Responsive image
博碩士論文 etd-0119113-161905 詳細資訊
Title page for etd-0119113-161905
論文名稱
Title
利用正交型相位同步雙磁場增進磁性奈米顆粒發熱及藥物釋放效能
The efficiency enhancement of magnetically heating and controlling drug release using orthogonally synchronous bi-directional AC magnetic field
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-21
繳交日期
Date of Submission
2013-01-19
關鍵字
Keywords
藥物釋放、磁異方性、尺寸分佈、尺寸、正交型同步雙磁場、磁性奈米顆粒
magnetic anisotropy, drug release, size distribution, size, magnetic nanoparticles, orthogonally synchronous bi-directional AC magnetic field
統計
Statistics
本論文已被瀏覽 5721 次,被下載 243
The thesis/dissertation has been browsed 5721 times, has been downloaded 243 times.
中文摘要
以磁性奈米顆為基礎之腫瘤治療方法,近年來逐漸為世人所關注。其特點在於可利用外部直流磁場固定顆粒位置,藉由其在交流磁場下自發熱性質,將腫瘤加熱至42 oC ~46 oC,以達到抑制及殺死腫瘤之目的。此種具標靶性、集中性、非侵入性及無副作用之治療技術,稱之為磁性腫瘤溫熱法。近年來利用磁性奈米顆粒作為藥物載體,於體外控制藥物釋放,不僅可有效去除腫瘤,也可大量降低藥物之投入劑量,因此利用磁性顆粒進行發熱,成為各國發展腫瘤治療技術之ㄧ。
整合各項研究得知,為了獲得高發熱能力之磁性奈米顆粒,必須同時考慮顆粒尺寸、尺寸分佈、磁異方性三者因子。最新的研究證實,利用有機相高溫高壓方法,合成出尺寸在15 nm、尺寸分佈極窄且磁異方性在15000 Jm-3~18000Jm-3範圍內之奈米顆粒,在其分散狀態下所產生之發熱能力已遠遠高於臨床應用最低所需。然而in vitro及in vivo研究顯示,奈米顆粒不可避免會受到腫瘤細胞吞噬/吸附作用聚集在細胞內/外,如此強烈抑制顆粒之發熱能力,也可能影響藥物釋放效率。雖然如此問題可藉由增加磁場強度而解決,但往往必須施加必須超過人體十幾倍之始可產生治療效果。因此為了實現磁性溫熱法臨床應用目標,如何在安全磁場下提高聚集態顆粒之發熱能力,成為急待克服之問題。
根據磁性奈米顆粒應用於高密度資料儲存裝置之研究,利用正交型雙磁場取代傳統單一磁場源,可在低磁場下達到資料高速讀取/儲存之實用目標。根據此原理,我們提出以雙磁場系統概念來改善目前顆粒聚集低發熱能力之問題。為了系統性調查雙磁場所產生之效應,我們利用Landau-Lifshitz-Gilbert方程式,計算奈米顆粒磁矩在不同磁場下之動態發熱行為。模擬結果顯示,顆粒在雙磁場之發熱能力明顯高於施加傳統單一磁場。藉由模擬條件,我們設計製造正交型相位同步雙磁場系統,利用簡單、便宜及具環保之化學共沉降法,合成出各種不同之磁性奈米顆粒,比較這些顆粒聚集狀態時在雙磁場與傳統磁場之發熱能力。實驗結果顯示,在相同磁場條件下,聚集態超順磁性顆粒,其在雙磁場之發熱能力明顯高於單磁場4~5倍之多。隨著顆粒尺寸增加至鐵磁性性質範圍,單磁場強度必須超越矯頑力顆粒始可產生熱能,但使用雙磁場卻不受矯頑力所限制。另外,在單磁場下顆粒發熱能力隨著尺寸分佈加寬而大受影響,然而在雙磁場下,樣品發熱能力不僅顯著提高,同時尺寸分佈之影響僅為單磁場1/10。再者,高磁異方性磁性材料(例如CoFe2O4)在單磁場之低發熱能力,卻在雙磁場下可提高11倍。最後,我們利用修飾幾丁聚醣之磁性奈米顆粒作為藥物載體,進行酚酸類抗氧化劑釋放試驗,結果顯示雙磁場不僅快速提高介質溫度,同時也加速藥物釋放速率,此結果聯想到,利用雙磁場系統具有治療急性疾病之可能性。總和上述結果,雙磁場系統之優勢,在於高發熱能力之磁性奈米顆粒,無須藉由昂貴、耗能及高污染方法合成。即使使用寬的尺寸分佈及磁異方性範圍之顆粒,均可使用作為發熱種子,簡化了磁性溫熱法發展過程,更重要的降低病人治療時負擔。因此我們預期,雙磁場系統可能成為未來腫瘤治療之利器。
Abstract
The self-heating property of magnetic nanoparticles (MNPs) under single magnetic field has been a promising candidate for tumor therapy due to its non-invasive and targetable property. Recent studies showed that the heating ability of MNPs under single field was significantly influenced by particle size, size distribution and magnetic anisotropy. MNPs were prepared under these optimal parameters to maximize heating ability. However, the present challenge lies in the fact that the heating ability of MNPs was inevitably attenuated by the immobilization and aggregation of MNPs in tumor cells. To improve the problem, we proposed a new orthogonally synchronous bi-directional AC magnetic field (OSB field). The concept of the system was derived from the application of MNPs to the high density storage device. The numerical and experimental investigations showed that the poor heating ability of aggregated MNPs with superparamagnetic property under single field was significantly enhanced by applying OSB field. The large MNPs in size used could generate strong heating ability and reduce the influence of biocompatible surfactant under OSB field. We found that the enhanced effect on the heating ability of ferromagnetic MNPs was not limited even though applying lower strength than the coercivity. Moreover, applying OSB field could significantly weaken the influence of size distribution to only 1/10 of that under single field. We also proved that poor heating ability of CoFe2O4 MNPs under single