Responsive image
博碩士論文 etd-0119112-150954 詳細資訊
Title page for etd-0119112-150954
論文名稱
Title
海洋excavatolide雙萜化合物藥理活性之研究:以老鼠樹突狀細胞,皮膚炎及第一型糖尿病動物模式為研究題型
The study of marine excavatolide diterpenoids on bioactivities: Lessons learned from dendritic cells, dermatitis and type 1 diabetes in murine models
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-03
繳交日期
Date of Submission
2012-01-19
關鍵字
Keywords
佛波醇誘導性皮膚炎、樹突狀細胞、briarane型雙萜化合物、珊瑚
excavatolide B, corals, dendritic cells, briarane-type diterpenoids
統計
Statistics
本論文已被瀏覽 5672 次,被下載 556
The thesis/dissertation has been browsed 5672 times, has been downloaded 556 times.
中文摘要
珊瑚屬於腔腸動物門、珊瑚蟲綱 (Anthozoa),它們是廣泛分佈於熱帶和亞熱帶的海洋動物。在藥物開發研究上,珊瑚已被認為是可能尋找新藥先導化合物的重要來源之ㄧ。為了評估分離自Briareum excavatum 珊瑚品種的briarane 型雙萜化合物之藥用活性,樹突狀細胞 (dendritic cell),佛波醇誘導性皮膚炎 (TPA-induced dermatitis) 及第1 型糖尿病(type 1 diabetes) 的動物模型等三個實驗系統做為本研究的技術平台,比較性地來評估分析briarane 型雙萜化合物的抗發炎及免疫調節之活性。本研究結果顯示,briarane 型雙萜化合物excavatolide K 會有效影響人類樹突狀細胞的功能,尤其能顯著抑制白介素-12 (IL-12) 的表現。這種抑制作用與 rictor-mTOR/Akt 等磷酸激酶參與的訊息網絡受到干擾,進而抑制Erk1/2 磷酸激酶及NF-kB 轉錄因子的活化而有所關聯。本研究亦顯示,briarane 型雙萜化合物的8, 17-環氧基對於上述的生物抑制活性可扮演著重要的角色,而第12個碳上羥基長鏈酯的取代又會使得此抑制活性逐漸下降。此外, excavatolide B也可以有效抑制小鼠骨髓衍生樹突狀細胞白介素-12的表現,因而抑制此樹突狀細胞誘發的抗原特異性 Th1的反應。在小鼠非肥胖型糖尿病/重度聯合免疫缺陷(non-obese diabetic/severe combinedimmunodeficiency, NOD/SCID)動物模式下,excavatolide B可有效預防自體反應性T細胞誘發糖尿病(autoreactive T cell-mediated diabetes) 的發生。在佛波醇誘導性皮膚炎動物模式下,excavatolide B可抑制血管通透和水腫的產生,亦可抑制發炎指標酵素,這包括第二型環氧化酶 (COX-2),誘導型一氧化氮合酶 (iNOS) 及基質金屬蛋白酶(MMP-9)的表現。進一步研究顯示,Akt/NF-kB 訊息傳導之干擾是與此抑制活性有所關聯。總結研究顯示,成果自海洋珊瑚分離出briaran型雙萜化合物excavatolide B及其結構類似物可以有效調節樹突狀細胞的功能,並抑制佛波醇誘導性皮炎和預防第一型糖尿病的產生。這些研究可能有助於未來珊瑚天然藥物之開發。
Abstract
Corals are marine animals from the class Anthozoa and are widely distributed in
tropical and subtropical seawaters. They are considered as an important source of lead
compounds for drug discovery. For evaluating the medicinal activities of briarane-type
diterpenoids (BrDs) from marine coral Briareum excavatum, the regulation of a group of briarane-type diterpenoids (BrDs) on dendritic cell (DC) function, TPA-induced dermatitis and type 1 diabetes was investigated. The results show that the BrD excavatolide K (BrD2) remarkably suppressed the activation of human DCs, especially the expression of IL-12 p40. This inhibitory effect was mediated apparently by interference with the rictor-mTOR/Akt-mediated signaling network, resulting in persistent-phase activation of NF-kB and Erk1/2 signalings. In addition, the 8,17-epoxide of BrDs was observed to play a crucial role in inhibition of IL-12 p40 expression. Replacement of the C-12 hydroxyl group with longer esters in BrDs gradually decreased this inhibitory activity in human DCs. BrD excavatolide B (BrD1) effectively suppressed the capacity of mouse bone marrow-derived DCs to induce an antigen-specific Th1, response via the inhibition of IL-12 expression. Moreover, excavatolide B prevented the onset of autoreactive T cell-mediated diabetes in NOD/SCID mice. Furthermore, excavatolide B remarkably suppressed TPA-induced vascular permeability and edema in test skin tissues. At the biochemical level, excavatolide B inhibited TPA-induced expression of cyclooxygenase-2, inducible nitric oxide synthase and matrix metalloproteinase-9, the key indicators of cutaneous inflammation. This inhibition is apparently mediated by interference with the Akt/NF-kB-mediated signaling network. Together, these studies demonstrate that BrDs from specific marine corals can effectively regulate defined molecular and cellular functions of dendritic cells, suppress TPA-induced dermatitis, and prevent type 1 diabetes in murine models suggesting that BrDs may warrant further investigation as natural immunomodulatory agents or therapeutics.
目次 Table of Contents
Chinese Abstract………………………………………………… ix
Abstract…………………………………………………………….. x
Chapter 1 Introduction……………………………………………… 1
Chapter 2 Materials and Methods…………………………………... 11
2.1 Reagents……………………………………………...……….... 11
2.2 Mice……………………………………………………………. 11
2.3 Preparation of 12-acyloxyl analogues of excavatolide B…………….... 11
2.4 Culture of DCs from human peripheral blood mononuclear cells……… 13
2.5 Culture of DCs from mouse bone marrow cells……………………… 14
2.6 Flow cytometry………………………………………………….. 14
2.7 Measurement of cytokines……………………………………….... 14
2.8 Primer design, RT-PCR and Real time PCR…………………….…... 15
2.9 BMDC-mediated antigen-specific T-cell proliferation/differentiation.…. 16
2.10 NOD/SCID diabetes model…………..……………….…………. 16
2.11 Histopathological analysis………………………… …….……... 17
2.12 Measurement of vascular permeability………………………….… 18
2.13 Western blot analysis………………………….………….....….. 18
2.14 Statistical analysis…………………………………………….… 19
Chapter 3 Results………………………………………….…………. 20


