. 46, pp. 4969-4972, August 1992.

[47] R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Existence of a photonic band gap in two dimensions," Appl. Phys. Lett., vol. 61, pp. 495-497, July 1992.
[48] K. Saitoh and M. Koshiba, "Confinement losses in air-guiding photonic bandgap fibers," IEEE Photon. Technol. Lett., vol. 15, pp. 236-238, February 2003.
[49] F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the Finite Element Method,” Opt. Fiber Technol., vol. 6, pp. 181-191, April 2000.
[50] C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B, vol. 51, pp. 16635-16642, June1995.
[51] M. Qiu, and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys., vol. 87, pp. 8268-8275, June 2000.
[52] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. Princeton, NJ: Princeton Univ. Press, 1995.
[53] A. Asi, and L. Shafai, “Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD,” Electron Lett., Vol. 28, pp. 1451-1452, July 1992.
[54] K. Saitoh, Y. Sato, and M. Koshiba, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express, vol. 11, pp. 843-852, April 2003.
[55] L. P. Shen, W. P. Huang, and S. S. Jian, “Design of Photonic Crystal Fibers for Dispersion-Related Applications,” J. lightwave technol., vol. 21, pp. 1644-1651, July 2003.


[56] M. J. Stell and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. lightwave technol., vol. 19, pp. 495-503, April 2001.
[57] T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett., vol. 26, pp. 1660-1662, November 2001.
[58] M.A. van Eijkelenborg, M.C.J. Large, A. Argyros, J. Zagari, S.Manos, N. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C.M. de Sterke, N.A.P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express, vol. 9, pp. 319-327, September 2001.
[59] J. B. Nielsen, T. Søndergaard, S. E. Barkou, A. Bjarklev, J. Broeng, M. B. Nielsen, “Two-dimensional kagomé structure, fundamental hexagonal photonic crystal cofiguration,” Electron Lett., Vol.35, pp. 1736-1737, September 1999.
[60] A. H. Bouk, A. Cucinotta, F. Poli, S. Selleri, "Dispersion properties of square-lattice photonic crystal fibers," Opt. Express, vol. 12, pp. 941-945, March 2004.
[61] J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun., vol. 182, pp. 343-348, August 2000.
[62] A. Argyros, I. Bassett, M.A. van Eijkelenborg, M.C.J. Large, J. Zagari, N.A.P. Nicorovici, R.C. McPhedran, S. Manos, N. Issa, S. Fleming, and C. M. de Sterke, "Ring structures in microstructured polymer optical fibres," Opt. Express, vol. 9, pp. 813-820, December 2001.
[63] G. P. Agrawal, Nonlinear Fiber Optics, San Diego: Academic Press 2001.
[64] N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express, vol.10, pp. 341-348, April 2002.
[65] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett., vol. 28, pp. 1879-1881, October 2003.
[66] B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, “Modal cutoff in microstructured optical fibers,” Opt. Lett., vol. 19, pp. 1684-1686, October 2002.
[67] V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,” J. Opt. Soc. Am. B, vol. 20, pp. 1427-1436, July 2003.
[68] Crystal Fiber A/S : http://www.crystal-fiber.com
[69] J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, Y. S. Oei, H. van Brog, and I. Moerman, "Mode evolution type polarization splitter on InGaAsP/InP," IEEE Photon. Technol. Lett., vol. 5, pp. 1412-1414, December 1993.
[70] J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J. J. -W. van Gaaien, Y. S. Oei, and F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett., vol. 9, pp. 209-211, February 1997.
[71] T. Hayakawa, S. Asakawa, and Y. Kokubun, "Arrow-B type polarization splitter with asymmetric Y-branch fabrication by a self-alignment process," J. Lightwave Technol., vol. 15, pp. 1165-1170, July 1997.
[72] P. Wei and W. Wang, "A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions," IEEE Photon. Technol. Lett., vol. 6, pp. 245-248, February 1994.
[73] G. D. Peng, T. Tjugiarto, and P. L. Chu, "Polarization beam splitting using twin-elliptic-core optical fibers," Electron. Lett., vol. 26, pp. 682-683, May 1990.
[74] K. Morishita and K. Takashina, "Polarization properties of fused fiber couplers and polarizing beamsplitters," J. Lightwave Technol., vol. 9, pp. 1503-1507, November 1991.


[75] A. N. Miliou, R. Srivastava, and R. V. Ramaswamy, “A 1.3-μ m directional coupler polarization splitter by ion exchange,” J. Lightwave Technol., vol. 11, pp. 220–225, February 1993.
[76] S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters—Part II: The three-dimensional electromagnetic model,” J. Lightwave Technol., vol. 16, pp. 691–696, April 1998.
[77] M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol., vol. 9, pp. 853–858, July 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code