Responsive image
博碩士論文 etd-0119112-204746 詳細資訊
Title page for etd-0119112-204746
論文名稱
Title
針對半嚴格回授延遲系統之適應性區塊步階迴歸控制器設計
Design of Adaptive Block Backstepping Controllers for Semi-Strict feedback Systems with Delays
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-13
繳交日期
Date of Submission
2012-01-19
關鍵字
Keywords
適應性控制、李亞普諾夫穩定性理論、半嚴格回授系統、步階迴歸控制、時間延遲系統
backstepping control, time-delay systems, Lyapunov stability theorem, semi-strict feedback form, adaptive control
統計
Statistics
本論文已被瀏覽 5715 次,被下載 167
The thesis/dissertation has been browsed 5715 times, has been downloaded 167 times.
中文摘要
本文針對具有時間延遲及非匹配擾動,且不須滿足嚴格回授形式之多輸入系統,提出一種適應迴歸控制的設計方法。控制的系統包含n個區塊的動態方程式,因此先設計前面n-1個虛擬控制器,並在最後的區塊設計步階迴歸控制器。在每個虛擬控制器和步階迴歸控制器中,加入適應性增益來估測未知干擾的上界常數,所以系統中擾動的上界可不必事先知道。此外延遲及延遲導數之上界也不須預先知道。基於李亞普諾夫穩定性理論,此系統能達到漸近穩定。最後,本文將提供一個數值範例及一個實際應用,以驗證本控制器的可行性。
Abstract
In this thesis an adaptive backstepping control scheme is proposed for a class of multi-input perturbed systems with time-varying delays to solve regulation problems. The systems to be controlled contain n blocks’ dynamic equations, hence n-1 virtual input controllers are designed from the first block to the (n-1)th block, and the backstepping controller is designed from the last block. In addition, adaptive mechanisms are embedded in each virtual input controllers and proposed controller, so that the least upper bounds of perturbations are not required to be known beforehand. Furthermore, the dynamic equations of the systems to be controlled need not satisfy strict-feedback form, and the upper bounds of the time delays as well as their derivatives need not to be known in advance either. The resultant controlled systems guarantee asymptotic stability in accordance with the Lyapunov stability theorem. Finally, a numerical example and a practical application are given for demonstrating the feasibility of the proposed control scheme.
目次 Table of Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . . 3
Chapter 2 Design of Adaptive Backstepping Controllers 4
2.1 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 4
2.2 Design of Adaptive Backstepping Controllers . . . . . . . . . . . . . . . 8
Chapter 3 Numerical Example 34
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Chapter 4 Conclusions 64
References 65
Appendix A 70
Appendix B 73
Appendix C 74
參考文獻 References
[1] C. Antoniades, P. D. Christofides, “Feedback control of nonlinear differential difference
equation systems,” Chemical Engineering Science, vol. 54, no. 23, pp. 5677-
5709, 1999.
[2] C. Hua, P. X. Liu, and X. Guan, “Backstepping control for nonlinear systems with
time delays and applications to chemical reactor systems,” IEEE Transactions on
Industrial Electronics, vol. 56, no. 9, pp. 3723-3732, 2009.
[3] S. Hu and Q. Zhu, “Stochastic optimal control and analysis of stability of networked
control systems with long delay,” Automatica, vol. 39, no. 11, pp. 1877-1884, 2003.
[4] H. Gao, T. Chen, J. Lam, “A new delay system approach to network-based control,”
Automatica, vol. 44, no. 1, pp. 39-52, 2008.
[5] D. Li, Z. Wang, J. Zhou, J. Fang, J. Ni, “A note on chaotic synchronization of timedelay
secure communication systems,” Chaos, Solitons & Fractals, vol. 38, no. 4,
pp. 1217-1224, 2008.
[6] V. I. Ponomarenko and M. D. Prokhorov, “Extracting information masked by the
chaotic signal of a time-delay system,” Physical Review E, vol. 66, no. 2, pp. 26215,
2002.
[7] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-delay Systems, Birkhauser,
Berlin, 2003.
[8] S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer,
London, 2001.
[9] E. Fridman and U. Shaked, “A descriptor system approach to H1 control of linear
time-delay systems,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp.
253-270, 2002.
[10] X. Shengyuan, L. James, and Z. Yun, “New results on delay-dependent robust H
control for systems with time-varying delays,” Automatica, vol. 42, no. 2, pp. 343-
348, 2006.
[11] X. G. Yan, S. K. Spurgeon, and C. Edwards, “Sliding mode control for time-varying
delayed systems based on a reduced-order observer,” Automatica, vol. 46, no. 8, pp.
1354-1362, 2010.
[12] X. G. Yan, S. K. Spurgeon, and C. Edwards, “Static output feedback sliding mode
control for time-varying delay systems with time-delayed nonlinear disturbances,”
International Journal of Robust and Nonlinear Control, vol. 20, no. 7, pp. 777-788,
2010.