field were not suitable as thermal seeds due to its high magnetic anisotropy. However, such the magnetic material could generate heat 11 times more than that under single field. Finally, we firstly used OSB field to magnetically control the phenolic acid release from Fe3O4@chitosan nano-carriers. The results showed that applying OSB field promoted the release of model drug from nano-carriers and the rate of drug release was about 3 times quicker than that under single field without increasing field strength. In addition to Fe3O4, CoFe2O4 MNPs were also suitable as nano-carriers for drug-release. This major was attributed to the outstanding heating abilities of both MNPs under the OSB field. From the results, the advantage of applying OSB field lies in the fact that a variety of MNPs can be served as strong thermal seeds even though these nanoparticles are prepared by simple and low-cost procedures and present a broad size distribution and magnetic anisotropy. Therefore, we expect that OSB field is a promising tool for tumor therapy.
目次 Table of Contents
論文審定書 i
謝誌 ii
中文摘要 iii
Abstract v
TEXT CONTENT vii
Figure Content x
Table Content xv
1 Introduction 1
1.1 Magnetic hyperthermia (MHT) 1
1.2 Heating mechanisms of magnetic nanoparticles on MHT 1
1.3 The influences of parameters on the heating abilities of MNPs 2
1.4 The current issues of MHT under the traditional magnetic field 3
1.5 Our study 6
2 Materials and Methods 9
2.1 Simulation method and conditions 9
2.2. The simulated magnetic properties and power dissipation of MNPs under AC field 12
2.3. Construction of OSB magnetic field system 15
2.4. The preparation and characterization of superparamagnetic nanoparticles 17
2.5. The preparation and characterization of different iron oxide MNPs in size distribution 20
2.6. Preparation and characteristics of Fe3O4 and Fe3O4@chitosan nanoparticles 20
2.7. The measurement of AC magnetization curve of MNPs 21
2.8. Preparation and characterization of chitosan coated magnetic nanoparticles for drug release experiments 22
2.9. The preparation of phenolic acid functionalized MNPs 22
2.10. Determination of the scavenged amount of DPPH by phenolic acid 22
2.11. D Measurement of the amount of released drug under OSB and single field 23
3 Results and Discussion 24
3.1 The numerical simulation of magnetic nanoparticles under OSB and single field 24
3.1.1 Heating and magnetization property of aggregated MNP 24
3.1.2 Imaginary susceptibility 27
3.1.3 Internal energy 29
3.1.4 Summary 29
3.2 Construction of OSB field 31
3.2.1 Output waveforms of OSB field 31
3.2.2 Summary 33
3.3 The effect of superparamagnetic nanoparticles on the heating properties under OSB field 35
3.3.1 Magnetic properties of synthesized MNPs 35
3.3.2 Heating abilities of synthesized MNPs under single field 35
3.3.3 Heating abilities of synthesized MNPs under OSB field 41
3.3.4 Summary 43
3.4 The effect of ferromagnetic nanoparticles on the heating properties under OSB field 44
3.4.1 The characterization of synthesized MNPs 44
3.4.2 The heating properties of MNPs under traditional single field 47
3.4.3 The heating properties of ferromagnetic MNPs under OSB field 47
3.4.4 Summary 51
3.5 The effect of size distribution on the heating properties under OSB field 52
3.5.1 The characterizations of synthesized MNPs with different size distributions 52
3.5.2 The heating abilities of MNPs with different size distribution under single field 52
