Responsive image
博碩士論文 etd-0120118-200000 詳細資訊
Title page for etd-0120118-200000
論文名稱
Title
高雄工業區附近大氣細懸浮微粒上多環芳香烴之濃度時空變化與來源分析
Spatiotemporal Variation and Possible Sources of PM2.5-bound Polycyclic Aromatic Hydrocarbons in Kaohsiung Industrial Area
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-02-14
繳交日期
Date of Submission
2018-02-20
關鍵字
Keywords
主成分分析、特徵比、多環芳香烴、細懸浮微粒、階層群集分析、增量終生癌症風險
PM2.5, PAHs, diagnostic ratio, principle components analysis, hierarchical cluster analysis, incremental lifetime cancer risk
統計
Statistics
本論文已被瀏覽 5654 次,被下載 3
The thesis/dissertation has been browsed 5654 times, has been downloaded 3 times.
中文摘要
本研究調查位於台灣南部高雄市內工業區附近四個採樣測站大氣細懸浮微粒(PM2.5)上多環芳香烴(PAHs)之濃度時空變化及可能來源。採樣測站包括大寮區(DL)、鳳山區(FS)、仁武區(RW)和橋頭區(CT)。於2016年9月至2017年8月期間共採集90份樣品,定量其PM2.5濃度,並透過氣相層析質譜儀(GC-MS)測定16種PM2.5上PAHs濃度(以下簡稱PM2.5-PAHs)。進一步使用特徵比、主成分分析(PCA)以及階層群集分析(HCA)來判別PAHs的潛在來源。研究結果顯示DL、FS、RW和CT測站之PM2.5年平均濃度分別為45.8 ± 16.3, 47.6 ± 21.0, 48.3 ± 17.2及51.4 ± 14.3 μg m-3,其對應之PAHs濃度分別為1.52 ± 0.79, 1.48 ± 1.03, 1.11 ± 0.68及1.35 ± 1.13 ng m-3。根據PM2.5-PAHs的物種組成比例,高分子量(HMW) PAHs比低分子量(LMW) PAHs在PM2.5上更佔優勢。而在DL、FS、RW和CT測站的毒性當量濃度(BaPeq)在年平均濃度分別為0.215 ± 0.116, 0.217 ± 0.145, 0.171 ± 0.094以及0.179 ± 0.130 ng m-3。四個測站的BaP濃度占總毒性當量濃度的49% ~ 52%。在本研究中PM2.5、PM2.5-PAHs和BaPeq呈現季節性變化,冬季濃度較高,夏季較低,且濃度皆與大氣溫度呈負相關。特徵比、PCA和HCA的分析結果亦顯示了不同季節PM2.5-PAHs的兩個主要來源,包括固定排放如煤炭燃燒和石油燃燒,與交通排放如汽油和柴油引擎車輛尾氣。在健康風險評估方面,暴露於本研究年平均毒性當量濃度(BaPeq)最高之FS測站PM2.5-PAHs之年平均吸入性增量終生癌症風險值(ILCR)為0.262×10-6,低於美國環境保護局所訂之一般民眾可允許暴露於致癌物質的危害風險之建議值(10-6)。
Abstract
In this study, spatiotemporal variation and potential sources of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) were investigated for four sampling sites located close to air-polluting industrial area in Kaohsiung City, southern Taiwan. The sampling sites included Daliao (DL), Fongshan (FS), Renwu (RW) and Ciaotou District (CT). A total of 90 PM2.5 samples with 16 PAHs collected from September 2016 to August 2017 were analyzed. The concentrations of 16 PAHs were determined through gas chromatography–mass spectrometry. Diagnostic ratios, principle components analysis (PCA) and hierarchical cluster analysis (HCA) were applied to identify potential PAHs sources. The results revealed the annual mean PM2.5 concentrations were 45.8 ± 16.3, 47.6 ± 21.0, 48.3 ± 17.2 and 51.4 ± 14.3 μg m-3 for DL, FS, RW and CT sites, respectively, while their corresponding PAHs concentrations were 1.52 ± 0.79, 1.48 ± 1.03, 1.11 ± 0.68 and 1.35 ± 1.13 