3.1 Briarane-type diterpenoids from marine coral effectively regulate
dendritic cell functions and prevent type 1 diabetes in murine model............. 20
3.1.1 Excavatolide K (BrD2) efficiently suppresses DC activation……….. 20
3.1.2 Excavatolide K (BrD2) inhibits activation of rictor-mTOR/Akt
signaling pathway…………………………………………… 26
3.1.3 Structure-activity relationship of BrDs that underlies inhibition of
LPS-induced IL-12 p40 expression………………………………. 30
3.1.4 The 12-acyloxyl substituents reduces the bioactivity of briarane-type
diterpenoids…………………………………… 31
3.1.5 Excavatolide B (BrD1) suppresses the capacity of DCs to induce
Ag-specific Th1 responses via inhibition of IL-12 expression............. 33
3.1.6 Excavatolide B (BrD1) prevents onset of autoreactive T cell-mediated
diabetes……………………………………………… 37
3.2 Topical application of marine briarane-type diterpenoids effectively
Inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammation
and dermatitis in murine skin…………………………… 39
3.2.1 Excavatolide B (BrD1) effectively inhibits TPA-induced vascular
permeability in mouse skin……………………………………… 39
3.2.2 BrD1 inhibits TPA-induced edema……………………………… 41
3.2.3 BrD1 suppresses TPA-induced COX-2 and iNOS expression in mouse
skin……………………………………………………… 43
3.2.4 BrD1 inhibits TPA-induced MMP-9 expression in mouse skin……… 45
3.2.5 BrD1 inhibits TPA-stimulated NF-kB and Akt activation in mouse skin 47
3.2.6 BrD1 inhibits LPS-induced IL-6 and TNF-a expression in mouse bone
marrow-derived dendritic cells…………………………… 49
3.2.7 Structure-activity relationship of BrDs that underlies inhibition of
LPS-induced IL-6 expression…………………………………… 51
3.2.8 The 12-acyloxyl substituents reduces the inhibitory bioactivity of
briarane-type diterpenoids…………………………… 54
Chapter 4 Discussion…………………… ………………………… 56
References………………………………… 63
參考文獻 References
1. Marris E: Marine natural products: drugs from the deep. Nature 2006;443:904-905

2. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR: Marine natural products. Nat Prod Rep 2005;22:15-61

3. Hu GP, Yuan J, Sun L, She ZG, Wu JH, Lan XJ, Zhu X, Lin YC, Chen SP: Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar Drugs 2011;9:514-525

4. Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH: Marine natural products as anticancer drugs. Mol Cancer Ther 2005;4:333-342

5. Zonder JA, Shields AF, Zalupski M, Chaplen R, Heilbrun LK, Arlauskas P, Philip PA: A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin Cancer Res 2001;7:38-42

6. Yovine A, Riofrio M, Blay JY, Brain E, Alexandre J, Kahatt C, Taamma A, Jimeno J, Martin C, Salhi Y, Cvitkovic E, Misset JL: Phase II study of ecteinascidin-743 in advanced pretreated soft tissue sarcoma patients. J Clin Oncol 2004;22:890-899

7. Vaishampayan U, Glode M, Du W, Kraft A, Hudes G, Wright J, Hussain M: Phase II study of dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin Cancer Res 2000;6:4205-4208

8. Sheu JH, Sung PJ, Cheng MC, Liu HY, Fang LS, Duh CY, Chiang MY: Novel cytotoxic diterpenes, excavatolides A-E, isolated from the Formosan gorgonian Briareum excavatum. J Nat Prod 1998;61:602-608

9. Sheu JH, Sung PJ, Su JH, Wang GH, Duh CY, Shen YC, Chiang MY, Chen IT: Excavatolides U-Z, new briarane diterpenes from the gorgonian briareum excavatum. J Nat Prod 1999;62:1415-1420

10. Ishiyama H, Okubo T, Yasuda T, Takahashi Y, Iguchi K, Kobayashi J: Brianodins A-D, briarane-type diterpenoids from soft coral Pachyclavularia sp. J Nat Prod 2008;71:633-636

11. Sung PJ, Sheu JH, Xu JP: Survey of Briarane-Type Diterpenoids of Marine Origin. Heterocycles 2002;57:535-579

12. Sung PJ, Chang PC, Fang LS, Sheu JH, Chen WC, Chen YP, Lin MR: Survey of Briarane-Related Diterpenoids-Part II. Heterocycles 2005;65:195-204

13. Schmitz FJ, Schulz MM, Siripitayananon J, Hossain MB, van der Helm D: New diterpenes from the gorgonian Solenopodium excavatum. J Nat Prod 1993;56:1339-1349

14. Aoki S, Okano M, Matsui K, Itoh T, Satari R, Akiyama Si, Kobayashi M: Brianthein A, a Novel Briarane-Type Diterpene Reversing Multidrug Resistance in Human Carcinoma Cell Line, from the Gorgonian Briareum excavatum. Tetrahedron 2001;57:8951-8957

15. Tanaka C, Yamamoto Y, Otsuka M, Tanaka J, Ichiba T, Marriott G, Rachmat R, Higa T: Briarane diterpenes from two species of octocorals, Ellisella sp. and Pteroeides sp. J Nat Prod 2004;67:1368-1373

16. Wu SL, Sung PJ, Chiang MY, Wu JY, Sheu JH: New polyoxygenated briarane diterpenoids, briaexcavatolides O-R, from the gorgonian Briareum excavatum. J Nat Prod 2001;64:1415-1420

17. Sung PJ, Su JH, Wang GH, Lin SF, Duh CY, Sheu JH: Excavatolides F-M, new briarane diterpenes from the gorgonian Briareum excavatum. J Nat Prod 1999;62:457-463

18. Joyner PM, Waters AL, Williams RB, Powell DR, Janakiram NB, Rao CV, Cichewicz RH: Briarane diterpenes diminish COX-2 expression in human colon adenocarcinoma cells. J Nat Prod 2011;74:857-861