3.5.3 The heating abilities of MNPs with different size distribution under OSB field 55
3.5.4 Summary 56
3.6 The effect of magnetic anisotropy on the heating properties under OSB field 60
3.6.1 The characterization of as-synthesized CoFe2O4 MNPs 60
3.6.2 The heating properties of CoFe2O4 MNPs under single field 62
3.6.3 The heating properties of CoFe2O4 under OSB field 62
3.6.4 Summary 65
3.7 The effect of surfactant on the heating properties under OSB field 66
3.7.1 Result and Discussion 66
3.7.2 The heating properties of MNPs under single field 71
3.7.3 The heating abilities of aggregated MNPs under OSB field 71
3.7.4 The influence of surfactant on heating abilities of MNPs 74
3.7.5 The improvement for the influence of surfactant on heating abilities of MNPs 76
3.7.6 Summary 77
3.8 The application of OSB field on the magnetically controlled drug release 80
3.8.1 The characterization of synthesized chitosan coated Fe3O4 MNPs 80
3.8.2 Determination of antiradical activities of gallic acid and caffeic acid by DPPH method 83
3.8.3 The release of gallic acid and caffeic acid under OSB and single field 85
3.8.4 The kinetic rate of releasing gallic acids under OSB and single field 91
3.8.5 The use of other magnetic nano-carrier on the release under OSB field 91
3.8.6 Summary 94
4 Conclusion 96
5 Reference 98
參考文獻 References
[1] A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, Magnetic fluid hyperthermia (MFH):
Cancer treatment with AC magnetic field induced excitation of biocompatible
superparamagnetic nanoparticles, J. Magn. Magn. Mater. 201 (1999) 413-419.
[2] A. Jordan, R. Scholz, P. Wust, H. Fähling, J. Krause, W. Wlodarczyk, B. Sander, T. Vogl,
R. Felix, Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo,
Int. J. Hyperthermia 13 (1997) 587-605.
[3] M. Johannsen, B. Thiesen, A. Jordan, K. Taymoorian, U. Gneveckow, N. Waldöfner, R.
Scholz, M. Koch, M. Lein, K. Jung, S.A. Loening, Magnetic fluid hyperthermia (MFH)
reduces prostate cancer growth in the orthotopic Dunning R3327 rat model, The Prostate 64
(2005) 283-292.
[4] F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita, T. Kobayashi, Hyperthermia
using magnetite cationic liposomes for hamster osteosarcoma, BioMag. Res. Tech. 2:3 (2004)
1-6.
[5] M. Shinkai, M. Yanase, M. Suzuki, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi,
Intracellular hyperthermia for cancer using magnetic cationic liposomes, J. Magn. Magn.
Mater. 194 (1999) 176-184.
[6] S. Purushotham, P.E.J. Chang, H. Rumpel, I.H.C. Kee, R.T.H. Ng, P.K.H. Chow, C.K.
Tan, R.V. Ramanujan1, Thermoresponsive core–shell magnetic nanoparticles for combined
modalities of cancer therapy, Nanotechnology 20 (2009) 305101.
[7] M. Johannsen, B. Thiesen, U. Gneveckow, K. Taymoorian, N. Waldöfner, R. Scholz, S.
Deger, K. Jung, S.A. Loening, A. Jordan, Thermotherapy using magnetic nanoparticles
combined with external radiation in an orthotopic rat model of prostate cancer, The Prostate
66 (2006) 97-104.
[8] N.S. Satarkar, J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled
pulsatile drug release, J. Control. Rel. 130 (2008) 246-251.
[9] I. Hilger, E. Dietmar, W. Linß, S. Streck, W.A. Kaiser, Developments for the minimally
invasive treatment of tumours by targeted magnetic heating, J. Phys.-Condes. Matter 18
(2006) S2951–S2958.
[10] M. Ma, Y. Wu, J. Zhou, Y.k. Sun, Y. Zhang, N. Gu, Size dependence of specific power
absorption of Fe3O4 particles in AC magnetic field, J. Magn. Magn. Mater. 268 (2004) 33-39.
