Responsive image
博碩士論文 etd-0120111-152229 詳細資訊
Title page for etd-0120111-152229
論文名稱
Title
摻鉻釔鋁石榴石超寬頻雙纖衣晶體光纖放大器之研製
The Study and Fabrication of Ultra-broadband Optical Amplifier Based on Cr4+:YAG Double-clad Crystal Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-08
繳交日期
Date of Submission
2011-01-20
關鍵字
Keywords
極化相依損失、光纖放大器、寬頻光源、放大自發輻射、雙次傳輸
amplified spontaneous emission, cladding-pump, polarization dependent loss, excited state absorption
統計
Statistics
本論文已被瀏覽 5652 次,被下載 0
The thesis/dissertation has been browsed 5652 times, has been downloaded 0 times.
中文摘要
Cr4+:YAG 晶體具有300 nm 的超寬增益頻寬。將Cr4+:YAG 晶體利
用雷射加熱基座生長法(laser heated pedestal growth)製作成Cr4+:YAG
雙纖衣晶體光纖,可應用在光纖放大器、光纖雷射與寬頻光源上。故
本文分別討論晶體光纖的極化相依特性、增益特性以及放大自發輻射
(amplified spontaneous emission) 特性,
實驗結果顯示,極化相依損失 (polarization dependent loss) 隨著
入射光波長而劇烈變動,並且極化相依損失的最大值可達18 dB 以
上。其主要原因是晶體光纖波導結構上的非均勻以及殘存應力所造成
的雙折射效應。因此極化相依損失的測量結果可以成為一個回饋參
數,用來改善晶體光纖的製程。在增益特性實驗部份,我們利用雙向
泵浦雙次傳輸的架構,在信號光波長1400 nm、泵浦光波長1064 nm
與泵浦光總功率2.8 W 下,首次成功獲得了0.2 dB 的淨增益。此結
果說明了晶體光纖具有發展成為寬頻光纖放大器的潛力。在放大自發
輻射實驗部份,我們在單向泵浦光功率0.2 W 下,獲得了頻寬300
nm、總功率50 μW的放大自發輻射頻譜能量,並且單模光纖與多模
光纖對寬頻放大自發輻射的耦光效率分別為1.5 %和9.9 %的。此結
果說明了Cr4+:YAG 雙纖衣晶體光纖具有發展成為寬頻光源的潛力。
未來在提升晶體光纖的光學特性上,改善光纖波導的均勻度與降
低殘留應力將會降低極化相依損失;增加光纖長度、降低光纖內的模
態數以及採用功率分布均勻的纖衣泵浦 (cladding-pump) 降低激發
態吸收 (excited state absorption) 將會提高淨增益值與放大自發輻射
功率。
Abstract
In this study, we study the polarization dependence, gain property,
and amplified spontaneous emission in Cr4+: YAG crystal fibers. Cr4+:
YAG crystal has an ultra-wide bandwidth of 300 nm. Cr4+: YAG crystal
fibers fabricated through laser heated pedestal growth technique are
suitable for the applications of fiber amplifiers, fiber lasers, and
broadband light sources.
The experiment results showed that the polarization-dependent loss
has a severe variation as the optical wavelength change. The maximum
polarization-dependent loss was up to 18 dB. The main reason of such a
large polarization-dependent loss is the combination of multimode
interference and the birefringence induced by the non-uniformity of
optical waveguide structure and residue strain in Cr4+: YAG crystal fibers.
Thus, the results of polarization-dependent loss can be used as a feedback
parameter to improve the fabrication process. In the experiment of gain
property, bi-directional pump and double-pass transmission scheme was
adopted and a 0.2 dB net gain was obtained for the first time at signal
wavelength of 1400 nm, pumping wavelength of 1060 nm, and total
pumping power of 2.8 W. It shows that Cr4+: YAG crystal fiber has
potential to be developed as a broadband fiber amplifier. In the
measurement of amplified spontaneous emission spectrum, a wide
bandwidth of amplified spontaneous emission of 300 nm with total power
of 50 μWwas obtained at 0.2W pumping power condition. The coupling
efficiencies from amplified spontaneous emission to single mode fibers
and multimode fibers were 1.5 % and 9.9 %, respectively. This result
reveals that it has potential to be developed as a broadband light source.
