Responsive image
博碩士論文 etd-0119112-123446 詳細資訊
Title page for etd-0119112-123446
論文名稱
Title
金屬奈米團簇於奈米薄膜上之儲氫及其釋放機制
Hydrogen storage and delivery mechanism of metal nanoclusters on a nanosheet
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-13
繳交日期
Date of Submission
2012-01-19
關鍵字
Keywords
石墨烯、銠奈米粒子、硼氮薄膜、儲氫、密度泛函理論、分子動力學理論
Rh nanocluster, boron nitride sheet, graphene, Density functional theory, Molecular dynamics, hydrogen storage
統計
Statistics
本論文已被瀏覽 5696 次,被下載 1145
The thesis/dissertation has been browsed 5696 times, has been downloaded 1145 times.
中文摘要
本研究利用密度泛函理論及分子動力學理論找出銠奈米粒子吸附於硼氮薄膜表面以及鋰原子散佈於石墨烯表面之最佳儲氫結構,其中使用兩種不同的奈米粒子探討儲氫之原因是由於氫氣的儲存分為氫分子解離的吸附以及氫分子不解離的吸附兩大類,其中銠奈米粒子是屬於會將氫分子解離而吸附的類型,而鋰原子是屬於不會將氫分子解離而吸附的類型,所以我們將探討此兩種類型的最佳儲氫結構。本研究分為四部份:
第一部分,首先藉由密度泛函理論獲得銠奈米粒子、銠奈米粒子吸附於硼氮薄膜表面、鋰原子散佈於石墨烯表面、氫氣分子吸附於鋰原子上與氫氣分子吸附於石墨烯表面的最佳化結構及其之間相對應的能量,接著以獲得到的最佳化結構及其之間相對應的能量當作參考數值,並使用Force-matching method(FMM)來獲得合適的勢能函數之參數值,進而藉由獲得到的勢能函數之參數值來執行高效率的分子動力學模擬。
第二部份,利用分子動力學探討溫度由0K升溫到1000K的過程中,4顆、6顆、9顆和13顆的銠奈米粒子吸附於硼氮薄膜表面的動態行為,並藉由銠奈米粒子吸附於硼氮薄膜表面的運動軌跡圖與平方位移圖來分析銠奈米粒子吸附於硼氮薄膜表面的擴散現象,然而找出銠奈米粒子吸附於硼氮薄膜表面之最佳儲氫結構。
第三部份,同樣是以分子動力學理論來探討石墨烯結構之儲氫,而我們所討論的物理模型分別為石墨烯與散佈不同顆數的鋰原子於石墨烯表面之儲氫結構,接著以調整系統空間的大小來控制系統壓力分別為1 atm、50 atm與100 atm,並探討不同的壓力及溫度分別為77K與300K的儲氫結構之氫氣分子的吸附狀況,然而藉由氫氣分子吸附於石墨烯表面的密度分佈圖及重量百分比(wt%)觀察並分析吸附的現象,進而找出最佳儲氫的環境系統與結構型式。
第四部份,以分子動力學理論來探討間距大於10 A與小於10 A的三層石墨烯結構對氫氣分子的儲存與釋放之影響,並討論系統溫度分別為77K與300K的儲氫結構之氫氣分子的吸附狀況,然而藉由氫氣分子吸附於石墨烯表面的重量百分比(wt%)觀察並分析吸附的現象,接著於系統溫度為較高溫的300K下將系統結構的系統空間擴大以進行氫氣之釋放的模擬,同樣藉由重量百分比(wt%)觀察並分析氫氣釋放的現象,並比較間距大於10 A與小於10 A的三層石墨烯結構對氫氣分子的儲存與釋放之影響。
Abstract
In this study, we used the Density functional theory (DFT) and Molecular dynamics (MD) to obtain the suitable hydrogen storage structure of Rh nanoclusters on the boron nitride sheet and Li atoms on the graphene. The reason of studying two type of nanoparticles is that there are two adsorption method in hydrogen storage, such as the adsorption of hydrogen molecules and hydrogen atoms. Using Rh nanoclusters on the boron nitride sheet to store hydrogen belong to the adsorption of hydrogen atoms. Using Li atoms on the graphene to store hydrogen belong to the adsorption of hydrogen molecules. We use these two models to simulate the hydrogen storage in this study. There were four parts in this study:
The first part:
The Density functional theory is utilized to obtain the configuration and corresponding energy of Rh nanoclusters, boron nitride sheet, Rh nanoclusters adsorbed on the boron nitride sheet, Li atoms adsorbed on the graphene, hydrogen adsorbed on the graphene and hydrogen adsorbed on the Li atoms. Then, we use the Force-matching method (FMM) to modify the parameters of potential function by the reference data which are obtained by Density functional theory. Finally, we use the modified parameters of potential function to perform Molecular dynamics in this study.
