Responsive image
博碩士論文 etd-0120110-165957 詳細資訊
Title page for etd-0120110-165957
論文名稱
Title
整合異質接面雙載子電晶體/擬態高速移動電子電晶體 效能最佳化技術
Optimization of HBT/pHEMT integration technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-15
繳交日期
Date of Submission
2010-01-20
關鍵字
Keywords
磷化銦鎵、擬態高速移動電子電晶體、異質接面雙載子電晶體
InGaP, pHEMT, HBT
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
在手機中,放大器應用磷化銦鎵的異質接面雙載子電晶體,已經成為最主流的技術,現今產品的需求,晶片尺寸逐漸的驅向最小化,驅使整個產業,朝向在同一晶片上,整合空乏型與增強型的擬態高速移動電子電晶體和雙載子電晶體。這種整合型的電晶體將提供設計者,在設計整合型晶片時,將有更廣泛的運用空間。 本篇論文將探討由各種不同結構組合的整合型元件,及其在製程、特性和功能的比較。此整合型元件的架構在製程中最有挑戰性的部份,是閘極的微影製程及聚醯亞胺提供平坦化製程。多閘極製程的挑戰,是來自於近2um 高低差的層別,使用雙層的光阻微影技術,將使底部形成良好的 0.5 微米的多閘極間距。在聚醯亞胺製程中; (1)本身除了可當介電質層外,(2)可降低金屬層間交互影響的寄生電容,(3)平坦化晶圓表面,有利於金屬分流的運用。可提供設計者在設計晶片時的機動性、靈活性、高功能性,並可降低晶片尺寸。此外,將探討整合型元件和最佳化後的特性。例如:電特性,包含直流、小訊號、雜訊及功率的特性等等。 最後製作結果顯示,本篇論文提供了很大潛能的設計空間,在發展新的射頻電路設計技術。
Abstract
The InGaP Heterojunction Bipolor Transistors (HBTs) become known as the dominant technology in handset power amplifiers. Modern application requirements and size limitations have driven industry leaders towards the co-integration of enhance/depletion mode pHEMT and HBT. The combination of BiFET gives an additional degree of freedom in the design of advanced power amplifiers combine switch.
This dissertation provides an overview of the various techniques. Critical processes included gate photolithography and Polyimide planarize process are discussed in detail. The 0.5-μm multiple gate fingers fabricated on the controllable small un-gated region of a high-topology wafer was overcome by using a bi-layer photolithography process. The fabricated of polyimide was used as the dielectric interlayer to reduce the interconnect crossover parasitic capacitance and planarize the second metal process for metal shunt application. The metal shunt structures provide greater functionality and design flexibility under shrinking. Finally, presents the combine the best features of InGaP HBT-pHEMT integration technology. The HBT and E/D-pHEMT electrical performances (DC, small signal, noise, and power) are presented. The results indicate that this technology offers great potential and degrees of freedom to design power amplifiers, high-integrated RF transceivers, and opportunities for the development of novel RFIC circuits.
目次 Table of Contents
Table of contents
Acknowledge................................................................................................
II
中文摘要.......................................................................................................
III
Abstract........................................................................................................
IV
Table of contents.........................................................................................
V
List of figures...............................................................................................
VIII
List of tables……………………………………………………………….