19. Stephen J. Coval SC, Gerald Bernardinelli, Charles W. Jefford: Brianthein V, a New Cytotoxic and Antiviral Diterpene Isolated from Briareum asbestinum. J. Nat. Prod. 1988;51:981-984

20. Stephen H. Grode TRJJ, John H. Cardellina II, Kay D. Onan: Molecular structures of the briantheins, new insecticidal diterpenes from Briareum polyanthes. J. Org. Chem. 1983;48:5203–5207

21. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245-252

22. Janeway CA, Jr.: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989;54 Pt 1:1-13

23. Akira S, Takeda K, Kaisho T: Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675-680

24. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R: Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001;2:947-950

25. Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M, Brousse N, Saeland S, Davoust J: Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 2002;196:417-430

26. Kapsenberg ML: Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 2003;3:984-993

27. O'Garra A: Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998;8:275-283

28. Trinchieri G: Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3:133-146

29. Owaki T, Asakawa M, Fukai F, Mizuguchi J, Yoshimoto T: IL-27 induces Th1 differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-1/LFA-1/ERK1/2-dependent pathways. J Immunol 2006;177:7579-7587

30. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL: Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278:1910-1914

31. Groux H, Bigler M, de Vries JE, Roncarolo MG: Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996;184:19-29

32. Zeller JC, Panoskaltsis-Mortari A, Murphy WJ, Ruscetti FW, Narula S, Roncarolo MG, Blazar BR: Induction of CD4+ T cell alloantigen-specific hyporesponsiveness by IL-10 and TGF-beta. J Immunol 1999;163:3684-3691

33. Lehuen A, Diana J, Zaccone P, Cooke A: Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 2010;10:501-513

34. Pasquali L, Giannoukakis N, Trucco M: Induction of immune tolerance to facilitate beta cell regeneration in type 1 diabetes. Adv Drug Deliv Rev 2008;60:106-113

35. Katz JD, Benoist C, Mathis D: T helper cell subsets in insulin-dependent diabetes. Science 1995;268:1185-1188

36. Summers KL, Behme MT, Mahon JL, Singh B: Characterization of dendritic cells in humans with type 1 diabetes. Ann N Y Acad Sci 2003;1005:226-229

37. Mollah ZU, Pai S, Moore C, O'Sullivan BJ, Harrison MJ, Peng J, Phillips K, Prins JB, Cardinal J, Thomas R: Abnormal NF-kappa B function characterizes human type 1 diabetes dendritic cells and monocytes. J Immunol 2008;180:3166-3175

38. Gubler U, Chua AO, Schoenhaut DS, Dwyer CM, McComas W, Motyka R, Nabavi N, Wolitzky AG, Quinn PM, Familletti PC, et al.: Coexpression of two distinct genes is required to generate secreted bioactive cytotoxic lymphocyte maturation factor. Proc Natl Acad Sci U S A 1991;88:4143-4147

39. Trinchieri G: Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995;13:251-276

40. Trembleau S, Penna G, Bosi E, Mortara A, Gately MK, Adorini L: Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med 1995;181:817-821

41. Trembleau S, Penna G, Gregori S, Chapman HD, Serreze DV, Magram J, Adorini L: Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J Immunol 1999;163:2960-2968

42. Szelachowska M, Kretowski A, Kinalska I: Increased in vitro interleukin-12 production by peripheral blood in high-risk IDDM first degree relatives. Horm Metab Res 1997;29:168-171

43. Davoodi-Semiromi A, Yang JJ, She JX: IL-12p40 is associated with type 1 diabetes in Caucasian-American families. Diabetes 2002;51:2334-2336

44. Lo J, Clare-Salzler MJ: Dendritic cell subsets and type I diabetes: focus upon DC-based therapy. Autoimmun Rev 2006;5:419-423

45. Ludewig B, Odermatt B, Ochsenbein AF, Zinkernagel RM, Hengartner H: Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunol Rev 1999;169:45-54

46. Kupper TS, Fuhlbrigge RC: Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004;4:211-222

47. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ: Skin immune sentinels in health and disease. Nat Rev Immunol 2009;9:679-691