The second part:
In this part, the dynamical behavior of Rh nanoclusters with different sizes on the boron nitride sheet are investigated in temperature-rise period. The migration trajectory, square displacement and mean square displacement of the mass center of the Rh nanoclusters are used to analyze the dynamics behavior of Rh nanoclusters on the boron nitride sheet.
The third part:
In this part, the pristine graphene and graphen with Li atoms are investigated the efficiency of hydrogen storage at different temperature and pressure. In order to obtain the temperature (77K and 300K) and pressure effect of hydrogen storage, the densimetric distribution and gravimetric capacity (wt%) are analyzed.
The fourth part:
The Molecular dynamics is utilized to study the hydrogen storage and delivery when the distance between two graphene is different. Then, the temperature effect (77K and 300K) of hydrogen storage, the gravimetric capacity (wt%) are analyzed. In addition, the gravimetric capacity (wt%) of hydrogen delivery are also analyzed in the larger system space at 300K.
目次 Table of Contents
中文摘要……………………………………………………...I
英文摘要…………………………………………………….III
目錄………………………………………………………….V
圖次………………………………………………………...VII
表次………………………………………………………….X
第一章 緒論 1
1.1 研究動機 1
1.2 石墨烯簡介 3
1.3 硼氮薄膜簡介 7
1.4 文獻回顧 7
1.5 本文架構 11
第二章 模擬方法及理論介紹 12
2.1 Basin-Hopping計算法 12
2.2 密度泛函理論(Density Functional Theory) 16
2.2.1 電子密度 16
2.2.2 Thomas-Fermi model (TF model) 17
2.2.3 Hohenberg-Kohn model (HK model) 17
2.2.4 Kohn-Sham方程式 17
2.3 Force-matching method介紹 19
2.4 分子動力學(Molecular Dynamics) 20
2.4.1 勢能函數(Potential Function) 21
2.4.2 運動方程式 27
2.4.3 積分法則 27
2.4.4 時間步階選取 29
2.4.5 溫度修正 29
2.5 數值分析方法 31
2.5.1 密度泛函理論所探討之參數 31
2.5.2 分子動力學所探討之參數 31
第三章 結果與討論 33
3.1 原子間勢能參數之獲得 33
3.1.1 物理模型之建構 33
3.1.2 密度泛函理論模組參數設定 36
3.1.3 勢能參數修正 36
3.2 銠奈米粒子於硼氮薄膜表面的結構與性質 43
3.2.1 物理模型之建構 43
3.2.2 結構特性 45
3.2.3 運動行為與吸附性質 45
3.3 石墨烯結構與鋰原子散佈於石墨烯表面之儲氫 55
3.3.1 物理模型之建構 55
3.3.2 系統溫度與壓力的變化對儲氫之影響 60
3.4 多層石墨烯與鋰原子散佈於多層石墨烯之氫氣的儲存與釋放 69
3.4.1 物理模型之建構 69
3.4.2 不同間距的多層石墨烯及鋰原子散佈於不同間距的多層石墨烯對氫氣之儲存與釋放的影響 73
結論 78
參考文獻 81
參考文獻 References
[1] 呂宗昕, “奈米科技與光觸媒”, 商周出版, 2003.
[2] 馬遠榮, “奈米科技”, 商周出版, 2003.
[3] 陳仲宜, 莊允中, “前瞻奈米鍍膜技術與潛力市場探索”, 經濟部ITIS專案辦公室, p. 19-29, 2005.
[4] L. Sun, Y.F. Li, Z.Y. Li, Q.X. Li, Z. Zhou, Z.F. Chen, “Electronic structures of SiC nanoribbons”, J Chem Phys, vol. 129, p. 174114-174114-4, 2008.
