Responsive image
博碩士論文 etd-0121102-105915 詳細資訊
Title page for etd-0121102-105915
論文名稱
Title
(Ba,Sr)Sm2Ti4O12微波介電陶瓷特性之研究與應用
The characteristics and applications of (Ba,Sr)Sm2Ti4O12 microwave dielectric ceramics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-12-14
繳交日期
Date of Submission
2002-01-21
關鍵字
Keywords
微波特性、反應順序、介電陶瓷、微帶天線的應用
microwave dielectric characteristics, reaction sequence, dielectric ceramics, microstrip antenna
統計
Statistics
本論文已被瀏覽 5769 次,被下載 0
The thesis/dissertation has been browsed 5769 times, has been downloaded 0 times.
中文摘要
本論文之主要目的在研究:(Ba,Sr)Sm2Ti4O12介電陶瓷之微波特性與微帶天線的應用,主要內容如下:
首先探討(Ba,Sr)Sm2Ti4O12微波介電陶瓷之反應順序,由實驗數據結果可推導出:真正的固態反應過程,比預估的反應過程更加複雜,最主要原因在於形成(Ba,Sr)Sm2Ti4O12相之過程中會產生一些中間相(intermediate phase):BaTiO3,BaTi4O9和Sm2Ti2O7;文中並討論各晶相形成與耗盡的煆燒溫度。
第二部分探討(Ba,Sr)Sm2Ti4O12微波介電陶瓷之微波特性;在此我們以BaO-Sm2O3-4TiO2為主要的基本材料,為了改善BaSm2Ti4O12陶瓷的微波介電特性,我們使用SrO來替代BaO的位置。由本研究中得知,在(Ba1-XSrX)Sm2Ti4O12陶瓷系統中,SrO在2 ~ 6 mol% 的範圍雖然介電係數比BaSm2Ti4O12陶瓷低,但是有較高的品質因數與較低的頻率溫度係數,所以是可以被接受與較實用的。另外,針對(Ba1-xSrx)Sm2Ti4O12的組成與微波介電性質的關係也有相當詳盡之討論。
第三部分我們探討CaO-BaO-Li2O-Sm2O3-TiO2 (CBLST)微波介電陶瓷的微波介電性質;一般而言,介電材料若具有高的介電係數,就會伴隨著高的頻率溫度係數。為了調整頻率溫度係數趨近於零,使用二種或者更多種化合物,具有正的與負的頻率溫度係數而形成一固溶體或混合相,來獲得所希望的介電性質。在本研究中以BaO取代CaO來改善CaO-Li2O- Sm2O3-TiO2(CLST)的微波介電性質,本部分做了詳細的分析與討論,並且獲得相當好的結果。
最後則以(Ba0.98Sr0.02)Sm2Ti4O12微波介電陶瓷應用在微帶天線作為應用實例;其具有低的頻率溫度係數(-5.96ppm/oC),高的介電係數(79)與高的品質因數(在共振頻率3.311GHz時為7920GHz)。我們製備了交叉插槽耦合圓極化長方形介電陶瓷天線,其結果顯示,以BSST2為介質之圓極化天線具有比傳統圓極化微帶天線易於製造之特性。另外,本研究亦備製了具有晶片電阻與BSST2陶瓷為上層的微帶天線,並與傳統微帶天線相比較,結果獲得更寬廣的頻寬,並使得天線尺寸將可減少到傳統嵌板微帶天線的6.05%,對同等級天線增益而言,6倍於傳統嵌板微帶天線的操作頻寬。
Abstract
The aim of this work was to contribute to a better understanding of the characteristics and applications of (Ba,Sr)Sm2Ti4O12 microwave dielectric ceramics. The major contents are as follows. Firstly, to establish the correct reaction sequence of (Ba,Sr)Sm2Ti4O12, phases present in different calcining temperatures are identified by X-ray diffraction patterns. When different calcining temperatures are used, the source materials BaO (BaCO3), TiO2 and Sm2O3 are consumed at different calcining temperatures; the intermediate phases BaTiO3, BaTi4O9, and Sm2Ti2O7 reveals and consume at different calcining temperatures before the BaSm2Ti4O12 phase starts to reveal. However, the real solid reaction processes are usually more complex, and some intermediate reaction processes might happen.
Secondly, in the (Ba1-xSrx)Sm2Ti4O12 system, SrO can be used to substitute the BaO site and improve the microwave dielectric characteristics. In this study, we find that SrO content in the range of 2 ~ 6 mol% is the acceptable composition because of the higher Q*f values and acceptable and values. Thirdly, the CaO-BaO- Li2O-Sm2O3-TiO2(CBLST) ceramics system was studied. In general, a dielectric material with a high has a large . To adjust to close 0ppm/oC, two or more compounds having negative and positive values are employed to form a solid solution or mixed phases in order to obtain the desired dielectric properties. In this study, BaO was used to substitute the CaO site and improved the microwave dielectric characteristics.
Finally, the (Ba0.98Sr0.02)Sm2Ti4O12 system was adopted as a case of applications in dielectric resonator antenna. It possessed a low value of -5.96ppm/°C, a high value of 79, and a high Q*f value of 7920 GHz (at 3.311GHz). With the loading of a (Ba0.98Sr0.02)Sm2Ti4O12 dielectric resonator (DR), a circular polarization (CP) design of DR antenna through a cross slot of unequal slot lengths in the ground plane of a microstrip line is fabricated. From the results obtained, it is also found that the present proposed CP design has relatively relaxed manufacturing tolerances, as compared to the conventional CP designs that require slight geometrical modifications of the microstrip patch or DR elements. With the loading of a (Ba0.98Sr0.02)Sm2Ti4O12 superstrate layer and a 1W chip resistor, a compact rectangular microstrip antenna with enhanced gain and wider bandwidth can be implemented. The antenna size is reduced to be ~ 6.05% times of a conventional patch antenna, the proposed structure can have an operating bandwidth of more than six times that of a conventional patch antenna, with an almost equal antenna gain level.
目次 Table of Contents
目 錄
摘要 ------------------------------------------------------------------- I
目錄 ------------------------------------------------------------------- V
圖目錄 ---------------------------------------------------------------VIII
表目錄 ----------------------------------------------------------------XII

