Responsive image
博碩士論文 etd-0120109-001339 詳細資訊
Title page for etd-0120109-001339
論文名稱
Title
ㄧ、毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應用 二、液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-16
繳交日期
Date of Submission
2009-01-20
關鍵字
Keywords
液相層析、毛細管電泳、感應耦合電漿質譜儀
ICP-MS, Capillary Electrophoresis, HPLC
統計
Statistics
本論文已被瀏覽 5621 次,被下載 15
The thesis/dissertation has been browsed 5621 times, has been downloaded 15 times.
中文摘要
感應耦合電漿質譜儀( Inductively Coupled Plasma Mass Spectrometry,ICP-MS )結合了ICP原子化及游離化效率高的特性,以及質譜儀的高靈敏度和測定同位素比的能力,使ICP-MS成為一種極佳的微量多元素分析技術,並具有偵測極限低及線性範圍廣等優點,目前已廣泛地被應用在層析分離法之偵測器。
本研究第一部份是利用毛細管電泳結合動態反應管感應耦合電漿質譜儀於砷及硒物種分析之應用。研究中使用內徑75 μm、長60 cm之毛細管,以含有1 mmol L-1 SDS ( Sodium dodecyl sulphate )之25 mmol L-1 CAPS ( 3-Cyclohexylamino-1-propanesulfonic acid ) pH 9.6作為分離電解質,在+24 kV的分離電壓下,於8分鐘內可有效分離Arsenobetaine (AsB)、Dimethylarsinic acid (DMA)、Monomethylarsonic acid (MMA)、Arsenite [As(III)]、Arsenate [As(V)]、Selenomethionine (SeMet)、Se-Methylselenocysteine (MeSeCys)、Selenocystine (SeCys2)、Selenite [Se(IV)]及Selenate [Se(VI)]等十個物種。由於感應耦合電漿質譜儀在偵測78Se+、80Se+時會遭遇到38Ar40Ar+、40Ar40Ar+的同質量多原子離子干擾,因此本研究藉由通有甲烷(CH4)之動態反應管系統來降低此干擾,而砷則可於背景較低的m/z 89偵測75As12CH2+訊號。各物種滯留時間及波峰訊號(波峰面積)的再現性均優於7%,其校正曲線相關係數除了As(III)及Se(VI)外,其餘物種均優於0.993;砷物種的偵測極限在0.6-2.0 ng mL-1之間,而硒物種的偵測極限在0.6-0.8 ng mL-1之間。最後以建立的系統應用於美術館池水樣品之定量分析,各物種的回收率介於97-108%之間。
本研究第二部分是利用液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用。由於Tl(III)在自然環境中相當不穩定,容易被一般還原試劑還原而改變其氧化態,藉由在標準樣品溶液中添加DTPA ( Diethylenetriamine pentaacetic acid )來穩定Tl(III)。研究中使用C8逆相層析管柱欲分離Tl(I)和Tl(III)兩物種,以5.0 mM TBAP ( Tetra-n- butylammonium Phosphate ) 離子對試劑、4.0 mM DTPA、2% (v/v) MeOH作為動相( pH 6.0),Tl(I)和Tl(III)可於2分鐘內有效分離,所得各物種滯留時間及波峰訊號的再現性皆優於2%,線性相關係數均呈現1,偵測極限可達0.003 ng mL-1。最後,將所建立的方法應用於中山大學後山龍眼樹及芒果樹葉片及土壤標準樣品( NIST SRM 2711 Montana Soil )中鉈物種之定量分析。
Abstract
none
目次 Table of Contents
目 錄
論文提要 ..................................................................................................... I
謝 誌 ........................................................................................................ IV
目 錄 ........................................................................................................ V
圖 目 錄 ................................................................................................ VIII
表 目 錄 .................................................................................................. XI
第一章 毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應

壹、 前言 ............................................................................................... 1
貳、 動態反應管基本原理 ................................................................... 5
參、 實驗部分 ..................................................................................... 10
一、儀器裝置與設備 ........................................................................ 10
二、藥品和溶液的配製 .................................................................... 13
三、毛細管電泳之分析 .................................................................... 18
四、DRC 系統之最適化 .................................................................. 20
五、校正曲線、再現性與偵測極限的估計 ................................... 20
六、樣品分析 .................................................................................... 21
肆、 結果與討論 ................................................................................. 24
一、 CE 分離條件最適化的探討 ................................................ 24

二、 DRC 系統操作條件之最適化 ............................................ 35
三、 砷及硒物種的分離 .............................................................. 43
四、 重複性、檢量線性與偵測極限 .......................................... 45