[5] E.J. Kan, X.J. Wu, Z.Y. Li, X.C. Zeng, J.L. Yang, J.G. Hou, “Half-metallicity in hybrid BCN nanoribbons”, J Chem Phys, vol. 129, p. 84712-84712-5, 2008.
[6] S.S. Yu, W.T. Zheng, Q.B. Wen, Q. Jiang, “First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges”, Carbon, vol. 46, p. 537-543, 2008.
[7] F.J. Owens, “Electronic and magnetic properties of armchair and zigzag graphene nanoribbons”, J Chem Phys, vol. 128, p. 194701-194701-4, 2008.
[8] J. Li, G. Zhou, Y. Chen, B.L. Gu, W.H. Duan, “Magnetism of C Adatoms on BN Nanostructures: Implications for Functional Nanodevices”, J Am Chem Soc, vol. 131, p. 1796-1801, 2009.
[9] H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, “Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets”, J Am Chem Soc, vol. 131, p. 4078-4083, 2009.
[10] Y. Ding, J. Ni, “Electronic structures of silicon nanoribbons”, Appl Phys Lett, vol. 95, p. 83115-83115-3, 2009.
[11] T. Luo, W. Zhu, Q.W. Shi, X.P. Wang, “Effect of the spectral function of quasiparticle on minimal conductivity of grapheme”, Acta Phys Sin, vol. 57, p. 3775-3779, 2008.
[12] Y. Wei, G.P. Tong, “Effect of the tensile force on the electronic energy gap of graphene sheets”, Acta Phys Sin, vol. 58, p. 1931-1935, 2009.
[13] A.H. Li, K.W. Zhang, L.J. Meng, J. Li, W.L. Liu, J.X. Zhong, “Novel silicon nanostructures based on graphene ribbons”, Acta Phys Sin, vol. 57, p. 4356-4363, 2008.
[14] P. Lu, Z.H. Zhang, W.L. Guo, “Electronic and magnetic properties of zigzag edge graphene nanoribbons with Stone-Wales defects”, Phys Lett A, vol. 373, p. 3354-3358, 2009.
[15] J.W. Jiang, J.S. Wang, B.W. Li, “Thermal conductance of graphene and Dimerite”, Phys Rev B, vol. 79, p. 205418-205418-6, 2009.
[16] G.F. Sun, J.F. Jia, Q.K. Xue, L. Li, “Atomic-scale imaging and manipulation of ridges on epitaxial graphene on 6H-SiC(0001)”, Nanotechnology, vol. 20, p. 355701-355701-4, 2009.
[17] F.P. Ouyang, H. Xu, C. Wei, “First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons”, Acta Phys Sin, vol. 57, p. 1073-1077, 2008.
[18] W. Liang, Y. Xiao, J.W. Ding, “Lattice dynamics of graphene ribbon”, Acta Phys Sin, vol. 57, p. 3714-3719, 2008.
[19] X.H. Zheng, Z.X. Dai, X.L. Wang, Z. Zeng, “Effects of B and N doping on spin polarized transport in graphene nanoribbons”, Acta Phys Sin, vol. 58, p. 259-265, 2009.
[20] F.P. Ouyang, H.Y. Wang, M.J. Li, J. Xiao, H. Xu, “Study on electronic structure and transport properties of graphene nanoribbons with single vacancy defects”, Acta Phys Sin, vol. 57, p. 7132-7138, 2008.
[21] F. Wu, E.J. Kan, H.J. Xiang, S.H. Wei, M.H. Whangbo, J.L. Yang, “Magnetic states of zigzag graphene nanoribbons from first principles”, Appl Phys Lett, vol. 94, p. 223105-223105-3, 2009.
[22] F.P. Ouyang, X.J. Wang, H. Zhang, J. Xiao, L.N. Chen, H. Xu, “The divacancy-defect effect of armchair graphene nanoribbons”, Acta Phys Sin, vol. 58, p. 5640-5644, 2009.
[23] P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, “The Synthesis, Characterization and Mechanical Properties of Thick, Ultrahard Cubic Boron Nitride Films Deposited by Ion-Assisted Sputtering”, Appl Phys Lett, vol. 82, p. 1617-1625, 1997.