ng m-3. According to the component pattern of PM2.5-bound PAHs, the high molecular weight (HMW) PAHs were dominant on PM2.5 compared to the lower molecular weight (LMW) PAHs. The annual average benzo[a]pyrene equivalent (BaPeq) concentrations in PM2.5 at DL, FS, RW and CT sites were 0.215 ± 0.116, 0.217 ± 0.145, 0.161 ± 0.094 and 0.179 ± 0.130 ng m-3, respectively. BaP was found accounted for 49% to 52% of BaPeq concentrations in PM2.5 at four sites. In the present study, PM2.5, PM2.5-bound PAHs and BaPeq showed seasonal variations, the higher concentrations were found in winter while the lower ones were found in summer. There was a negative correlation between concentrations and atmospheric temperatures. The results of diagnostic ratios, PCA and HCA illustrated two major sources of PM2.5-bound PAHs in different seasons, including stationary emissions, such as coal combustion and petroleum burning, and vehicular emissions from gasoline and diesel engines. The annual average incremental lifetime cancer risk (ILCR) from inhaling exposure to PM2.5-bound PAHs at FS site was quantified as 0.262×10-6, which was lower than the criterion specified in the United States Environmental Protection Agency guidelines (10-6).
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
附表目錄 xiii
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 大氣懸浮微粒介紹 3
2-1-1 大氣懸浮微粒來源 3
2-1-2 懸浮微粒對人體之影響 3
2-2 多環芳香烴介紹 4
2-2-1 多環芳香烴特性 4
2-2-2 大氣中多環芳香烴之來源 7
2-2-3 多環芳香烴之化學指紋特徵鑑定 9
2-2-4 多環芳香烴之危害 10
2-3 大氣中細懸浮微粒與多環芳香烴之相關研究 13
第三章 研究方法 14
3-1 研究流程 14
3-2 材料與儀器 15
3-2-1 材料 15
3-2-2 試藥及器具前處理 16
3-2-3 設備與分析儀器 16
3-3 採樣與保存 17
3-3-1 採樣地點描述 17
3-3-2 採樣時間 18
3-3-3 採樣方法 18
3-4 樣品分析 20
3-4-1 PM2.5樣品分析 20
3-4-2 PAHs樣品分析 20
3-5 品質保證與品質管制(QA/QC) 22
3-5-1 空白試驗 22
3-5-2 方法偵測極限 22
3-5-3 擬似標準品回收率 22
3-6 資料分析 23
3-6-1 特徵比 23
3-6-2 主成分分析 23
3-6-3 階層群集分析 23
3-7 致癌風險計算 24
第四章 結果與討論 25
4-1 大氣中細懸浮微粒濃度 25
4-1-1 兩種採樣器之PM2.5實測濃度比較 25
4-1-2 PM2.5濃度空間分布 29
4-1-3 PM2.5濃度季節變化 33
4-2 大氣多環芳香烴濃度 35
4-2-1 兩種採樣器之PM2.5-PAHs實測濃度比較 35
4-2-2 PM2.5-PAHs濃度時空變化 37
4-2-3 PM2.5-PAHs之物種組成 43
4-2-4 PM2.5與PM2.5-PAHs之相關性 47
4-3 PAHs來源分析 50
4-3-1 特徵比 50
4-3-2 主成分分析 54
4-3-3 階層群集分析 60
4-4 大氣中多環芳香烴毒性當量因子 67
4-4-1 大氣中PM2.5-BaP濃度時空變化 67
4-4-2 大氣中毒性當量濃度(BaPeq) 70
4-4-3 致癌風險評估 73
第五章 結論與建議 74
5-1 結論 74
5-2 建議 76
參考文獻 77
附錄 86
參考文獻 References
Akyüz, M., & Çabuk, H. (2009). Meteorological variations of PM 2.5/PM 10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazardous Materials, 170(1), 13-21.