[11] A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, R. Felix, Inductive heating of
ferrimagnetic particles and magnetic fluids:physical evaluation of thier potential for
hyperthermia, Int. J. Hyperthermia 9(1) (1993) 51-68.
[12] R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field, J. Magn.
Magn. Mater. 252 (2002) 370-374.
[13] R. Hergt, R. Hiergeist, M. Zeisberger, G. Glöckl, W. Weitschies, L.P. Ramirez, I. Hilger,
W.A. Kaiser, Enhancement of AC-losses of magnetic nanoparticles for heating applications, J.
Magn. Magn. Mater. 280 (2004) 358-368.
[14] B. Jeyadevan, Present status and prospects of magnetite nanoparticles-based
hyperthermia, Journal of the Ceramic Society of Japan 118 (2010) 391-401.
[15] J.P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.C. Bacri, F. Gazeau, Size-sorted
anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am.
Chem. Soc. 129 (2007) 2628-2635.
[16] M.E. Cano, A. Barrera, J.C. Estrada, A. Hernandez, T. Cordova, An induction heater
device for studies of magnetic hyperthermia and specific absorption ratio measurements, Rev.
Sci. Instrum. 82 (2011) 114904-114901-114904-114906.
[17] J.H. Lee, J.T. Jang, J.S. Choi, S.H. Moon, S.H. Noh, J.W. Kim, J.G. Kim, I.S. Kim, K.I.
Park, J.W. Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction,
Nature Nanotech. 6 (2011) 418–422
[18] R. Hergt, R. Hiergeist, I. Hilger, W.A. Kaiser, Y. Lapatnikov, S. Margel, U. Richter,
Maghemite nanoparticles with very high AC-losses for application in RF-magnetic
hyperthermia, J. Magn. Magn. Mater. 270 (2004) 345-357.
[19] S. Dutz, M. Kettering, I. Hilger, R. Müller, M. Zeisberger, Magnetic multicore
nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on
magnetic properties, Nanotechnology 22 (2011) 265102-265108.
[20] M.G. Weimuller, M. Zeisberger, K.M. Krishnan, Size-dependent heating rates of iron
oxide nanoparticles for magnetic fluid hyperthermia, J. Magn. Magn. Mater. 321 (2009)
1947.
[21] H. Sohn, R.H. Victora, Optimization of magnetic anisotropy and applied fields for
hyperthermia applications, J. Alloys. Compd. 107(9) (2010) 215-218.
[22] J.P. Fortin, F. Gazeau, C. Wilhelm, Intracellular heating of living cells through Neel
relaxation of magnetic nanoparticles, Eur. Biophys. J. 37 (2008) 223-228.
[23] I. Hilger, A. Kießling, E. Romanus, R. Hiergeist, R. Hergt, W. Andr‥a, M. Roskos, W.
Linss, P. Weber, W. Weitschies, W.A. Kaiser, Magnetic nanoparticles for selective heating of
magnetically labelled cells in culture: preliminary investigation, Nanotechnology 15 (2004)
1027-1032.
[24] X. Wang, H.C. Gu, Z.Q. Yang, The heating effect of magnetic fluids in an alternating
magnetic field, J. Magn. Magn. Mater. 293 (2005) 334-340.
[25] A.P. Khandhar, R.M. Ferguson, K.M. Krishnan, Monodispersed magnetite nanoparticles
optimized for magnetic fluid hyperthermia: Implications in biological systems, Journal of
Applied Physics 109(7) (2011).
[26] R. Hergt, W. Andrä, C.G. d’Ambly, I. Hilger, W.A. Kaiser, U. Richter, H.G. Schmidt,
Physical Limits of Hyperthermia Using Magnetite Fine Particles, IEEE Trans. Magn. 34
(1998) 3745-3754.
[27] R. Hiergeist, W. Andrä, N. Buske, R. Hergt, I. Hilger, U. Richter, W. Kaiser, Application
of magnetite ferrofluids for hyperthermia, J. Magn. Magn. Mater. 201 (1999) 420-422.
[28] S. Dutz, R. Hergt, J. Mürbe, R. Müller, M. Zeisberger, W. Andrä, J. Töpfer, M.E.
Bellemann, Hysteresis losses of magnetic nanoparticle powders in the single domain size
range, J. Magn. Magn. Mater. 308 (2007) 305–312.