[24] W.Q. Li, G.R. Gu, Y.A. Li, Z. He, W. Feng, L.H. Liu, C.H. Zhao, Y.N. Zhao, “Influence of Heat Treatment on Field Emission Characteristics of Boron Nitride Thin Films”, Appl Surf Sci, vol. 239, p. 432-436, 2005.
[25] W.Q. Li, G.R. Gu, Y.A. Li, Z. He, L.H. Liu, C.H. Zhao, Y.N. Zhao, “Influence of Hydrogen and Oxygen Plasma Treatment on Field Emission Characteristics of Boron Nitride Thin Films”, Appl. Surf. Sci, vol. 242, p. 207-211, 2005.
[26] X.H. Zheng, Z.X. Dai, X.L. Wang, Z. Zeng, “Effects of B and N Doping on Spin Polarized Transport in Graphene Nanoribbons”, Acta Phys Sin, vol. 58, p. 259-265, 2009.
[27] A.M. Ilyin, E.A. Daineko, G.W. Beall, “Computer simulation and study of radiation defects in graphene”, Physica E, vol. 42, p. 67-69, 2009.
[28] A.K. Singh, M.A. Ribas, B.I. Yakobson, “H-Spillover through the Catalyst Saturation: An Ab Initio Thermodynamics Study”, ACS Nano, vol. 3, p. 1657-1662, 2009.
[29] Y.G. Zhou, X.T. Zu, F. Gao, H.Y. Xiao, H.F. Lv, “Electronic and magnetic properties of graphene absorbed with S atom: A first-principles study”, J Appl Phys, vol. 105, p. 104311-104311-5, 2009.
[30] D.W. Boukhvalov, M.I. Katsnelson, “Enhancement of Chemical Activity in Corrugated Graphene”, J Phys Chem C, vol. 113, p. 14176-14178, 2009.
[31] M.Z.S. Flores, P.A.S. Autreto, S.B. Legoas, D.S. Galvao, “Graphene to graphane: a theoretical study”, Nanotechnology, vol. 20, p. 465704-465704-6, 2009.
[32] I. Carrillo, E. Rangel, L.F. Magana, “Adsorption of carbon dioxide and methane on graphene with a high titanium coverage”, Carbon, vol. 47, p. 2758-2760, 2009.
[33] Y.G. Zhou, X.D. Jiang, G. Duan, F. Gao, X.T. Zu, “Spin and band-gap engineering in copper-doped BN sheet”, Chemical Physics Letters, vol. 491, p. 203-207, 2010.
[34] Y.H. Zhang, K.G. Zhou, X.C. Gou, K.F. Xie, H.L. Zhang, Y. Peng, “Effects of dopant and defect on the adsorption of carbon monoxide on graphitic boron nitride sheet: A first-principles study”, Chemical Physics Letters, vol. 484, p. 266-270, 2010.
[35] N.S. Venkataramanan, M. Khazaei, R. Sahara, H. Mizuseki, Y. Kawazoe, “First-principles study of hydrogen storage over Ni and Rh doped BN sheets”, Chemical Physics, vol. 359, p. 173-178, 2009.
[36] D.J. Wales, J.P.K. Doye, "Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms", J. Phys. Chem. A, vol. 101, p. 5111-5116, 1997.
[37] K.A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim, A.A. Shvartsburg, "Unraveling the shape transformation in silicon clusters", Phys Rev Lett, vol. 93, p. 13401-13401-4, 2004.
[38] V. Rosato, M. Guillope, B. Legrand, "Thwemodynamical and structural-properties of FCC transition-metals using a simple tight-binding model", Philos Mag A-Phys Condens Matter Struct Defect Mech Prop, vol. 59, p. 321-336, 1989.
[39] F.Y. Chen, R.L. Johnston, "Energetic, electronic, and thermal effects on structural properties of Ag-Au nanoalloys", ACS Nano, vol. 2, p. 165-175, 2008.
[40] S. Hamad, C.R.A. Catlow, S.M. Woodley, S. Lago, J.A. Mejias, "Structure and stability of small TiO2 nanoparticles", J Phys Chem B, vol. 109, p. 15741-15748, 2005.
[41] S.S. Tripathi, K.S. Narendra, "Optimization using conjugate gradient methods", IEEE Trans Autom Control, vol. 15, p. 268-270, 1970.