Akyüz, M., & Çabuk, H. (2010). Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of The Total Environment, 408(22), 5550-5558.
Baek, S., Field, R., Goldstone, M., Kirk, P., Lester, J., & Perry, R. (1991). A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water, Air, and Soil Pollution, 60(3-4), 279-300.
Björseth, A., & Ramdahl, T. (1985). Handbook of polycyclic aromatic hydrocarbons, Volume 2, Emission sources and recent progress in analytical chemistry.
Boström, C.-E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., . . . Westerholm, R. (2002). Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives, 110(Suppl 3), 451.
Brändli, R. C., Bucheli, T. D., Ammann, S., Desaules, A., Keller, A., Blum, F., & Stahel, W. A. (2008). Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network. Journal of Environmental Monitoring, 10(11), 1278-1286.
Callén, M. S., Iturmendi, A., & López, J. M. (2014). Source apportionment of atmospheric PM2. 5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environmental Pollution, 195, 167-177.
Cancio, J. A. L., Castellano, A. V., Martín, S. S., & Rodríguez, J. F. S. (2004). Size distributions of PAHs in ambient air particles of two areas of Las Palmas de Gran Canaria. Water, air, and soil pollution, 154(1-4), 127-138.
Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmospheric Environment, 33(23), 3731-3738.
Chang, K.-F., Fang, G.-C., Chen, J.-C., & Wu, Y.-S. (2006). Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environmental Pollution, 142(3), 388-396.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., . . . Dumka, U. C. (2017a). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of The Total Environment, 579, 1000-1034.
Chen, Y.-C., Chiang, H.-C., Hsu, C.-Y., Yang, T.-T., Lin, T.-Y., Chen, M.-J., . . . Wu, Y.-S. (2016). Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environmental Pollution, 218, 372-382.
Chen, Y., Li, X., Zhu, T., Han, Y., & Lv, D. (2017b). PM 2.5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Science of The Total Environment, 586, 255-264.
Collins, J., Brown, J., Dawson, S., & Marty, M. (1991). Risk assessment for benzo [a] pyrene. Regulatory toxicology and pharmacology, 13(2), 170-184.
Cope, V. W., & Kalkwarf, D. R. (1987). Photooxidation of selected polycyclic aromatic hydrocarbons and pyrenequinones coated on glass surfaces. Environmental Science & Technology, 21(7), 643-648.
Dickhut, R., Canuel, E., Gustafson, K., Liu, K., Arzayus, K., Walker, S., . . . MacDonald, E. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science & Technology, 34(21), 4635-4640.
Dipple, A. (1976). In Searle, CE (ed.), Chemical Carcinogens, ACS Monograph 173: American Chemical Society, Washington, DC.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., . . . Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine, 329(24), 1753-1759.
Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama, 295(10), 1127-1134.
Duan, J., Bi, X., Tan, J., Sheng, G., & Fu, J. (2005). The differences of the size distribution of polycyclic aromatic hydrocarbons (PAHs) between urban and rural sites of Guangzhou, China. Atmospheric Research, 78(3), 190-203.
Fang, G.-C., Wu, Y.-S., Chen, M.-H., Ho, T.-T., Huang, S.-H., & Rau, J.-Y. (2004). Polycyclic aromatic hydrocarbons study in Taichung, Taiwan, during 2002–2003. Atmospheric Environment, 38(21), 3385-3391.
Grimmer, G. (1983). Environmental Carcinogens Polycyclic Aromatic Hydrocarb: CRC.
Guo, Z., Lin, T., Zhang, G., Hu, L., & Zheng, M. (2009). Occurrence and sources of polycyclic aromatic hydrocarbons and n-alkanes in PM 2.5 in the roadside environment of a major city in China. Journal of Hazardous Materials, 170(2), 888-894.