48. Jermy A: Innate immunity: Bacteria ensure injury is only skin deep Nature Reviews Immunology 2010;10:1

49. Nagaoka I, Hirota S: Increased expression of matrix metalloproteinase-9 in neutrophils in glycogen-induced peritoneal inflammation of guinea pigs. Inflamm Res 2000;49:55-62

50. De Vry CG, Valdez M, Lazarov M, Muhr E, Buelow R, Fong T, Iyer S: Topical application of a novel immunomodulatory peptide, RDP58, reduces skin inflammation in the phorbol ester-induced dermatitis model. J Invest Dermatol 2005;125:473-481

51. Cumberbatch M, Dearman RJ, Kimber I: Constitutive and inducible expression of interleukin-6 by Langerhans cells and lymph node dendritic cells. Immunology 1996;87:513-518

52. Vanisree Stanifortha W-CH, Kandan Aravindarama, b, Ning-Sun Yang: Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms. The Journal of Nutritional Biochemistry 2011;In Press

53. Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB: Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 2010;80:1833-1843

54. Wang CY, Staniforth V, Chiao MT, Hou CC, Wu HM, Yeh KC, Chen CH, Hwang PI, Wen TN, Shyur LF, Yang NS: Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells. BMC Genomics 2008;9:479

55. Staniforth V, Wang SY, Shyur LF, Yang NS: Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo. J Biol Chem 2004;279:5877-5885

56. Staniforth V, Chiu LT, Yang NS: Caffeic acid suppresses UVB radiation-induced expression of interleukin-10 and activation of mitogen-activated protein kinases in mouse. Carcinogenesis 2006;27:1803-1811

57. Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109-1118

58. Yin SY, Wang WH, Wang BX, Aravindaram K, Hwang PI, Wu HM, Yang NS: Stimulatory effect of Echinacea purpurea extract on the trafficking activity of mouse dendritic cells: revealed by genomic and proteomic analyses. BMC Genomics 2010;11:612-630

59. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC: Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J Immunol 1998;161:3042-3049

60. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM: Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 1999;286:2511-2514

61. Ardeshna KM, Pizzey AR, Devereux S, Khwaja A: The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 2000;96:1039-1046

62. Ping-Jyun Sung W-PH, Shwu-Li Wu, Jui-Hsin Su, Lee-Shing Fang, Jeh-Jeng Wang, Jyh-Horng Sheu: Briaexcavatolides X–Z, three new briarane-related derivatives from the gorgonian coral Briareum excavatum. Tetrahedron 2004;60:8975-8979

63. Ping-Jyun Sung Y-PC, Tsong-Long Hwang, Wan-Ping Hu,, Lee-Shing Fang Y-CW, Jan-Jung Li and Jyh-Horng Sheu: Briaexcavatins C–F, four new briarane-related diterpenoids from the Formosan octocoral Briareum excavatum (Briareidae). Tetrahedron 2006;62:5686–5691

64. Jyh-Horng Sheu P-JS, Jui-Hsin Su, Hsiao-Yu Liu,, Chang-Yih Duh aMYC: Briaexcavatolides A-J, New Diterpenes From The Gorgonian Briareum excavatum. Tetrahedron 1999;55:14555-14564

65. Ping-Jyun Sung J-HS, Chang-Yih Duh, Michael Y. Chiang and Jyh-Horng Sheu: Briaexcavatolides K−N, New Briarane Diterpenes from the Gorgonian Briareum excavatum. J. Nat. Prod. 2001;64:318–323

66. Gustin JA, Ozes ON, Akca H, Pincheira R, Mayo LD, Li Q, Guzman JR, Korgaonkar CK, Donner DB: Cell type-specific expression of the IkappaB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-kappa B activation. J Biol Chem 2004;279:1615-1620

67. Ma W, Mishra S, Gee K, Mishra JP, Nandan D, Reiner NE, Angel JB, Kumar A: Cyclosporin A and FK506 inhibit IL-12p40 production through the calmodulin/calmodulin-dependent protein kinase-activated phosphoinositide 3-kinase in lipopolysaccharide-stimulated human monocytic cells. J Biol Chem 2007;282:13351-13362

68. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098-1101

69. Thomson AW, Turnquist HR, Raimondi G: Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 2009;9:324-337

70. Hresko RC, Mueckler M: mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 2005;280:40406-40416

71. Rao TS, Currie JL, Shaffer AF, Isakson PC: Comparative evaluation of arachidonic acid (AA)- and tetradecanoylphorbol acetate (TPA)-induced dermal inflammation. Inflammation 1993;17:723-741

72. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA: Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci U S A 1994;91:2046-2050

73. Stamenkovic I: Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 2003;200:448-464

74. Shakarjian MP, Bhatt P, Gordon MK, Chang YC, Casbohm SL, Rudge TL, Kiser RC, Sabourin CL, Casillas RP, Ohman-Strickland P, Riley DJ, Gerecke DR: Preferential expression of matrix metalloproteinase-9 in mouse skin after sulfur mustard exposure. J Appl Toxicol 2006;26:239-246

75. D'Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, Sinigaglia F, Panina-Bordignon P: Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 1998;101:252-262

76. DeKruyff RH, Fang Y, Umetsu DT: Corticosteroids enhance the capacity of macrophages to induce Th2 cytokine synthesis in CD4+ lymphocytes by inhibiting IL-12 production. J Immunol 1998;160:2231-2237

77. Ma W, Gee K, Lim W, Chambers K, Angel JB, Kozlowski M, Kumar A: Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors. J Immunol 2004;172:318-330

78. Eigler A, Siegmund B, Emmerich U, Baumann KH, Hartmann G, Endres S: Anti-inflammatory activities of cAMP-elevating agents: enhancement of IL-10 synthesis and concurrent suppression of TNF production. J Leukoc Biol 1998;63:101-107

79. Lyakh LA, Sanford M, Chekol S, Young HA, Roberts AB: TGF-beta and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83+ dendritic cells. J Immunol 2005;174:2061-2070

80. Qin WZ, Zhu GD, Yang SM, Han KY, Wang J: Clinical observations on Tripterygium wilfordii in treatment of 26 cases of discoid lupus erythematosus. J Tradit Chin Med 1983;3:131-132

81. Tao XL, Sun Y, Dong Y, Xiao YL, Hu DW, Shi YP, Zhu QL, Dai H, Zhang NZ: A prospective, controlled, double-blind, cross-over study of tripterygium wilfodii hook F in treatment of rheumatoid arthritis. Chin Med J (Engl) 1989;102:327-332

82. Mao H, Chen XR, Yi Q, Li SY, Wang ZL, Li FY: Mycophenolate mofetil and triptolide alleviating airway inflammation in asthmatic model mice partly by inhibiting bone marrow eosinophilopoiesis. Int Immunopharmacol 2008;8:1039-1048

83. Li LF: Treatment of pyoderma gangrenosum with oral Tripterygium wilfordii multiglycoside. J Dermatol 2000;27:478-481

84. Wu Y, Wang Y, Zhong C, Li Y, Li X, Sun B: The suppressive effect of triptolide on experimental autoimmune uveoretinitis by down-regulating Th1-type response. Int Immunopharmacol 2003;3:1457-1465

85. Chen BJ: Triptolide, a novel immunosuppressive and anti-inflammatory agent purified from a Chinese herb Tripterygium wilfordii Hook F. Leuk Lymphoma 2001;42:253-265

86. Chen X, Murakami T, Oppenheim JJ, Howard OM: Triptolide, a constituent of immunosuppressive Chinese herbal medicine, is a potent suppressor of dendritic-cell maturation and trafficking. Blood 2005;106:2409-2416

87. Zhang Y, Ma X: Triptolide inhibits IL-12/IL-23 expression in APCs via CCAAT/enhancer-binding protein alpha. J Immunol 2010;184:3866-3877

88. Liu Q, Chen T, Chen G, Shu X, Sun A, Ma P, Lu L, Cao X: Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through PI3-K/Akt and NF-kappaB pathways. Mol Immunol 2007;44:2686-2696

89. Tao X, Lipsky PE: The Chinese anti-inflammatory and
immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum Dis Clin North Am 2000;26:29-50

90. Romani N, Thurnher M, Idoyaga J, Steinman RM, Flacher V: Targeting of antigens to skin dendritic cells: possibilities to enhance vaccine efficacy. Immunol Cell Biol 2010;88:424-430

91. Rakhmilevich AL, Turner J, Ford MJ, McCabe D, Sun WH, Sondel PM, Grota K, Yang NS: Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci U S A 1996;93:6291-6296