To improve the optical properties of Cr4+: YAG crystal fiber in the
future, improving the uniformity of optical fiber waveguide and reducing
the residue strain in Cr4+: YAG crystal fiber may suppress the
polarization-dependent loss; increasing the fiber length, decreasing the
mode number, and employing a cladding pump technique with a
well-distributed pump power in the crystal fiber to alleviate the excited
state absorption may raise the gain performance and the amplified
spontaneous emission power.
目次 Table of Contents
中文摘要 iii
英文摘要 iv
致謝 v
內容目錄 vi
圖目錄 ix
表目錄 xii

第一章 緒論 1
參考文獻(ㄧ) 10
第二章 Cr4+:YAG雙纖衣晶體光纖的介紹 12
2.1晶體之結構與特性 12
2.2晶體之能階模型與吸收及放射特性 19
2.3雙纖衣晶體光纖之生長方式與結構分析 23
2.4雙纖衣晶體光纖之樣品製備 35
2.5雙纖衣晶體光纖之信號傳輸特性 41
參考文獻(二) 49
第三章 Cr4+:YAG雙纖衣晶體光纖之極化相依損耗 51
3.1極化相依損耗之量測介紹 51
3.2極化相依損耗之量測架構 53
3.3極化相依損耗之量測結果分析 56
參考文獻(三) 62
第四章 Cr4+:YAG雙纖衣晶體光纖放大器之增益特性 63
4.1雙纖衣晶體光纖之耦光 63
4.2雙纖衣晶體光纖之損耗量測 68
4.2.1單端插入損耗量測架構與結果 68
4.2.2雙端插入損耗量測架構與結果 71
4.3雙纖衣晶體光纖之數值模擬分析 75
4.4雙纖衣晶體光纖之增益量測 81
4.4.1量測架構 83
4.4.2量測結果 86
4.5雙纖衣晶體光纖放大器之量測架構與結果 87
4.5.1雙向幫浦雙次傳輸增益量測架構 87
4.5.2雙向幫浦雙次傳輸增益量測結果 90
參考文獻(四) 92
第五章 Cr4+:YAG雙纖衣晶體光纖之放大自發性輻射量測 93
5.1放大自發性輻射量測架構與結果 93
5.2放大自發輻射應用在OCT光源之製作 96
參考文獻(五) 100
第六章 結論與未來展望 101
參考文獻(六) 105
參考文獻 References
[1.1] 山下真司,“圖解光纖通信原理與散新應用技術”,建興文化,2003年。
[1.2] D. W. Hewak, “Progress towards a 1300 nm fiber amplifier,” IEEE Colloquium, vol. 26, pp. 12/1-12/5, 1998.
[1.3] S. Q. Man, H. W. Liu, Y. H. Wong, E. Y. B. Pun, and P. S. Chung,“Tellurite glasses for 1.3 μm optical amplifiers,” LEOS, vol. 1, pp.196-197, 1998.
[1.4] S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi,and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier(TDFA) with a high power conversion efficiency of 42%,” OFC, vol.4, pp. PD1, 2001.
[1.5] Y. Miyajima, T. Kamukai, and T. Sugawa, “1.31-1.36 μm optical amplification in Nd3+-doped fluorozirconate fiber,” Electron. Lett.,vol. 26, pp. 194-195, 1990.
[1.6] G. P. Agrawal and N. K. Dutta, “Long-wavelength Semiconductor Lasers,” New York: Van Nostrand Reinhold, 1986, Ch. 3.