五、 真實樣品的分析 .................................................................. 49
伍、 結論 ............................................................................................. 56
陸、 參考文獻 ..................................................................................... 57
第二章 液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用
壹、 前言 ............................................................................................. 63
貳、 實驗部分 ..................................................................................... 66
一、儀器裝置 .................................................................................... 66
二、藥品和溶液的配製 .................................................................... 68
參、 實驗過程 ..................................................................................... 71
一、 液相層析分離條件的最適化 .............................................. 71
二、 再現性 .................................................................................. 72
三、 校正曲線與偵測極限的估計 .............................................. 72
四、 真實樣品分析 ...................................................................... 72
肆、 結果與討論 ................................................................................. 78
一、 液相層析分離條件的探討 .................................................. 78
二、 再現性 .................................................................................. 87

三、 校正曲線與偵測極限的估計 .............................................. 87
四、 真實樣品的分析 .................................................................. 91
伍、 結論 ............................................................................................. 99
陸、 參考文獻 ................................................................................... 100
圖 目 錄
第一章 毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應

圖1-1 DRC-ICP-MS 儀器示意圖 ............................................................. 9
圖1-2 商業化CEI-100 介面 .................................................................. 12
圖1-3 十字型轉接頭、低流量霧化器與噴霧室 .................................. 12
圖1-4 魚肝標準樣品隔水加熱萃取的流程圖 ...................................... 23
圖1-5 分離電解質之pH 值對電泳分離的影響 ................................... 26
圖1-6 電解質濃度與Zeta potnetial 的關係 .......................................... 27
圖1-7 分離電解質濃度對電泳分離的影響 .......................................... 28
圖1-8 添加介面活性劑於分離電解質中對電泳分離之影響 .............. 30
圖1-9 添加介面活性劑之分離電解質濃度對電泳分離的影響 .......... 31
圖1-10 分離電壓對電泳分離的影響 .................................................... 33
圖1-11 注射時間對電泳分離的影響 .................................................... 34
圖1-12 以CH4 為反應氣體,固定q 值為0.5,改變氣體流速對砷及
硒訊號的影響..........................................................................................36
圖1-13 以CH4 為反應氣體,固定q 值為0.5,改變氣體流速對預估
偵測極限(EDL)的影響 ............................................................................ 37
圖1-14 以CH4 為反應氣體,設定氣體流速為0.9 mL min-1,改變q
值對砷及硒訊號的影響..........................................................................39

圖1-15 以CH4 為反應氣體,固定氣體流速為0.9 mL min-1,改變q
值對分析物訊號與背景訊號比(Signal / Background)的影響 ............... 40
圖1-16 以CH4 為反應氣體,固定氣體流速為0.9 mL min-1,改變q
值對預估偵測極限(EDL)的影響 ............................................................ 41
圖1-17 分別在(a)標準模式及(b)DRC 模式下分析物的電泳分離圖 . 44
圖1-18 魚肝標準參考樣品(NRCC DLOT-3)的電泳分離圖 ................ 52
圖1-19 美術館池水樣品的電泳分離圖 ................................................ 54
第二章 液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用
圖2-1 HPLC-ICP-MS 之系統圖 ............................................................. 67
圖2-2 TBAP 及DTPA 之結構式 ............................................................ 69