[13] C. H. Chou and C. C. Cheng, “A decentralized model reference adaptive variable
structure controller for large-scale time-varying delay systems,” IEEE Transactions
on Automatic Control, vol. 48, no. 7, pp. 1213-1217, 2003.
[14] H. Xing, C. C. Gao, and D. Li, “Sliding mode variable structure control for parameter
uncertain stochastic systems with time-varying delay,” Journal of Mathematical
Analysis and Applications, vol. 355, no. 2, pp. 689-699, 2009.
[15] H. H. Choi, “Robust Stabilization of Uncertain Fuzzy-Time-Delay Systems Using
Sliding-Mode-Control Approach,” IEEE Transactions on Fuzzy Systems, vol. 18,
no.5, pp.979-984, 2010.
[16] B. M. Mirkin and P. O. Gutman, “Output feedback model reference adaptive control
formulti-input-multi-output plants with state delay,” Systems & Control Letters, vol.
54, no. 10, pp. 961-972, 2005.
[17] B.M.Mirkin and P. O. Gutman, “Output-FeedbackModel Reference Adaptive Control
for Continuous State Delay Systems,” Journal of Dynamic Systems, Measurement,
and Control, vol. 125, no.2, pp. 257-261, 2003.
[18] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and adaptive control
design, John Wiley & Sons, Inc. New York, 1995.
[19] H. K. Khalil, Nonlinear Control, Prentice-Hall, New Jersey, 1996.
[20] S. K. Nguang, “Robust stabilization of a class of time-delay nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 45, no. 4, pp. 756-762, 2000.
[21] G. Li, C. Zang, and X. Liu, “Adaptive control for nonlinear time-delay systems with
low triangular structure,” American Control Conference, pp. 604-608, 2004.
[22] C. C. Hua, Q. G.Wang, and X. P. Guan, “Adaptive backstepping control for a class of
time delay systems with nonlinear perturbations,” International Journal of Adaptive
Control and Signal Processing, vol. 22, no. 3, pp. 289-305, 2008.
[23] C. Hua, X. Guan, and P. Shi, “Robust backstepping control for a class of time delayed
systems,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 894-
899, 2005.
[24] M. Jankovic, “Control Lyapunov-Razumikhin functions and robust stabilization
of time delay systems,” IEEE Transactions on Automatic Control, vol. 46, no. 7,
pp.1048-1060, 2001.
[25] C. Hua, G. Feng, and X. Guan, “Robust controller design of a class of nonlinear time
delay systems via backstepping method,” Automatica, vol. 44, no. 2, pp. 567-573,
2008.
[26] Z. Zhang, S. Xu, and Y. Chu, “Adaptive stabilization for a class of non-linear state
time-varying delay systems with unknown time-delay bound,” IET Control Theory
and Applications, vol. 4, no. 10, pp. 1905-1913, 2010.
[27] C.C. Hua, X.P. Guan, and G. Feng, “Robust stabilization for a class of time-delay
systems with triangular structure,” IET Control Theory and Applications, vol. 1, no.
4, pp. 875-879, 2007.
[28] M. Wang, B. Chen, and S. Zhang, “Adaptive neural tracking control of nonlinear
time-delay systems with disturbances,” International Journal of Adaptive Control
and Signal Processing, vol. 23, no. 11, pp. 1031-1049, 2009.
[29] M. Wang, B. Chen, X. Liu, and P. Shi, “Adaptive fuzzy tracking control for a class
of perturbed strict-feedback nonlinear time-delay systems,” Fuzzy Sets and Systems,
vol. 159, no. 8, pp. 949-967, 2008.
[30] Y. Li, C. Ren, and S. Tong, “Adaptive fuzzy backstepping output feedback control
for a class of MIMO time-delay nonlinear systems based on high-gain observer,”
Nonlinear Dynamics, 2011.
[31] H. Lee, “Robust Adaptive Fuzzy Control by Backstepping for a Class of MIMO
Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 265-
275, 2011.
[32] S. S. Ge and K. P. Te, “Approximation-based control of nonlinearMIMO time-delay
systems,” Automatica, vol. 43, no. 1, pp. 31-43, 2007.
[33] D. W. C. Ho, J. Li, and Y. Niu, “Adaptive neural control for a class of nonlinearly
parametric time-delay systems,” IEEE Transactions on Neural Networks, vol. 16,
no. 3, pp. 625-635, 2005.
[34] R. Ma and J. Zhao, “Backstepping design for global stabilization of switched nonlinear
systems in lower triangular form under arbitrary switchings,” Automatica, vol.
46, no. 11, pp. 1819-1823, 2010.
[35] G. Tao, Adaptive control design and analysis. JohnWiley & Sons, New Jersey, 2003.
[36] Terasoft, Terasoft Electro-Mechanical Engineering Control System, Terasoft, pp. 64-
76, 2007.
[37] B. C. Kuo, Automatic Control Systems, Prentice-Hall, New Jersey, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code