[29] W.J. Atkinson, I.A. Brezovich, D.P. Chakraborty, Usable Frequencies in Hyperthermia
with Thermal Seeds, IEEE Trans. Biomed. Eng. BME-31 (1984) 70-75.
[30] D.J. Schaefer, J.D. Bourland, J.A. Nyenhuis, Review of Patient Safety in Time-Varying
Gradient Fields, J. Magn. Reson. Imaging 12 (2000) 20-29.
[31] W.M. Gonzales, M. Zeisberger, K.M. Krishnan, Size-dependant heating rates of iron
oxide nanoparticles for magnetic fluid hyperthermia, J. Magn. Magn. Mater. 321(13) (2009)
1947-1950.
[32] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron
oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations,
and biological applications, Chemical Reviews 108(6) (2008) 2064-2110.
[33] M. Jeun, S. Lee, J.K. Kang, A.Tomitaka, K.W. Kang, Y.I. Kim, Y. Takemura, K.W.
Chung, J. Kwak, S. Bae, Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a
local hyperthermia agent in nanomedicine, Appl. Phys. Lett. 100 (2012) 092406.
[34] D.H. Kim, D.E. Nikles, D.T. Johnson, C.S. Brazel, Heat generation of aqueously
dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery
and hyperthermia, J. Magn. Magn. Mater. 320 (2008) 2390– 2396.
[35] A.H. Habib, C.L. Ondeck, P. Chaudhary, M.R. Bockstaller, M.E. McHenry, Evaluation
of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy, J. Appl. Phys. 103
(2008) 07A307.
[36] S.W. Lee, S. Baea, Y. Takemura, I.B. Shim, T.M. Kim, J. Kim, H.J. Leed, S. Zurne, C.S.
Kim, Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application,
J. Magn. Magn. Mater. 310 (2007) 2868-2870.
[37] A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, R. Felix,
Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular
hyperthermia on human mammary carcinoma cells in vitro, J. Magn. Magn. Mater. 194 (1999)
185-196.
[38] D.H. Kim, S.H. Lee, K.H. Im, K.N. Kim, K.M. Kim, I.B. Shim, M.H. Lee, Y.-K. Lee,
Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization,
and cytotoxicity studies, Curr. Appl. Phys. 6S1 (2006) e242-e246.
[39] R. Kaiser, G. Miskolczy, Magnetic Properties of Stable Dispersions of Subdomain
Magnetite Particles, J. Appl. Phys. 41 (1970) 1064-1072.
[40] D.L. Zhao, X.X. Wang, X.W. Zeng, Q.S. Xia, J.T. Tang, Preparation and inductive
heating property of Fe(3)O(4)-chitosan composite nanoparticles in an AC magnetic field for
localized hyperthermia, J. Alloys Compd. 477(1-2) (2009) 739-743.
[41] D.L. Zhao, H.L. Zhang, X.W. Zeng, Q.S. Xia, J.T. Tang, Inductive heat property of
Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia,
Biomedical Materials 1(4) (2006) 198-201.
[42] C. Xu, P.M. Hui, Y.Q. Ma, L.F. Zhang, Rapid magnetization reversal in magnetic small
particles induced by non-static bias field, Solid State Commun. 134 (2005) 625-629.
[43] C. Thirion, W. Wernsdorfer, D. Mailly, Switching of magnetization by nonlinear
resonance studied in single nanoparticles, Nat. Mater. 2 (2003) 524-527.
[44] C. Xu, P.M. Hui, J.H. Zhou, Z.Y. Li, Biased switching in an interacting pair of magnetic
particles, J. Appl. Phys. 91 (2002) 5957-5961.
[45] L.F. Zhang, C. Xu, Fast precessional switching induced by a small transverse oscillating
field, Phys. Rev. A 349 (2006) 82-86.
[46] R.L. Stamps, R.E. Camley, Magnetization processes and reorientation transition for
small magnetic dots, Phys. Rev. B 60 (1999) 11694-11699.
[47] P.F. deChâtel, I. Nándori, J. Hakl, S. Mészáros, K. Vad, Magnetic particle hyperthermia:
Néel relaxation in magnetic nanoparticles under circularly polarized field, J. Phys.: Condens.
Matter. 21 (2009) 124202.
[48] S.F. Medeiros, A.M. Santos, H. Fessi, A. Elaissari, Stimuli-responsive magnetic particles
for biomedical applications, Int. J. Pharm. 403(1-2) (2011) 139-161.