Haritash, A., & Kaushik, C. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1), 1-15.
Harrison, R. M., Smith, D., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science & Technology, 30(3), 825-832.
Ho, K., Lee, S., & Chiu, G. M. (2002). Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment, 36(1), 57-65.
Kalberlah, F., Frijus-Plessen, N., & Hassauer, M. (1995). Toxicological criteria for the risk assessment of polyaromatic hydrocarbons (PAH) in existing chemicals. Part 1: The use of equivalency factors. Altlasten-Spektrum, 5, 231-237.
Kameda, Y., Shirai, J., Komai, T., Nakanishi, J., & Masunaga, S. (2005). Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract. Science of The Total Environment, 340(1), 71-80.
Katz, M., & Chan, C. (1980). Comparative distribution of eight polycyclic aromatic hydrocarbons in airborne particulates collected by conventional high-volume sampling and by size fractionation. Environmental Science & Technology, 14(7), 838-843.
Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., & Oyola, P. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science & Technology, 35(11), 2288-2294.
Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533-542.
Khan, M. F., Latif, M. T., Lim, C. H., Amil, N., Jaafar, S. A., Dominick, D., . . . Tahir, N. M. (2015). Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM 2.5. Atmospheric Environment, 106, 178-190.
Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.
Kleeman, M. J., Schauer, J. J., & Cass, G. R. (2000). Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science & Technology, 34(7), 1132-1142.
Kulkarni, P., & Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34(17), 2785-2790.
Lai, I.-C., Lee, C.-L., Zeng, K.-Y., & Huang, H.-C. (2011). Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. Journal of Environmental Management, 92(8), 2029-2037.
Lewtas, J. (2007). Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research/Reviews in Mutation Research, 636(1), 95-133.
Li, C.-S., & Ro, Y.-S. (2000). Indoor characteristics of polycyclic aromatic hydrocarbons in the urban atmosphere of Taipei. Atmospheric Environment, 34(4), 611-620.
Liu, J., Man, R., Ma, S., Li, J., Wu, Q., & Peng, J. (2015). Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM 2.5 in Guangzhou, China. Marine Pollution Bulletin, 100(1), 134-143.
Lv, J., Xu, R., Wu, G., Zhang, Q., Li, Y., Wang, P., . . . Wei, F. (2009). Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. Journal of Environmental Monitoring, 11(7), 1368-1374.
Ma, Y., Cheng, Y., Qiu, X., Lin, Y., Cao, J., & Hu, D. (2016). A quantitative assessment of source contributions to fine particulate matter (PM 2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. Environmental Pollution, 219, 742-749.
Manoli, E., Kouras, A., & Samara, C. (2004). Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere, 56(9), 867-878.
Mao, I.-F., Chen, C.-N., Lin, Y.-C., & Chen, M.-L. (2007). Airborne particle PM 2.5/PM 10 mass distribution and particle-bound PAH concentrations near a medical waste incinerator. Atmospheric Environment, 41(11), 2467-2475.
Nisbet, I. C., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300.
Ohura, T., Amagai, T., Sugiyama, T., Fusaya, M., & Matsushita, H. (2004). Characteristics of particle matter and associated polycyclic aromatic hydrocarbons in indoor and outdoor air in two cities in Shizuoka, Japan. Atmospheric Environment, 38(14), 2045-2054.
Omar, N. Y. M., Abas, M. R. B., Ketuly, K. A., & Tahir, N. M. (2002). Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmospheric Environment, 36(2), 247-254.
Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36(17), 2917-2924.
Pierce, R. C., & Katz, M. (1975). Dependency of polynuclear aromatic hydrocarbon content on size distribution of atmospheric aerosols. Environmental Science & Technology, 9(4), 347-353.
Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T. A., & Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 72(10), 1594-1601.