92. Oshikawa K, Shi F, Rakhmilevich AL, Sondel PM, Mahvi DM, Yang NS: Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1beta converting enzyme cDNA. Proc Natl Acad Sci U S A 1999;96:13351-13356

93. Aravindaram K, Yu HH, Lan CW, Wang PH, Chen YH, Chen HM, Yagita H, Yang NS: Transgenic expression of human gp100 and RANTES at specific time points for suppression of melanoma. Gene Ther 2009;16:1329-1339

94. Chiang YM, Lo CP, Chen YP, Wang SY, Yang NS, Kuo YH, Shyur LF: Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Br J Pharmacol 2005;146:352-363

95. Jeng-Hwan Wang K-FL, Spencer A Benson, Show-Jane Sun, Wei-Ming Cheng, Sheng-Yang Wang, Lie-Fen Shyur, Ning-Sun Yang: Tissue Array Transgene Expression System for the Evaluation of Effect of Medicinal Herbs on Wound-healing. Journal of Genetics and Molecular Biology 2003;14:133-144.

96. Ridd K, Dhir S, Smith AG, Gant TW: Defective TPA signalling compromises HaCat cells as a human in vitro skin carcinogenesis model. Toxicol In Vitro 2010;24:910-915

97. Van Dross RT, Hong X, Pelling JC: Inhibition of TPA-induced cyclooxygenase-2 (COX-2) expression by apigenin through downregulation of Akt signal transduction in human keratinocytes. Mol Carcinog 2005;44:83-91

98. Sur I, Ulvmar M, Jungedal R, Toftgard R: Inhibition of NF-kappaB signaling interferes with phorbol ester-induced growth arrest of keratinocytes in a TNFR1-independent manner. J Recept Signal Transduct Res 2009;29:44-51

99. Bayon Y, Ortiz MA, Lopez-Hernandez FJ, Gao F, Karin M, Pfahl M, Piedrafita FJ: Inhibition of IkappaB kinase by a new class of retinoid-related anticancer agents that induce apoptosis. Mol Cell Biol 2003;23:1061-1074

100. Chiu FL, Lin JK: Tomatidine inhibits iNOS and COX-2 through suppression of NF-kappaB and JNK pathways in LPS-stimulated mouse macrophages. FEBS Lett 2008;582:2407-2412

101. Jang BC, Paik JH, Kim SP, Shin DH, Song DK, Park JG, Suh MH, Park JW, Suh SI: Catalase induced expression of inflammatory mediators via activation of NF-kappaB, PI3K/AKT, p70S6K, and JNKs in BV2 microglia. Cell Signal 2005;17:625-633

102. Harvima IT: Induction of matrix metalloproteinase-9 in keratinocytes by histamine. J Invest Dermatol 2008;128:2748-2750

103. Kahari VM, Saarialho-Kere U: Matrix metalloproteinases in skin. Exp Dermatol 1997;6:199-213

104. Rijken F, Bruijnzeel PL, van Weelden H, Kiekens RC: Responses of black and white skin to solar-simulating radiation: differences in DNA photodamage, infiltrating neutrophils, proteolytic enzymes induced, keratinocyte activation, and IL-10 expression. J Invest Dermatol 2004;122:1448-1455

105. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML: Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 2005;169:681-691

106. Raffetto JD, Khalil RA: Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 2008;75:346-359

107. Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H: Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Jpn J Cancer Res 2001;92:439-451

108. Yang Y, Chang JF, Parnes JR, Fathman CG: T cell receptor (TCR) engagement leads to activation-induced splicing of tumor necrosis factor (TNF) nuclear pre-mRNA. J Exp Med 1998;188:247-254

109. Li YY, Yang Y, Bao M, Edwards CK, 3rd, Parnes JR: Mouse splenic B lymphocyte activation using different activation stimuli induces in vitro splicing of tumor necrosis factor-alpha nuclear pre-mRNA. Mol Immunol 2006;43:613-622

110. Chiu SC, Yang NS: Inhibition of tumor necrosis factor-alpha through selective blockade of Pre-mRNA splicing by shikonin. Mol Pharmacol 2007;71:1640-1645
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code