XI
Chapter 1 Introduction………………………………….……………
1
1.1 Overview…………………………………………………...………….
1
1.2 Motivations of Integration InGaP HBT-pHEMT………..………….
2
1.3 Synopsis of the Dissertation……...………………………………..….
3
Chapter 2 Optimization of high ruggedness InGaP HBT.....…
5
2.1 Introduction.......................................................................................…
5
2.2 Device design and fabrication..........................................................…
6
2.2.1 Epitaxial structures design...…………………………..…………
6
2.2.2 Fabrication process technologies...............................................…
8
2.2.3 Chip architecture and layout design...........................................…
10
2.2.4 Over-voltage protection circuit..................................................…
12
2.3. Results and Discussions...……………………………………………
14
2.3.1 Device characterization and result.............................................…
14
2.3.2 DC/RF device characteristics.....................................................…
16
VI
2.3.3 Ruggedness characteristics........................................................…
21
2.3.4 Performance of high ruggedness power amplifiers...…………….
22
2.4 Summary............................................................................................…
25
Chapter 3 Optimization of high linearity InGaP HBT...........…
26
3.1 Introduction...........................................................................................
26
3.2 Device design and fabrication…………………………………..........
27
3.2.1 Epitaxial structures design……………………………………….
27
3.2.2 Fabrication process technologies...................................................
31
3.2.3 Chip Architecture and Layout Design............................................
32
3.3 Results and Discussion..........................................................................
34
3.3.1 Test system Setup...........................................................................
34
3.3.2 DC/RF device characteristics.........................................................
35
3.3.3 Performance of high linearity power amplifiers............................
36
3.4 Summary................................................................................................
40
Chapter 4 Optimization of E-/D-mode pHEMT.........…
41
4.1 Introduction...........................................................................................
41
4.2 Device design and fabrication..............................................................
42
4.2.1 Epitaxial structure design...............................................................
42
4.2.2 Fabrication process technologies…...............................................
45
4.3 Results and discussion...........................................................................
46
4.3.1 Device characteristics…………………………………................
46
VII
4.3.2 Load-pull characteristics................................................................
50
4.3.3 SPDT High Power Switches characteristics. ............................…
51
4.3.4 Drain transit time test………………………………………….…
55
4.4 Summary................................................................................................
57
Chapter 5 Optimization of integration InGaP HBT–pHEMT.
59
5.1 Introduction.................................................................................…......
59
5.2. Device design and fabrication.............................................................
61
5.2.1 Epitaxial structure design...............................................................
61
5.2.2 Fabrication process technologies...................................................
63
5.3 Results and Discussions........................................................................
64
5.3.1 Device Structure.............................................................................
64
5.3.2 HBT and Power Amplifier Characteristics…................................
67
5.3.3 E/D-mode pHEMT Device Characteristics...................................
71
5.3.4 SPDT High Power Switches..........................................................
74
5.4 Summary................................................................................................
76
Chapter 6 Conclusion and Future work..........................................
78
6.1 Conclusion.............................................................................................
78
6.2 Future work……………………………………………...………........
80
Reference...………………………………………………………………...
82
Publication List...………………………………………………………….
93
參考文獻 References
[1] W.J. HO, M.F. Chang, S.M. Beccue, P.J. Zampardi, J. Yu,A. Sailer, R.L. Pierson, and K.C. Wang. ─ A GaAs BiFET LSI technology.Proc. GaAs IC Symp. Tech. Dig. pp.47-50. 1994.
[2] D. Streit, D. Umemoto, K. Kobayashi, and A. Oki, ─Monolithic HEMT-HBT integration for novel microwave circuit applications,in Dig. GaAs IC Symp., pp. 329–332. 1994
[3] T. Arell, A. Gupta, W. Krystek, B. Peatman, and M. Shokrani, ─InGaP-plus—A major advance in GaAs HBT technology,in Proc.IEEE Compound Semiconductor Integrated Circuit Symp., pp. 179–182. Nov. 2006.
[4] Ravi Ramanathan, et al. ─ Commercial Viability of a Merged HBT-FET (BiFET) Technology for GaAs Power Amplifiers.Proc. GaAs IC Sym. Tech. Dig. pp.255-259. 2007.
[5] T. Henderson, J. Middleton, J. Mahoney, S. Varma, T. Rivers, C.Nevers, and B. Avrit, ─High performance BiHEMT HBT/E-D pHEMTintegration,presented at the Compound Semiconductor ManufacturingTechnology (CS MANTECH) Conf, Austin, TX, May 2007.
[6] William Peatman, et al. ─ InGaP-Plus™: Advanced GaAs BiFET Technology and Applications. Proc. GaAs IC Sym. Tech. Dig. pp.243-246. 2007.