圖2-3 實驗流程 ...................................................................................... 75
圖2-4 植物樹葉樣品密閉式微波萃取的流程圖 .................................. 76
圖2-5 土壤標準樣品隔水加熱萃取的流程圖 ...................................... 77
圖2-6 沖提液中TBAP 濃度對層析分離的影響 .................................. 79
圖2-7 沖提液中DTPA 濃度對層析分離的影響 .................................. 81
圖2-8 沖提液中甲醇濃度對層析分離的影響 ...................................... 82
圖2-9 沖提液之pH 值對層析分離的影響 ............................................ 84
圖2-10 沖提液流速對層析分離的影響 ................................................ 85
圖2-11 龍眼樹葉樣品萃取後所得鉈物種之層析圖 ............................ 93

圖2-12 芒果樹葉樣品萃取後所得鉈物種之層析圖 ............................ 94
圖2-13 Montana Soil 萃取後所得鉈物種之層析圖 .............................97
表 目 錄
第一章 毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應

表1-1 砷及硒物種之化學式及解離常數pKa 值 ................................. 14
表1-2 CE-DRC-ICP-MS 實驗操作最適化條件 ..................................... 42
表1-3 砷和硒物種在標準模式及DRC 模式下的校正曲線及偵測極限
................................................................................................................... 46
表1-4 CE-ICP-MS 與其他系統偵測極限比較(砷物種) .................. 47
表1-5 CE-ICP-MS 與其他系統偵測極限比較(硒物種) .................. 48
表1-6 砷和硒物種的遷移時間及訊號的再現性 .................................. 51
表1-7 以CE-DRC-ICP-MS 測定水樣中的砷及硒物種 ...................... 55
第二章 液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用
表2-1 分析物在HPLC-ICP-MS 系統之最適化條件 ............................ 86
表2-2 鉈物種的滯留時間及分析訊號之再現性 .................................. 88
表2-3 鉈物種之校正曲線及偵測極限 .................................................. 89
表2-4 HPLC-ICP-MS 與其他系統偵測極限比較 ................................. 90
表2-5 以HPLC-ICP-MS 測定植物樹葉樣品中鉈物種之含量及回收率
................................................................................................................... 95
表2-6 以HPLC-ICP-MS 測定土壤標準樣品( NIST SRM 2711 Montana
Soil )中鉈物種之含量及回收率 .............................................................. 98
參考文獻 References
第一章 毛細管電泳結合感應耦合電漿質譜儀於砷及硒物種分析之應用
1. S. P. Wolff, A. Garner, R. T. Deam, Free radicals, lipids and protein degradation, Trends Biochem. Sci., 1986, 11, 27-31.
2. M. Jakubowski, M. Trzcinka-Ochocka, G. Razniewska, W. Matczak, Biological monitoring of occupational exposure to arsenic by determining urinary content of inorganic arsenic and its methylated metabolites, Int. Arch. Occup. Environ. Health, 1998, 71, S29-S32.
3. I. Pizarro, M. Gómez, C. Cámara, M. A. Palacios, Arsenic speciation in environmental and biological sampls Extraction and stability studies, Anal. Chim. Acta, 2003, 495, 85-93.
4. X. C. Le, X. Lu, X. F. Li, Peer Reviewed : Arsenic speciation, Anal. Chem., 2004, 76, 26A-33A.
5. W. R. Cullen, K. J. Reimer, Arsenic speciation in the environment, Chem. Rev., 1989, 89, 713-764.
6. R. N. Ratnaike, Acute and chronic arsenic toxicity, Postgrad. Med. J., 2003, 79, 391-396.
7. R. Vanholder, R. Cornelis, A. Dhondt, N. Lameire, The role of trace elements in uraemic toxicity, Nephrol. Dial. Transplant., 2002, 17, 2-8.
8. M. Y. Lee, B. I. Jung, S. M. Chung, Arsenic-induced dysfunction in relaxation of blood vessels, Environ. Health Persp., 2003, 111, 513- 517.
9. P. J. Goebell, C. M. Villanueva, A. W. Rettenmeuer, H. Rubben, M. Kogevinas, Environmental exposure, chlorinated drinking water, and bladder cancer, World. J. Urol., 2004, 21, 424-432.
10. C. O. Abernathy, D. J. Thomas, R. L. Calderon, Health effects and risk assessment of arsenic, J. Nutr., 2003, 133, 1536S-1538S.
11. L. H. Yih, T. C. Lee, Arsenic induces p53 accumulation through an ATM-dependent pathway in human fibroblasts, Cancer Res., 2000, 60, 6346-6352.