[1.7] A. Mecozzi and J. M. Wiesenfeld, “The roles of semiconductor optical networks,” Opti. & Photon. News, pp. 37-42, March 2001.
[1.8] E. Desurvire, “Erbium-doped Fiber Amplifiers: Principles and Applications,” New York: Wiley, 1994, Ch. 4.
[1.9] S. Shimada and H. Ishio, “Optical Amplifiers and their Applications,” New York: Wiley, 1994, Ch. 2.
[1.10] Y. Shi and O. Poulsen, “High-power broadband single mode Pr3+-doped fiber superfluorescence light source,” Electron. Lett., vol.29, pp. 1945-1946, 1993.
[1.11] N. Islam, “Raman amplifiers forelecommunications,” IEEE J.Q.E.,vol. 8, pp. 548-559, 2002.
[1.12] R. S. Feigelson, W. L. Kway, and R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng., vol. 24, pp.1102-1107, 1985.
[1.13] J. S. Haggerty, “Production of fibers by a floating zone fiber drawing technique,” Final Report NASA-CR-120948, 1972.
[1.14] C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” A.P.L., vol. 26, pp. 318-320, 1975.
[1.15] M. M. Fejer, G. A. Magel, and R. L. Byer, “High-speed high-resolution fiber diameter variation measurement system,” Appl. Opt., vol. 24, pp. 2362-2368, 1985.
[1.16] S. Sudo, A. Cordova-Plaza, R. L. Byer, and H. J. Shaw, “MgO:LiNbO3 single-crystal fiber with magnesium-ion in-diffused cladding,” Opt. Lett., vol. 12, pp. 938-940, 1987.
[1.17] S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Crys.Growth, vol. 183, pp. 614-621, 1998.
[1.18] S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal fiber laser,” in Advanced Solid State Lasers, OSA, paper MD4.
[2.1] M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Ruhle, “Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations,” Phil. Mag. B, vol. 79, pp. 921-940, 1999.
[2.2] H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE J.Q.E., vol. 29,pp. 2508-2512, 1993.
[2.3] S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” Advanced Solid-State Lasers ,OSA, vol. 10,pp. 92-94, 1991.
[2.4]B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” J. A. P., vol. 70, pp. 3775-3777, 1991.
[2.5]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” J. Crys. Growth, vol. 183, pp. 614-621, 1998.
[2.6] A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. O.S.A.,vol. 18, pp. 1578-1586, 2001.
[2.7]K.Y. Huang, K.Y. Hsu, S.L. Huang, “Analysis of ultra-broadband amplified sontaneous eissions gnerated by Cr4+:YAG sigle and glass-clad cystal fbers, “J. L.T., OL. 26, NO. 12, JUNE 15, 2008.
[2.8]C. A. Burrus and J. Stone, “Single-crystal fiber optical devices: A Nd:YAG fiber laser,” A. P. L., vol. 26, pp. 318-320, 1975.
[2.9] G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” A. P. L., vol. 56, pp. 108-110, 1990.
[2.10] L. Hesseling and S. Redfield, “Photorefractive olographic recording in strontium barium niobate fiber,” O.L., vol. 13, pp. 877-879, 1988.
[2.11] R. S. Feigelson, D. Gazit, and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O fibers grown by the laser-heated pedestal growth method,” Science, vol. 240, pp. 1642-1645, 1988.
[2.12] 張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20 卷,第8 期,1993 年。
[2.13] 黃光瑤,博士論文,” 摻鉻釔鋁石榴石晶體光纖之生長系統改良與特性研究”,2008
[2.14]G. Keiser, “Optical Fiber Communications,” 3rd ed. McGraw-Hill,2000, Ch. 2,3 ,and 4.
[2.15]Image J, http://rsb.info.nih.gov/ij/, National Institutes of Health, America
[2.16] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” 1st ed.John Wiley & Sons, 1991, Ch. 6 and Ch. 7.