[7] M. Sun, P. Zampardi, J. Li, R. Ramanathan, A. G. Metzger, C.Cismaru, V. Ho, L. Rushing, K. S. Stevens, M. Chaplin, and R. E. Welser, ─A high yield manufacturable BiFET epitaxial profile forhigh volume production,presented at the 2006 Int. Conf. Compound Semiconductor Manufacturing Technology (MANTECH), Vancouver,BC, Canada, , Session 9.1. Apr. 2006.
[8] M. Fresina, et al. ─ Development and Ramping of pHEMT in an HBT Fab.GaAs IC Sym. Tech. Dig. pp.260-263. 2007.
[9]N.L. Wang et al. ─28 V High-linearity and Rugged InGaP/GaAs Power HBT,2006 IEEE MTT-S International Microwave Symposium Digest, June .WE4-B, 2006.
[10]N.L. Wang, et al. ─Linearity Improvement of Multi-Watts 24 V-28 V InGaP/GaAs HBT by Low-frequency Low-source Impedance Matching,IEEE MTT-S International Microwave Symposium Digest, vol. 3, June. pp. 1721-1724, 2004
[11]N.L. Wang et al. ─28 V High-efficiency High-linearity InGaP/GaAs Power HBT,PA Workshop 6-2, UCSD, 2003
[12]S. Heckmann, J. M. Nebus, R. Quere, J. C. Jacquet, D. Floriot, and P. Auxemery, ─Measurement and Modeling of Static and Dynamic Breakdowns of Power GaInP/GaAs HBTs,IEEE Microwave Symp., vol. 2, pp. 1001-1004, 2002. [13]P. Kurpas et al, ─High-voltage GaAs Power-HBTs for Base-station Amplifiers,2001 IEEE MTT-S Int. Microwave Symposium Digest, June .pp. 633-636, 2001.
[14]K. Goverdhanam et al. ─Distributed Effects in High- power RF LDMOS Transistors, 2005 IEEE MTT-S International Microwave Symposum Digest, June .pp. 455-458, 2005.
[15]A. G. Metzger, R. Ramanathan, J. Li, H. C. Sun, C. Cismaru, H. Shao, L.Rushing, K. P. Weller, C. J. Wei, Y. Zhu, A. Klimashov, P. J. Zampardi, ─An InGaP/GaAs Merged HBT-FET (BiFET) Technology and Applications to the Design of Handset Power Amplifiers,IEEE Journal of Solid State Circuits, vol. 42, pp. 2137-2148, 2007. [16]K. Yamamoto et al. ─A 3.2-V Operation Single-Chip Dual-Band AlGaAs/GaAs HBT MMlC Power Amplifier with Active Feedback Circuit Technique, IEEE J, Solid-State Circuits, vol 35, no.8, pp.1109-1120, August 2000.
[17]J. Pusl et al. ─SiGe Power Amplifier ICs with SWR Protection for Handset Applications, Microwave Journal, June. pp.100-113, 2001
[18]C.L Larose et al.; ─Optimization of feed forward amplifier power efficiency on the basis of drive statistics, IEEE Transactions on Microwave Theory and Techniques, Volume: 51 , Issue: 1 , Jan., pp.41- 54,2003
[19]T. Niwa et al. ─A composite-collector InGaP/GaAs HBT with high ruggedness for GSM power amplifiers, IEEE MTT-S Digest, pp.711-714,2003 [20]M. Pfost et al. ─Optimization of the collector profile of InGaP/GaAs HBTs for increased robustness, IEEE GaAs Digest, pp.115-118,2003.
[21]D. Hi11 et al. ─28V thermal-impedance HBT with 20W CW output power,IEEE Trans. Microwave Theory and Tech., vol. 45, pp.22-24, 1997
[22]Y. Ma et al. ─Low Loading Capacitance On-Chip ESD Protection Circuit for Telecom Integrated Circuits Implemented by Heterojunction Bipolar Transistors Technology, US pending patent 60/349,899.