Pope, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama-Journal of the American Medical Association, 287(9), 1132-1141. doi:10.1001/jama.287.9.1132
Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742. doi:10.1080/10473289.2006.10464485
Ravindra, K., Bencs, L., Wauters, E., De Hoog, J., Deutsch, F., Roekens, E., . . . Van Grieken, R. (2006). Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment, 40(4), 771-785.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Roberto, J., Lee, W.-Y., & Campos-Díaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163(2), 946-958.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. (1993). Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science & Technology, 27(9), 1892-1904.
Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. TRENDS in Biotechnology, 20(6), 243-248.
Santella, R. M., Gammon, M. D., Zhang, Y. J., Motykiewicz, G., Young, T. L., Hayes, S. C., . . . Bose, S. (2000). Immunohistochemical analysis of polycyclic aromatic hydrocarbon-DNA adducts in breast tumor tissue. Cancer letters, 154(2), 143-149.
Schauer, J. J., & Cass, G. R. (2000). Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environmental Science & Technology, 34(9), 1821-1832.
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. (1999). Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environmental Science & Technology, 33(10), 1578-1587.
Sicre, M., Marty, J., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in the Mediterranean aerosol. International Journal of Environmental Analytical Chemistry, 29(1-2), 73-94.
Singh, D., Gadi, R., & Mandal, T. K. (2011). Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environment, 45(40), 7653-7663.
Škarek, M., Janošek, J., Čupr, P., Kohoutek, J., Novotna-Rychetska, A., & Holoubek, I. (2007). Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays. Environment International, 33(7), 859-866.
Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5(4), 169-195. doi:10.1007/s10311-007-0095-0
Streets, D., Yarber, K., Woo, J. H., & Carmichael, G. (2003). Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17(4).
Sweet, C. W., Vermette, S. J., & Landsberger, S. (1993). Sources of toxic trace elements in urban air in Illinois. Environmental Science & Technology, 27(12), 2502-2510.
Teixeira, E. C., Agudelo-Castañeda, D. M., Fachel, J. M. G., Leal, K. A., de Oliveira Garcia, K., & Wiegand, F. (2012). Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil. Atmospheric Research, 118, 390-403.
Teixeira, E. C., Mattiuzi, C. D. P., Agudelo-Castañeda, D. M., de Oliveira Garcia, K., & Wiegand, F. (2013). Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environmental Monitoring and Assessment, 185(11), 9587-9602.
Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110-119.
Tolis, E. I., Saraga, D. E., Lytra, M. K., Papathanasiou, A. C., Bougaidis, P. N., Prekas-Patronakis, O. E., . . . Bartzis, J. G. (2015). Concentration and chemical composition of PM2. 5 for a one-year period at Thessaloniki, Greece: A comparison between city and port area. Atmospheric Environment, 113, 197-207.
Tsai, P.-J., Shih, T.-S., Chen, H.-L., Lee, W.-J., Lai, C.-H., & Liou, S.-H. (2004). Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment, 38(2), 333-343.
Tuominen, J., Salomaa, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela, T., . . . Himberg, K. (1988). Polynuclear aromatic compounds and genotoxicity in particulate and vapor phases of ambient air: effect of traffic, season, and meteorological conditions. Environmental Science & Technology, 22(10), 1228-1234.
USEPA. (2008). Polycyclic aromatic hydrocarbons (PAHs)-EPA fact sheet. Washington DC: National Center for Environmental Assessment, office of Research and Development.
USPHS. (1969). Air Quality Criteria for Particulate Matter. In U. S. P. H. Service (Ed.), AP-049, FS (Vol. 2, pp. 49).
Van Vaeck, L., Broddin, G., & Van Cauwenberghe, K. (1979). Differences in particle size distributions of major organic pollutants in ambient aerosols in urban, rural, and seashore areas. Environmental Science & Technology, 13(12), 1494-1502.