12. M. P. Burke, K. Opeskin, Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease), Med. Sci. Law, 2002, 42, 10-13.
13. J. Neve, Selenium as a ‘nutraceutical’: how to conciliate physiological and supra-nutritional effects for an essential trace element, Curr. Opin. Clin. Nutr., 2002, 5, 659-663.
14. http://www.npic.edu.tw/~health/b2_14.htm
15. X. C. Le, X. F. Li, V. Lai, M. Ma, S. Yalcin, J. Feldmann, Simultaneous speciation of selenium and arsenic using elevated temperature liquid chromatography separation with inductively coupled plasma mass spectrometry detection, Spectrochim. Acta Part B, 1998, 53, 899.
16. http://big5.lrn.cn/specialtopic/38EarthDay/meiti/200704/t20070419_52334.htm
17. M. Ochsenkühn-Petropoulou, B. Michalke, D. Kavouras, P. Schramel, Selenium speciation analysis in a sediment using strong anion exchange and reversed phase chromatography coupled with inductively coupled plasma-mass spectrometry, Anal. Chim. Acta, 2003, 478, 219-227.
18. B. Michalke, Capillary electrophoresis methods for a clear identification of seleno amino acids in complex matrices like human milk, Fresenius J. Anal. Chem., 1995, 351, 670-667.
19. F. Pan, J. F. Tyson, P. C. Uden, Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromato- graphy inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2007, 22, 931-937.
20. S. Rattanachongkiat, G. E. Millward, M. E. Foulkes, Determination of arsenic species in fish, crustacean and sediment samples from Thailand using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) J. Environ. Monit., 2004, 6, 254-261.
21. R. Chen, B. W. Smith, J. D. Winefordner, M. S. Tu, G. Kertulis, L. Q. Ma, Arsenic speciation in Chinese brake fern by ion-pair high- performance liquid chromatography-inductively coupled plasma mass spectrometry, Anal. Chim. Acta, 2004, 504, 199-207.
22. S. Fitzpatrick, L. Ebdon, M. E. Foulkes, Spectation and detection of arsenic and selenium speces in environmental samples by HPLC-ICP- MS, Intern. J. Environ. Anal. Chem., 2002, 82, 835-841.
23. K. L. Yang, S. J. Jiang, Determination of selenium compounds in urine samples by liquid chromatography-inductively coupled plasma mass spectrometry with an ultrasonic nebulizer, Anal. Chim. Acta, 1995, 307, 109-115.
24. S. U. Lin, G. R. Wang, Q. P. Huang, C. Y. Liu, Speciation of selenium compounds by open tubular capillary electrophoresis- inductively coupled plasma mass spectrometry, Electrophoresis, 2006, 27, 4257- 4265.
25. B. Gammelgarrd, L. Bendahl, Selenium speciation in human urine samples by LC- and CE-ICP-MS—separation and identification of selenosugars, J. Anal. At. Spectrom., 2004, 19, 135-142.
26. M. V. Holderbeke, Y. Zhao, F. Vanhaecke, L. Moens, R. Dams, P. Sandra, Speciation of six arsenic compounds using capillary electrophoresis-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 1999, 14, 229-234.
27. C. Casiot, O. F. X. Donard, M. Potin-Gautier, Optimization of the hyphenation between capliiary zone electrophoresis and inductively coupled plasma mass spectrometry for the measurement of As-, Sb-, Se- and Te-species, applicable to soil extracts, Spectrochim. Acta Part B, 2002, 57, 173-187.
28. G. Koellensperger, J. Nurmi, S. Hann, G. Stingeder, W. J. Fitz, W. W. Wenzel, CE-ICP-SFMS and HPIC-ICP-SFMS for arsenic speciation in soil solution and soil water extracts, J. Anal. At. Spectrom., 2002, 17, 1042-1047.
29. S. Mounicou, S. Mcsheehy, J. Szpunar, M. Potin-Gautier, R. Lobinski, Analysis of selenized yeast for selenium speciation by size-exclusion chromatography and capillary zone electrophoresis with inductively coupled plasma mass spectrometric detection (SEC-CZE-ICP-MS), J. Anal. At. Spectrom., 2002, 17, 15-20.