[42] D.C. Liu, J. Nocedal, "On the limited memory BFGS method for large-scale optimization", Math Program, vol. 45, p. 503-528, 1989.
[43] P. Hohenberg, W. Kohn, “Inhomogeneous electron gas”, Phys Rev B, vol. 136, p. 864-871, 1964.
[44] W. Kohn, L.J. Sham. “Self-consistent equations
including exchange and correlation effects”, Physical Review, vol. 140, p. 1133-1138, 1965.
[45] D.M. Ceperley, B.J. Alder, “Ground-state of the
electron-gas by a stochastic method”, Phys Rev Lett, vol. 45, p. 566-569, 1980.
[46] F. Ercolessi, J.B. Adams, “Interatomic potentials from 1st-principles calculations - The force-matching method”, Europhys Lett, vol. 26, p. 583-588, 1994.
[47] J.H. Irving, J.G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics”, Chem Phys, vol. 18, p. 817-829, 1950.
[48] J.M. Haile, “Molecular Dynamics Simulation: Elementary Methods”, John Wiley & Sons, New York, 1997.
[49] G. Mazzone, V. Rosato, M. Pintore, "Molecular-dynamics calculations of thermodynamic properties of metastable alloys", Phys. Rev. B., vol. 55, p. 837-842, 1997.
[50] S.P. Ju, Y.C. Lo, S.J. Sun, J.G. Chang, "Investigation on the structural variation of Co-Cu nanoparticles during the annealing process", J. Phys. Chem. B, vol. 109, p. 20805-20809, 2005.
[51] R.A. Buckingham, “The classical equation of state of gaseous helium, neon and argon”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 168, p. 264-283, 1938.
[52] F. Jensen, “Introduction to Computational Chemistry”, John Wiley & Sons Ltd, 2007.
[53] J. Tersoff, “Empirical interatomic potential for
silicon with improved elastic properties”, Phys Rev B, vol. 38, p. 9902-9905, 1988.
[54] H. Sun, “COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications-Overview with Details on Alkane and Benzene Compounds”, J. Phys. Chem. B, vol. 102, p. 7338-7364, 1998.
[55] J. Yang, Y. Ren, A. Tian, “COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in Liquid Phases”, J. Phys. Chem. B, vol. 104, p. 4951-4957, 2000.
[56] A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, “All-atom empirical potential for molecular modeling and dynamics studies of proteins”, J Phys Chem B, vol. 102, p. 3586-3616, 1998.
[57] O. Teleman, B. Jonsson, S. Engstrom, “A molecular-dynamics simulation of a water model with intramolecular degrees of freedom”, Mol Phys, vol. 60, p. 193-203, 1987.
[58] S. Nose, “A unified formulation of the constant
temperature molecular-dynamics methods”, J Chem Phys, vol. 81, p. 511-519, 1984.
[59] W.G. Hoover, “Canonical dynamics - Equilibrium
phase-space distributions”, Phys Rev A, vol. 31, p. 1695-1697, 1985.
[60] K. Albe, W. Moller, K.H. Heinig, "Computer simulation and boron nitride", Radiation Effects and Defects in Solids, vol. 141, p. 85-97, 1997.
[61] H.L. Park, D.S. Yoo, Y.C. Chung, “Adsorption and Diffusion of Li and Ni on Graphene with Boron Substitution for Hydrogen Storage: Ab-initio Method”, Jpn. J. Appl. Phys., vol. 50, p. 06GJ02-06GJ02-4, 2011.
[62] G.K. Dimitrakakis, E. Tylianakis, G.E. Froudakis, “Pillared Graphene: A New 3-D Network Nanostructrue for Enhanced Hydrogen Storage”, Nano Lett., vol. 8, p. 3166-3170, 2008.
[63] K.S. Subrahmanyam, P. Kumar, U. Maitra, A. Govindaraj, K.P.S.S. Hembram, U.V. Waghmare, C.N.R. Rao, “Chemical storage of hydrogen in few-layer graphene”, PNAS, vol. 108, p. 2674-2677, 2011.
[64] W. Yuan, B. Li, L. Li, “A green synthetic approach to graphene nanosheets for hydrogen adsorption”, Applied Surface Science, vol. 257, p. 10183-10187, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code