[49] D.K. Pan, H. Zhang, T. Fan, J.G. Chen, X. Duan, Nearly monodispersed core-shell
structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery
and release, Chem. Commun. 47(3) (2011) 908-910.
[50] T.Y. Liu, K.H. Liu, D.M. Liu, S.Y. Chen, I.W. Chen, Temperature-sensitive nanocapsules
for controlled drug release caused by magnetically triggered structural disruption, Adv. Funct.
Mater. 19(4) (2009) 616-623.
[51] Y.T. Chang, P.Y. Liao, H.S. Sheu, Y.J. Tseng, F.Y. Cheng, C.S. Yeh, Near-infrared
light-responsive intracellular drug and siRNA release using Au nanoensembles with
oligonucleotide-capped silica shell, Adv. Mater. 24(25) (2012) 3309-3314.
[52] X.J. Yang, X. Liu, Z. Liu, F. Pu, J.S. Ren, X.G. Qu, Near-infrared light-triggered,
targeted drug delivery to cancer cells by aptamer gted nanovehicles, Adv. Mater. 24(21)
(2012) 2890-2895.
[53] M.A. Vandelli, M. Romagnoli, A. Monti, M. Gozzi, P. Guerra, F. Rivasi, F. Forni,
Microwave-treated gelatin microspheres as drug delivery system, J. Control. Rel. 96(1) (2004)
67-84.
[54] T.W. Wong, L.W. Chan, S. Bin Kho, P.W.S. Heng, Design of controlled-release solid
dosage forms of alginate and chitosan using microwave, J. Control. Rel. 84(3) (2002) 99-114.
[55] P.M. Peiris, L. Bauer, R. Toy, E. Tran, J. Pansky, E. Doolittle, E. Schmidt, E. Hayden, A.
Mayer, R.A. Keri, M.A. Griswold, E. Karathanasis, Enhanced delivery of chemotherapy to
tumors using a multicomponent nanochain with radio-frequency-tunable drug release, Acs
Nano 6(5) (2012) 4157-4168.
[56] L.N. Du, Y.G. Jin, W.Y. Zhou, J.Y. Zhao, Ultrasound-triggered drug release and
enhanced anticancer effect of doxorubicin-loaded
poly(D,L-lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanodroplets, Ultrasound Med.
Biol. 37(8) (2011) 1252-1258.
[57] J.L. Arias, L.H. Reddy, P. Couvreur, Fe3O4/chitosan nanocomposite for magnetic drug
targeting to cancer, J. Mater. Chem. 22(15) (2012) 7622-7632.
[58] N.S. Satarkar, J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled
pulsatile drug release, J. Control. Rel. 130(3) (2008) 246-251.
[59] T.Y. Liu, S.H. Hu, K.H. Liu, D.M. Liu, S.Y. Chen, Study on controlled drug permeation
of magnetic-sensitive ferrogels: Effect of Fe3O4 and PVA, J. Control. Rel. 126(3) (2008)
228-236.
[60] M. Babincova, V. Altanerova, C. Altaner, C. Bergemann, P. Babinec, In vitro analysis of
cisplatin functionalized magnetic nanoparticles in combined cancer chemotherapy and
electromagnetic hyperthermia, IEEE Trans. NanoBiosci. 7(1) (2008) 15-19.
[61] Y.S. Wang, X.Y. Yang, J.R. Yang, Y.M. Wang, R. Chen, J. Wu, Y.Y. Liu, N. Zhang,
Self-assembled nanoparticles of methotrexate conjugated O-carboxymethyl chitosan:
Preparation, characterization and drug release behavior in vitro, Carbohydr. Polym. 86(4)
(2011) 1665-1670.
[62] B. Chertok, A.E. David, Y.Z. Huang, V.C. Yang, Glioma selectivity of magnetically
targeted nanoparticles: A role of abnormal tumor hydrodynamics, J. Control. Rel. 122(3)
(2007) 315-323.
[63] B. Chertok, A.E. David, V.C. Yang, Brain tumor targeting of magnetic nanoparticles for
potential drug delivery: Effect of administration route and magnetic field topography, J.
Control. Rel. 155(3) (2011) 393-399.
[64] R. Regmi, S.R. Bhattarai, C. Sudakar, A.S. Wani, R. Cunningham, P.P. Vaishnava, R.