[23]Haitao Zhang Huai Gao Yintat Ma Forbes, A. Pavio, R. Guann-Pyng Li,─ A Novel High Efficiency and Linearity Power Amplifier with Over-Voltage Protection, Microwave Symposium, 2007. IEEE/MTT-S International Publication Date: 3-8 June pp.147-150, 2007.
[24]T. C. L. Wee et al. ─InGaP HBT Technology Optimization for Next Generation High Performance Cellular Handset Power Amplifiers,2005 Mantech Digest, pp. 191-194.
[25]W.J Ho et al. ─Manufacturing HBTs for wireless and broadband applications, CSMAX Conference, Boston, MA2001.
[26]Peter Asbeck et al.─Efficiency and linearity improvement in power amplifiers for wireless communications,in IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1998. Technical Digest, 20th Annual , 1-4 Nov. pp.15-18,1998
[27]Guang-bo Gao et al. ─Emitter ballasting resistor design for, and current handling capability of AlGaAs/GaAs power heterojunction bipolar transistor,IEEE Trans. Electron Devices, vol. 38, no. 2, pp. 185-196, 1991.
[28]William Liu et al., ─The use of base ballasting to prevent the callapse of current gain in AlGaAs/GaAs heterojunction bipolar transistor,IEEE Trans. Electron Devices, vol. 43, no. 2, pp. 245-251, 1996.
[29] R. Prasad and T. Ojanpera, ─An overview of CDMA evolution toward wide-band CDMA,IEEE Commun. Surv., vol. 1, no. 1, pp. 2–29, Fourth Quarter, 1998.
[30] G. Hau, T. B. Nishimura, and N. Iwata, ─A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions,IEEE Trans. Microw. Theory Tech., vol. 49, pt. 2, no. 6, pp. 1194–1201, Jun. 2001.
[31] I. Takenaka, H. Takahashi, K. Ishikura, K. Hasegawa, K. Asano, and M.Kanamori, ─A 240 W Doherty GaAs-power FET amplifier with high efficiency and low distortion for W-CDMA base stations,in Proc. MWE Workshop Dig.pp. 299–304. 2004.
[32] Y. Yang; K. Choi, K.P.Weller, ─DC Boosting Effect of Active Bias Circuits and Its Optimization for Class-AB InGaP–GaAs HBT Power Amplifiers,IEEE Trans.Microwave Theory Tech., vol. 52, pp. 1455-1463, May 2004.
[33] J. Cha, J. Kim, B. Kim, J. S. Lee, and S. H. Kim, ─Highly efficient power amplifier for CDMA base stations using Doherty configuration,in Proc. IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 533–536. 2004.
[34] J. Kim, S. Bae, J. Jeong, J. Jeon, and Y. Kwon, ─A highly-integrated Doherty amplifier for CDMA handset applications using an active phase splitter,IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 333–335, May 2005.
[35] P.J. Zampardi and D.-S. Pan, ─Delay of Kirk Effect Due to Collector Current Spreading in Heterojunction Bipolar Transistors, IEEE Electron Device Lett., vol. 17, pp.470-472, Oct. 1996. [36] T. Kato, K. Yamaguchi, and Y. Kuriyama, ─A 4-mm-square 1.9 GHz Doherty power amplifier module for mobile terminals,in Proc. APMC, Dec. 4–7, vol. 1, p. 3. 2005.
[37] C. Pinatel, S. Vuye, M. Riet, C. D. Chevalier, B. Rojat, and A. Lermoyer, ─Trade off analysis between power-added efficiency and linearity on HBT power amplifier,in Proc. 25th Eur. Microw. Conf. vol. 1, pp. 20–23. 1995.
[38] G. N. Henderson and D.W.Wu, ─Load-pull characterization and modeling of chip and plastic packaged HBTs for PCS amplifier applications,in Proc.46th ARFTG Conf. Dig. pp. 39–45. 1995.
[39] K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. Gutierrez-Aitken, and M. Nishimoto, ─A 44-GHz-high IP3 InP HBT MMIC amplifier for low DC power millimeter-wave receiver applications,IEEE J. Solid-State Circuits, vol. 34, no. 9, pp. 1188–1194, Sep. 1999.