30. J. A. Day, S. S. Kannamkumarath, E. G. Yanes, M. Montes-Bayón, J. A. Caruso, Chiral speciation of Marfey’s derivatized DL-selenome- thionine using capillary electrophoresis with UV and ICP-MS detection, J. Anal. At. Spectrom., 2002, 17, 27-31.
31. L. Bendahl, B. Gammelgarrd, Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples, J. Anal. At. Spectrom., 2004, 19, 143-148.
32. D. D. Richardson, S. S. Kannamkumarath, R. G. Wuilloud, J. A. Caruso, Hydride generation interface for speciation analysis coupling capillary electrophoresis to inductively coupled plasma mass spectrometry, Anal. Chem., 2004, 76, 7137-7142.
33. B. Sun, M. Macka, P. R. Haddad, Speciation of arsenic and selenium by capillary electrophoresis, J. Chromatogr. A, 2004, 1039, 201-208.
34. S. J. Jiang, R. S. Houk, Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass spectrometry, Anal. Chem., 1988, 60, 1217-1221.
35. M. P. Field, J. T. Cullen, R. M. Sherrell, Direct determination of 10 trace metals in 50 μL samples of coastal seawater using desolvating micronebulization sector field ICP-MS, J. Anal. At. Spectrom., 1999, 14, 1425-1431.
36. S. D. Tanner, V. I.Baranov, D. R. Bandura, Reaction cells and collision cells for ICP-MS: a tutorial review, Spectrochim. Acta Part B, 2002, 57, 1361-1452.
37. S. D. Tanner, V. I. Baranov, Theory, design, and operation of a dynamic reaction cell for ICP-MS, At. Spectrosc., 1999, 20, 45-52.
38. S. D. Tanner, V. I. Baranov, A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell, J. Am. Soc. Mass Spectrom., 1999, 10, 1083-1094.
39. http://www.cetac.com/prods/cei/cei100.html
40. F. Kitagawa, K. Shiomi, K. Otsuka, Analysis of arsenic compounds by capillary electrophoresis using indirect UV and mass spectrometric detections, Electrophoresis, 2006, 27, 2233-2239.
41. E. H. Larsen, M. Hansen, T. Fan, M. Vahl, Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae, J. Anal. At. Spectrom., 2001, 16, 1403-1408.

42. 王若芸撰:《液相層析結合感應耦合電漿質譜儀於銻、鉈、砷與硒分析之應用》,中山大學化學系碩士論文,2006.
43. 葉錦芬撰:《毛細管電泳結合感應耦合電漿質譜儀於核甘單磷酸、含硫胺基酸、砷物種以及不同價數之鐵、鉻、釩物種的分析應用》,中山大學化學系博士論文,2005.
44. 陳晶環撰:《毛細管電泳結合感應耦合電漿質譜儀應用於食品及生物樣品中碘、溴、鈷、硒及碲物種之分析》,中山大學化學系碩士論文,2007.
45. 柯均耀撰:《毛細管電泳電化學偵測法使用金汞雙微電極同時測定半胱氨酸與胱氨酸之研究》,中山大學化學系碩士論文,1999.
46. C. G. Rosal, G. M. Momplaisir, E. M. Heithmar, Roxarsone and transformation products in chicken manure: Determination by capillary electrophoresis-inductively coupled plasma-mass spectrometry, Electrophoresis, 2005, 26, 1606-1614.
47. B. Deng, J. Feng, J. Meng, Speciation of inorganic selenium using capillary electrophoresis-inductively coupled plasma-atomic emission spectrometry with on-line hydride generation, Anal. Chim. Acta, 2007, 583, 92-97.

第二章 液相層析結合感應耦合電漿質譜儀於鉈物種分析之應用
1. 周劍平、林雲卿撰:〈鉈的特性與健康危害〉,《勞工安全衛生簡訊》,1993年 第58期,頁1-3
2. http://www.ep.net.cn/msds/wuzhi6/61022.htm
3. http://zh.wikipedia.org/wiki/鉈
4. G. Kazantzis, Thallium in the environment and health effects, Environ. Geochem. Health, 2000, 22, 275-280.
5. M. Villar, F. Alava, I. Lavilla, C. Bendicho, Operational speciation of thallium in environmental soil samples by electrothermal atomic absprption spectrometry according to the BCR sequential extraction scheme, J. Anal. At. Spectrom., 2001, 16, 1424-1428.