Naik, D. Oupicky, G. Lawes, Hyperthermia controlled rapid drug release from
thermosensitive magnetic microgels, J. Mater. Chem. 20(29) (2010) 6158-6163.
[65] H.Y. Huang, S.H. Hu, C.S. Chian, S.Y. Chen, H.Y. Lai, Y.Y. Chen, Self-assembling
PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug
release for epilepsy therapy in vivo, J. Mater. Chem. 22(17) (2012) 8566-8573.
[66] K. Hayashi, K. Ono, H. Suzuki, M. Sawada, M. Moriya, W. Sakamoto, T. Yogo,
High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic
hybrid based on hyperthermic effect, ACS Appl. Mater. Inter. 2(7) (2010) 1903-1911.
[67] D.H. Kim, D.E. Nikles, C.S. Brazel, Synthesis and characterization of multifunctional
chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery, Materials 3
(2010) 4051-4065.
[68] S.W. Chen, C.L. Chiang, C.L. Chen, The influence of nanoparticle size and external AC
magnetic field on heating ability, Mater. Lett. 67 (2012) 349–351.
[69] S.W. Chen, J.J. Lai, C.L. Chiang, C.L. Chen, Construction of orthogonal synchronized
bi-directional (OSB) field to enhance heating efficiency of magnetic nanoparticles, Rev. Sci.
Instrum. 83(6) (2012) 064701
[70] S. Dutz, M. Kettering, I. Hilger, R. Muller, M. Zeisberger, Magnetic multicore
nanoparticles for hyperthermia-influence of particle immobilization in tumour tissue on
magnetic properties, Nanotechnology 22(26) (2011).
[71] C. Bunce, J.Wu, Y.X. Lu, Y.B. Xu, R.W. Chantrell, Picosecond Magnetization Dynamics
of Single-Crystal Fe3O4 Thin Films, IEEE Trans. Magn. 44 (2008) 2970-2973.
[72] V. Schaller, G. Wahnstrom, A. Sanz-Velasco, S. Gustafsson, E. Olsson, P. Enoksson, C.
Johansson, Effective magnetic moment of magnetic multicore nanoparticles, Phys. Rev. B
80(9) (2009) 092406.
[73] C. Bunce, J.Wu, Y.X. Lu, Y.B.Xu, R.W. Chantrell, Picosecond Magnetization Dynamics
of Single-Crystal Fe3O4 Thin Films, IEEE Transactions on MagneticsON MAGNETICS 44
(2008) 2970-2973.
[74] C.R. Sullivan, Optimal choice for number of strands in a litz-wire transformer winding
IEEE Trans. Power Electron. 14 (1999) 283-291.
[75] E.L. Bronaugh, Helmholtz Coils for Calibration of Probes and Sensors: Limits of
Magnetic Field Accuracy and Uniformity, Electromagnetic Compatibility, 1995. Symposium
Record., 1995 IEEE International Symposium on (1995) 72-76.
[76] L.M. Lacroix, J. Carrey, M. Respaud, A frequency-adjustable electromagnet for
hyperthermia measurements on magnetic nanoparticles Rev. Sci. Instrum. 79 (2008) 093909.
[77] W. Brandwilliams, M.E. Cuvelier, C. Berset, Use of a free-radical method to evaluate
antioxidant activity, Food Sci. Technol-Leb. 28(1) (1995) 25-30.
[78] B. Mehdaoui, J. Carrey, M. Stadler, A. Cornejo, C. Nayral, F. Delpech, B. Chaudret, M.
Respaud, Influence of a transverse static magnetic field on the magnetic hyperthermia
properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles, Appl.
Phys. Lett. 100(5) (2012) 052403-052401-052403-052403.
[79] S. Mukherjee, A. Chakravarti, R. Ranganathan, Enhancement technique in the
measurement of alternating current susceptibility, Rev. Sci. Instrum. 68(7) (1997) 2834-2837.
[80] M.E. Cano, R.C. Priego, A.G. Villegas, M.A. Sosa, P. Schio, A.J.A.D. Oliveira, F. Chen,
O. Baffa, C.F.O. Graeff, Magnetic Properties of Synthetic Eumelanin—Preliminary Results,
Photochem. Photobiol. 84 (2008) 627–631.
[81] M. Jackson, B. Moskowitz, J. Rosenbaum, C. Kissel, Field-dependence of AC
susceptibility in titanomagnetites, Earth and Planetary Science Letters 157(3-4) (1998)
129-139.