Wang, G., Kawamura, K., Lee, S., Ho, K., & Cao, J. (2006). Molecular, seasonal, and spatial distributions of organic aerosols from fourteen Chinese cities. Environmental Science & Technology, 40(15), 4619-4625.
Wang, J., Li, X., Jiang, N., Zhang, W., Zhang, R., & Tang, X. (2015). Long term observations of PM 2.5-associated PAHs: comparisons between normal and episode days. Atmospheric Environment, 104, 228-236.
Wang, Q., Liu, M., Yu, Y., & Li, Y. (2016). Characterization and source apportionment of PM 2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China. Environmental Pollution, 218, 118-128.
Xue, W., & Warshawsky, D. (2005). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicology and Applied Pharmacology, 206(1), 73-93.
Yang, H.-H., Lee, W.-J., Chen, S.-J., & Lai, S.-O. (1998). PAH emission from various industrial stacks. Journal of Hazardous Materials, 60(2), 159-174.
Yang, T.-T., Hsu, C.-Y., Chen, Y.-C., Young, L.-H., Huang, C.-H., & Ku, C.-H. (2017). Characteristics, sources, and health risks of atmospheric PM2. 5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol and Air Quality Research, 17(2), 563-573.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489-515.
Zhang, Z., Huang, J., Yu, G., & Hong, H. (2004). Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution, 130(2), 249-261.
Zhu, L., & Wang, J. (2003). Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere, 50(5), 611-618.
Zielinska, B., Sagebiel, J., Arnott, W., Rogers, C., Kelly, K., Wagner, D., . . . Palmer, G. (2004). Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science & Technology, 38(9), 2557-2567.
王雅玢 (1994) 交通污染源大氣中多環芳香烴化合物特徵之探討 環境工程學系研究所碩士論文,國立成功大學。
石珮琦 (2015) 高雄地區大氣顆粒態多環芳香烴-污染來源及濃度影響因子 海洋環境及工程學系研究所碩士論文,國立中山大學。
江涵 (2014) 高雄地區大氣懸浮微粒上多環芳香烴濃度之時空變化 海洋環境及工程學系研究所碩士論文,國立中山大學。
米孝萱 (1998) 移動性污染源排放多環芳香烴化合物之特徵 環境工程學系研究所博士論文,國立成功大學。
呂局校 (2006) 高雄市大氣中多環芳香烴化合物濃度特徵之調查分析 環境工程研究所,國立中山大學。
李郁惠 (2005) 愛河及前鎮河水體中多環芳香烴含量分佈之研究 海洋環境及工程學系研究所碩士論文, 國立中山大學。
張文馨 (2008) 北投焚化爐附近社區空氣中PM2.5、PM10及PAHs濃度研究 環境與職業衛生研究所碩士論文,國立陽明大學。
張晉瑜 (2017) 大台北地區大氣細懸浮微粒多環芳香烴濃度之時空變化 海洋環境及工程學系研究所碩士論文,國立中山大學。
莊茂隆 (1995) 石化工業區及交通污染源區之多環芳香烴化合物的濃度特徵與粒徑分佈 環境工程學系研究所碩士論文,國立成功大學。
許蕙琳 (1996) 大氣中多環芳香烴化合物之粒徑分佈及乾沉降研究 環境工程學系研究所博士論文. 國立成功大學。
陳建男 (2001) 醫療廢棄物焚化爐排放細微粒與多環芳香烴化合物之空氣污染研究 環境衛生研究所碩士論文,國立陽明大學。
潘侑興 (2016) 高雄都會區大氣細懸浮微粒上多環芳香烴的調查研究 海洋環境及工程學系研究所碩士論文,國立中山大學。
鄭金娥 (2015) 多環芳香烴於恆春半島濃度, 來源及海氣交換之研究 海洋環境及工程研究所碩士論文,國立中山大學。
賴臆雯 (2008) 大氣塵粒中多環芳香烴粒徑分布特性之研究 原子科學系研究所碩士論文,國立清華大學。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code