[40] J. Lee,W. Kim, T. Rho, and B. Kim, ─Intermodulation mechanism and lin- earization of AlGaAs/GaAs HBTs,IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2065–2072, Dec. 1997.
[41] M. S. Alam, O. Farooq, Izharuddin, and G. A Armstrong, ─Artificial neural network based modeling of GaAs HBT and power amplifier design for wireless communication system,in Proc. ICM. pp. 103–106. 2006.
[42] T. Iwai, S. Ohara, H. Yamada, Y. Yamaguchi, K. Imanishi, and K. Jeshin, ─High efficiency and high linearity InGaP/GaAs HBT power amplifiers: Matching techniques of source and load impedance to improve phase distortion and linearity,IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1196–1200, Jun. 1998.
[43] T. Iwai, K, p. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, ─ 42% High-Efficiency Two-Stage HBT Power-Amplifier MMIC for W-CDMA Cellular PhoneSystems,IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2567-2573, Dec. 2000.
[44] P. F. Chen, Y. M. T. Hsin, R. J. Welty, P. M. Asbeck, R. L. Pierson, P. J. Zampardi, W.-J. Ho,M. C. V. Ho, and M. F. Chang, ─Application of GaInP/GaAs DHBT’s to Power Amplifiersfor Wireless Communications,IEEE Trans. Microwave Theory Tech., vol. 47, pp.1433-1438, Aug. 1999.
[45] W. Kim, S. Kang, K. Lee, M. Chung, Y. Yang, and B. Kim, ─The effects of Cbc on the linearity of AlGaAs/GaAs power HBTs,IEEE Trans. Microw. Theory Tech., vol. 49, no. 7, pp. 1270–1276, Jul. 2001.
[46] N. L. Wang, W. J. Ho, and J. A. Higgins, ─AlGaAs/GaAs HBT linear- ity characteristics, IEEE Trans. Microw. Theory Tech., vol. 42, no. 10, pp. 1845–1850, Oct. 1994.
[47] N. L. Wang, N. H. Sheng, M. -C. F. Chang, W. J. Ho, G. J. Sullivan, E. A. Sovero, J. A.Higgins, and P. M. Asbeck ─Ultrahigh power efficiency operation of common-emitter and common-base HBT's at 10 GHz,IEEE Trans. Microwave Theory Tech., vol. 38, pp.1381-1390, Oct. 1990.
[48] L. Kehias, T. 374 Jenkins, T. Quach, P. Watson, R. Welch, R. Worley, A. K. Oki, H. C. Yen, A. Gutierrez-Aitken, W. Okamura, and E. Kaneshiro, ─Highest efficiency, linear X-band performance using InP DHBTs-48%PAE at 30 dB C/IM3,IEEE Microw. Wireless Compon. Lett., vol. 11, no. 9, pp. 361–363, Sep. 2001.
[49] T. B. Nishimura, M. Tanomura, K. Azuma, K. Nakai, Y. Hasegawa, H. Shimawaki, ─A 50% Efficiency InGaP/GaAs HBT Power Amplifier Module for 1.95 GHz Wide-Band CDMA Handsets,IEEE Radio Freq. Integr. Circuits Symp., Phoenix, AZ, pp.31-34., May 2001.
[50] M. Iwamoto, T. S. Low, C. P. Hutchinson, J. B. Scott, A. Cognata, X. Qin, L. H. Camnitz, P.M. Asbeck, and D. C. D’Avanzo, ─Influence of collector design on InGaP/GaAs HBT linearity, in Proc. IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA. pp. 757–760. 2000.
[51] Y.-J. Jeon, H.-W. Kim, M.-S. Kim, Y.-S. Ahn, J.-W. Kim, J.-Y. Choi, D.-C. Jung, and J.-H. Shin, ─Improved HBT linearity with a post distortion type collector linearizer,IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3,pp. 102–104, Mar. 2003.