[82] Ő. Őzdemir, D.J. Dunlop, M. Jackson, Frequency and field dependent susceptibility of
magnetite at low temperature, Earth Planets Space 61 (2009) 125-131.
[83] N.H. Kutkut, D.M. Divan, R.W. Gascoigne, An Improved Full-Bridge Zero-Voltage
Switching PWM Converter Using a Two-Inductor Rectifier, IEEE T. Ind. Appl. 31 (1995)
119-126.
[84] D.L. Zhao, X.X. Wang, X.W. Zeng, Q.S. Xia, J.T. Tang, Preparation and inductive
heating property of Fe3O4–chitosan composite nanoparticles in an AC magnetic field for
localized hyperthermia, J. Alloys. Compd. 477 (2009) 739-743.
[85] D.C.F. Chan, D.B. Kirpotin, J. P. A. Bunn, Synthesis and Eevaluation of Colloidal
Magnetic Iron Oxides for The Site-specific Radiofrequency-Induced Hyperthermia of Cancer,
J. Magn. Magn. Mater. 122 (1993) 374-378.
[86] S. Bae, S.W. Lee, Y. Takemura, E. Yamashita, J. Kunisaki, S. Zurn, C.S. Kim,
Dependence of frequency and magnetic field on self-heating characteristics of NiFe2O4
nanoparticles for hyperthermia, IEEE Trans. Magn. 42 (2006) 3566-3568.
[87] M. Jeun, S.J. Moon, H. Kobayashi, H.Y. Shin, A. Tomitaka, Y.J. Kim, Y. Takemura, S.H.
Paek, K.H. Park, K.W. Chung, S. Bae, Effects of Mn concentration on the ac magnetically
induced heating characteristics of superparamagnetic MnxZn1xFe2O4 nanoparticles for
hyperthermia, Appl. Phys. Lett. 96 (2010) 202511-202511-202511-202513.
[88] E. Kita, T. Oda, T. Kayano, S. Sato, M. Minagawa, H. Yanagihara, M. Kishimoto, C.
Mitsumata, S. Hashimoto, K. Yamada, N. Ohkohchi, Ferromagnetic nanoparticles for
magnetic hyperthermia and thermoablation therapy, J. Phys. D: Appl. Phys. 43 (2010) 474011
(9pp) 43 (2010) 474011-474011-474011-474019.
[89] R. Hergt, S. Dutz, M. Röder, Effects of size distribution on hysteresis losses of magnetic
nanoparticles for hyperthermia, J. Phys.: Condens. Matter 20 (2008)
385214-385211-385214-385212.
[90] C. Tannous, J. Gieraltowski, The Stoner-Wohlfarth model of ferromagnetism, European
Journal of Physics 29(3) (2008) 475-487.
[91] F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, M.T. Wu, D.B. Shieh,
Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical
applications, Biomaterials 26 (2005) 729-738.
[92] R. Hergt, S. Dutz, R. Muller, M. Zeisberger, Magnetic particle hyperthermia:
nanoparticle magnetism and materials development for cancer therapy, J. Phys.: Condens.
Matter 18(38) (2006) S2919-S2934.
[93] P.F.d. Châtel, I. N′andori, J. Hakl, S. Mészáros, K. Vad, Magnetic particle hyperthermia:
Néel relaxation in magnetic nanoparticles under circularly polarized field, J. Phys.-Condes.
Matter 21 (2009).
[94] S.L. McGill, C.L. Cuylear, N.L. Adolphi, M. Osinski, H.D.C. Smyth, Magnetically
responsive nanoparticles for drug delivery applications using low magnetic field strengths,
IEEE Trans. NanoBiosci. 8(1) (2009) 33-42.
[95] S. Bae, S.W. Lee, Y. Takemura, E. Yamashita, J. Kunisaki, S. Zurn, C.S. Kim,
Dependence of frequency and magnetic field on self-heating characteristics of NiFe2O4
nanoparticles for hyperthermia, IEEE Trans. Magn. 42(10) (2006) 3566-3568.
[96] S. Bae, S.W. Lee, Y. Takemura, Applications of NiFe2O4 nanoparticles for a
hyperthermia agent in biomedicine, Appl. Phys. Lett. 89(25) (2006).
[97] Z. Beji, A. Hanini, L.S. Smiri, J. Gavard, K. Kacem, F. Villain, J.M. Greneche, F. Chau,
S. Ammar, Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in
polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on
Endothelial cells, Chem. Mater. 22(19) (2010) 5420-5429.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code