[2.17] J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F.Gonthier, “Tapered single-mode fibers and devices Part 1:Adiabaticity criteria,” IEE Proc., vol. 138, pp. 343-354, 1991.
[3.1]N. Gisin, “Statistics of polarization dependent losses” OpticsCommunications, vol.114 ,pp. 399-405, 1995S.
[3.2]Camacho-Lopez, “Intensity-induced birefringence in Cr4+:YAG,”J.M.O., vol. 44, No. 1, pp. 209-219, 1997
[3.3] D. Monzon-Hernandez ,”Stress distribution and birefringence measurement in double-clad fiber” Optics Communications,pp.241–246, 1999
[3.4] A. R. Boyain y Goitia, A. N. Starodumov, D. M-Hernandez, V. N.Filippov, and P. Gavrilovic, “Birefringence measurement in double-clad fiber lasers with large cross section,” O.S. A., 2000
[3.5] Dan Lu, Tingwu Ge, Jian Wu, Kun Xu and Jintong Lin, “Thermal stress induced birefringence in double cladding fiber with non-circular inner cladding,” J.M.O., vol. 56, No. 5, pp. 638–645,2009,
[3.6] Agilent Technologies, “Polarization Dependent Loss Measurement of Passive Optical Components,” Application Note
[3.7] Newport multifunction polarization controller 2580P series user’s manual
[4.1] 黃光瑤,博士論文,” 摻鉻釔鋁石榴石晶體光纖之生長系統改良,第四章,2009 年
[4.2] G. Keiser, “Optical Fiber Communications,” 3rd ed. McGraw-Hill,2000, Ch. 2 and Ch. 3.
[4.3] K.Y. Huang, K.Y. Hsu, and S.L. Huang” Analysis of
Ultra-Broadband Amplified Spontaneous Emissions Generated by Cr4+:YAG Single and Glass-Clad Crystal Fibers,” J. L.T., VOL. 26,NO. 12, 2008
[5.1] 碩士論文“Cr4+:YAG 雙纖衣晶體光纖在研製上對雙折射之影響”黃信文著, 2010
[5.2] C.C. Lai, H.J Tsai, K.Y. Huang, K-Y Hsu, Z.W. Lin, K.D Ji, W.J.Zhuo, and S.L Huang” Cr4+:YAG double-clad crystal fiber laser,”O.L., 2008
[5.3] H.J. Tsai, C.C. Lai, K.Y. Huang, Z.W. Lin, K.Y. Hsu, and S.L.Huang” Design and Optimization of Cr4+ :Y3Al5O12 Double-Clad Crystal Fiber Laser,” J.J.A .P.,2009
[5.4] K.Y. Huang, K.Y. Hsu, and S.L. Huang” Analysis of
Ultra-Broadband Amplified Spontaneous Emissions Generated by Cr4+:YAG Single and Glass-Clad Crystal Fibers,” J. L. T., VOL. 26,2008
[5.5] 碩士論文“利用周邊蒸鍍方法提升以呂石榴石雙層纖衣之四價鉻離子濃度在氧環境下退火之研究” 王順興著, Ch4 ,2010
[6.1] K.Y. Huang, K.Y. Hsu, and S.L. Huang” Analysis of
Ultra-Broadband Amplified Spontaneous Emissions Generated by Cr4+:YAG Single and Glass-Clad Crystal Fibers,” J. L.T. , vol. 26,2008
[6.2] 黃光瑤,博士論文,” 摻鉻釔鋁石榴石晶體光纖之生長系統改良,第三章,2009 年
[6.3] S. M. Yeh, D. J. Feng, Y. C. Huang, T. S. Lay, S. L. Huang, P. Yeh,and W. H. Cheng, “Mode matching and insertion loss in ultra-broadband Cr-doped multimode fibers,“ O.L., vol. 33, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.218.147
論文開放下載的時間是 校外不公開

Your IP address is 13.59.218.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code