6. L. Liem, G. Kaiser, M. Sager, The determination of thallium in rocks and biological materials at ng g−1 levels by differential-pulse anodic stripping voltammetry and electrothermal atomic absorption spectrometry, Anal. Chim. Acta, 1984, 158, 179-197.
7. E. Ivanova, X. P. Yan, W. van Mol, F. Adams, Determination of thallium in river sediment by flow injection on-line sorption preconcentration in a knotted reactor coupled with electrothermal atomic absorption spectrometry, Analyst, 1997, 122, 667-671.
8. http://www.item.org.hk/trad/health/toh_jung_duk.html
9. http://www.bjzw.com.cn/DietSafety/dier/tuo.htm
10. http://www.libertytimes.com.tw/2002/new/may/23/today-o1.htm#o3
11. R. Dobrowolski, Slurry sampling for the determination of thallium in soils and sediments by graphite furnace atomic absorption spectrometry, Anal. Bioanal. Chem., 2002, 374, 1294-1300.
12. A. S. Cherevko, G. E. Polyakova, Determination of total thallium in soils by atomic emission spectrography using a two-jet arc plasmatron, J. Anal. Chem., 2005, 60, 144-148.
13. M. Jakubowska, W. Zembrzuski, Z. Lukaszewski, Oxidative extraction versus total decomposition of soil in the determination of thallium, Talanta, 2006, 68, 1736-1739.
14. Z. Lukaszewski, B. Karbowska, W. Zembrzuski, Determination of mobile thallium in soil by flow injection differential pulse anodic stripping voltammetry, Electroanalysis, 2003, 15, 480-483.
15. P. P. Coetzee, J. L. Fischer, M. Hu, Simultaneous separation and determination of Tl(I) and Tl(III) by IC-ICP-OES and IC-ICP-MS, Water SA, 2003, 29, 17-22.
16. A. Nolan, D. Schaumlöffel, E. Lombi, L. Ouerdane, R. Łobiński, M. McLaughlin, Determination of Tl (I) and Tl(III) by IC-ICP-MS and application to Tl speciation analysis in the Tl hyperaccumulator plant Iberis intermedia, J. Anal. At. Spectrom., 2004, 19, 757-761.
17. B. Krasnodębska-Ostręga, M. Asztemborska, J. Golimowski, K. Strusińska, Determination of thallium forms in plant extracts by anion exchange chromatography with inductively coupled plasma mass spectrometry detection (IC-ICP-MS), J. Anal. At. Spectrom., 2008, 23, 1632-1635.
18. N. N. Meeravali, S. J. Jiang, Ultra-trace speciation analysis of thallium in environment water samples by inductively coupled plasma mass spectrometry after a novel sequential mixed-micelle cloud point extraction, J. Anal. At. Spectrom., 2008, 23, 555-560.
19. T. S. Lin, J. O. Nriagu, Thallium speciation in river waters with Chelex-100 resin, Anal. Chim. Acta, 1999, 395, 301-307.
20. S. Dadfarnia, T. Assadollahi, A. M. Haji Shabani, Speciation and determination of thallium by on-line microcolumn separation / preconcentration by flow injection—flame atomic absorption spectrometry using immobilized oxine as sorbent, J. Hazard. Mater., 2007, 148, 446-452.
21. A. A. Ensafi, B. Rezaei, Speciation of thallium by flow injection analysis with spectrofluorimetric detection, Microchem. J., 1998, 60, 75-83.
22. 王若芸撰:《液相層析結合感應耦合電漿質譜儀於銻、鉈、砷與硒分析之應》,中山大學化學系碩士論文,2006.
23. 郭家怡撰:《液相層析法結合動態反應管感應耦合電漿質譜儀在生物樣品終鉻、釩、硒及碲物種分析之應用》,中山大學化學系碩士論文,2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.7.85
論文開放下載的時間是 校外不公開

Your IP address is 18.118.7.85
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code