[52] C. M. Wang, H. T. Hsu, H. C. Shu, and Y. Hsin, ─High linearity InGaP/GaAs power HBTs by collector design,IEEE Electron Device Lett., vol. 25, no. 2, pp. 58–60, Feb. 2004.
[53] W. D. van Noort, L. C. N. de Vreede, H. F. F. Jos, L. K. Nanver, and J. W. Slotboom, ─Reduction of UHF power transistor distortion with a nonuniform collector doping profile,∥ IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1399–1406, Sep. 2001.
[54] N. Hayama and K. Honjo, ─ Emitter Size Effect on Current Gain in Fully Self-aligned AlGaAs/GaAs HBT’s with AlGaAs surface Passivation Layer, IEEE Electron Device Lett., vol. 11, pp. 388-390, Sep. 1990.
[55] M. G. Adlerstein and J. M. Gering, ─Current induced degradation in GaAs HBTs,IEEE Trans. Electron Devices, vol. 47, no. 2, pp. 434–439,Feb. 2000.
[56] T. Henderson, J. Hitt, and K. Campman, ─High reliability high voltage HBTs operating up to 30 V, in Proc. IEEE CSIC Symp. Dig.pp. 67–70. 2004.
[57] H. Tosaka, T. Fujii, K. Miydkoshi, K. kaka, M. Takahashi, ─ An Antenna Switch MMlC using ED mode p-HEMT for GSM/DCS/PCS/WCDMA Bands Application, ∥ RFIC Symposium,pp.519-522. 2003. [58] W. A. Wohlmuth, W. Smble, D. Fanas, ─ An E-/D-mode pHEMT Recess for High Performance Switch and Amplifier Components Utilizing Multi-level High Density Interconnects,Microwave Journal: pp.86-98. 2004.
[59] Y. Tkachenko, ct al, ─Enhancementi Depletion Made lnGaP/ AlGaAs pHEMT for High Etliciency Power Amplifiers,Microwave Journal, april 2001
[60] S. Kurunoki, T. Ohgihara, M. Wada, Y. Murakami, ─ SPDT Switch MMIC Using E-/D-mode GaAs JFETs for Personal Communications, GaAs IC symposium,pp.135-138.1992. [61] D. M. Lin et al., ─ Dual-Gate E/E- and E/D-Mode AlGaAs/InGaAs pHEMTs for Microwave Circuit Applications, IEEE Transactions on Electron Devices, 54(8)pp.1818 -1824.2007.
[62]Y.Y. Hsieh et al.,─ Enhancement and depletion-mode pHEMT using 6 inch GaAs cost-effective production process,IEEE on Compound Semiconductor Integrated Circuit Symposium,pp.111-114. 2004.
[63] W. A. Wohlmuth, W. Liebl, V Juneja,─ E-/D-pHEMT technology for wireless components, IEEE Symposium on Compound Semiconductor Integrated Circuit,pp.115-118. 2004.
[64] Hsu, Yu-Cheng et al, ─Single-chip RF front-end MMIC using InGaAs E/D-pHEMT for 3.5 GHz WiMAX applications, Microwave conference ,European,pp.1217-1220.2007.
[65] M. Masuda, N. Ohbata, H. Ishiuchi, K. Onda, R. Yamamoto, ─ High Power Heterojunction GaAs Switch IC with P-l dB of more than 38 dBm for GSM Application, IEEE GaAs IC Symposium Digest,pp.229-232.1998.
[66] A. Narayama, M. Nishibe, T. Inaoka , N. Mmeshima, ─ Low-Inseltion-Loss DP3T MMIC Switch for Dual-Band Cellular Phones, IEEE Journill of
Solid-Slore Circuils, .34(8)pp.1051-1055.1999. [67] S. Makioka, Y. Anda, K. Miyatsuji, D. Ueda, ─ Super Self-Aligned GaAs RF Switch IC with 0.25 dB Extremely Low Insertion Loss for Mobile Communication Systems, IEEE Transactions on Electron Device, 48(8)pp.1510 – 1514.2001.
[68] N. Harada, S. Kuroda, T. Katakami, K. Hikosaka, T.Mimura, andM. Abe, ─Pt-base gate enhancement-mode InAlAs/InGaAs HEMT’s for large-scale integration,in Proc. 3rd Int. Conf. Indium Phospide and Related Mater., Apr. 1991, pp. 377–380.
[69] H.C. Chiu, T.J. Yeh, Y.Y, Hsieh, T. Hwang, P. Yeh and C.S. Wu, ─ Low Insertion Loss Switch Technology Using 6-inch InGaP/AlGaAs/InGaAs pHEMT Production Process,IEEE CSIC Digest,pp.119-122. 2004.
[70] H. C. Chiu, C. S. Cheng, Y. J. Shih, and C. S. Wu, ─ Enhancement and Depletion-Mode InGaP/InGaAs pHEMTs on 6-inch GaAs Substrate,IEEE APMS Proceedings, (2)pp.4-7. 2005.
[71] F. McGrath, C. Varmazis, C. Kermarrec, R. Pratt, ─ Novel high performance SPDT power switches using multi-gate FETs,MTT-S Digest, pp. 839-842. 1991.
[72] Z. Gu, D. Johnson, S. Belletete, D. Fryklund, ─ A 2.3V PHEMT Power SP3T Antenna Switch IC for GSM Handsets,IEEE GaAs IC Symposium Digest, pp.48 – 51.2003.
[73] K. Nellis and P. J. Zampardi, ─A comparison of linear handset power amplifiers in different bipolar technologies,IEEE J. Solid-State Circuits,
vol. 39, no. 10, pp. 1746–1754, Oct. 2004.
[74] P. Zampardi, C. Cismaru, J. Li, A. Metzger, H. Shen, M. Sun, L. Rushing, R. Ramanathan, J. Yota, S. Machuga, and K. Weller,─High-volume manufacturing considerations for III-V merged HBT-FET (BiFET) technologies,in CS-MAX 2005 Tech. Dig., Palm Springs, CA, , pp. 32–34. Jan. 2005. [75] A. G. Metzger, P. J. Zampardi, R. Ramanathan, and K.Weller, ─Drivers and applications for an InGaP/GaAs merged HBT-FET (BiFET) technology,IEEE 2006 TopicalWorkshop on Power Amplifiers (RWS), San Diego, CA, , Session 3.5. Jan. 2006.
[76] P. J. Zampardi and R. Pierson, ─BiFET including an FET having increased linearity and manufacturability,U.S. Patent 6,906,359, Jun.14, 2005.
[77] C. J. Wei, A. Metzger, Y. Zhu, C. Cismaru, A. Klimashov, and Y. A. Tkachenko, ─Four terminal GaAs–InGaP Bifet DC model for wireless application,in APMC Asia-Pacific Microwave Conf. Proc., , vol. 2, pp. 4–7. Dec. 2005.
[78] M. F. Chang, P. M. Asbeck, and R. L. Pierson, ─Planar HBT-FET device, U.S. Patent 5,250,826, Sep. 23, 1992. [79] K. Itakura, Y. Shimamoto, T. Ueda, S. Katsu, and D. Ueda, ─A GaAs Bi-FET technology for large scale integration,in IEDM Tech. Dig., , pp. 389–390. 1989.
[80] C. K. Lin, T. C. Tsai, S. L. Yu, C. C. Chang, Y. T. Cho, J. C. Yuan, C. P. Ho, T. Y. Chou, J. H. Huang, M. C. Tu, and Y. C. Wang, ─Monolithic integration of E/D-mode pHEMT and InGaP HBT technology on 150-mm GaAs wafers,Compound Semiconductor Manufacturing Technology (CSMANTECH) Conf., Austin, TX, May2007.
[81] M. Shokrani, et al. ─ InGaP-Plus™: A Low Cost Manufacturable GaAs BiFET Process Technology.Proc. Proc. GaAs IC Sym. Tech. Dig. pp.153-156. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.161.77
論文開放下載的時間是 校外不公開

Your IP address is 3.12.161.77
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code