第一章 序論 -------------------------------------------------------------1
1-1 概述 ----------------------------------------------------------------1
1.2 內容提要 ------------------------------------------------------------6

第二章 理論--------------------------------------------------------------9
2-1 介電概論-------------------------------------------------------------9
2-2 微波頻段的介電理論--------------------------------------------------11
2-3 多相系統的介電性質--------------------------------------------------13
2-4 介電共振器的原理----------------------------------------------------16
2-5 微帶線的基本理論----------------------------------------------------18

第三章 實驗程序與量測---------------------------------------------------21
3-1 實驗程序 -----------------------------------------------------------21
3-1-1 (Ba,Sr)Sm2Ti4O12組成之反應順序-----------------------------------21
3-1-2 (Ba,Sr)Sm2Ti4O12系列陶瓷之製程及微波特性實驗流程-----------------23
3-1-3 CaO-BaO-Li2O-Sm2O3-TiO2系列陶瓷之製程及微波特性實驗流程----------25
3-2 量測與分析 ---------------------------------------------------------27
3-2-1 X-ray分析--------------------------------------------------------27
3-2-2 DTA分析----------------------------------------------------------28
3-2-3 SEM與EDS分析-----------------------------------------------------28
3-2-4 密度的量測-------------------------------------------------------29
3-2-5 微波介電特性測量-------------------------------------------------29
3-2-5-1 介電係數的量測-------------------------------------------------30
3-2-5-2 品質因數的量測-------------------------------------------------32
3-2-5-3 頻率溫度係數的量測---------------------------------------------35

第四章 結果與討論-------------------------------------------------------36
4-1 (Ba,Sr)Sm2Ti4O12組成之反應順序-------------------------------------36
4-2 (Ba,Sr)Sm2Ti4O12系列陶瓷之晶相、顯微結構與微波特性-----------------41
4-3 CaO-BaO-Li2O-Sm2O3-TiO2系列陶瓷之晶相、顯微結構與微波特性----------46
第五章 天線應用---------------------------------------------------------52
5-1 概述----------------------------------------------------------------52
5-2實驗程序-------------------------------------------------------------53
5-2-1 圓極化輻射介電共振天線--------------------------------------------54
5-2-2 微帶天線增益的改善------------------------------------------------56
5-3結果與討論-----------------------------------------------------------57
5-3-1 圓極化輻射介電共振天線--------------------------------------------57
5-3-2 微帶天線增益的改善------------------------------------------------58

第六章 結論-------------------------------------------------------------60
參考文獻----------------------------------------------------------------64

圖目錄

圖2-1 四種主要極化現象的機制-------------------------------------------74
圖2-2 頻率和極化機制的關係圖-------------------------------------------75
圖2-3 兩種不同介質材料相混合的排列方式---------------------------------76
圖2-4 二相系統的介電係數與組成之關係-----------------------------------77
圖2-5 DR形狀的種類-----------------------------------------------------78
圖2-6 電磁波在不同介質接面行進之路線-----------------------------------79
圖2-7 DR外部與內部各模式的功率傳輸比-----------------------------------80
圖2-8 TE01δ mode 在圓柱型DR內之電磁場分佈圖----------------------------81
圖2-9 (a)微帶線結構,與(b)微帶線基本場量分佈圖-------------------------82
圖3-1 (Ba,Sr)Sm2Ti4O12陶瓷反應順序實驗流程圖---------------------------83
圖3-2 (Ba,Sr)Sm2Ti4O12系列陶瓷之製程及微波特性實驗流程圖---------------84
圖3-3 CaO-BaO-Li2O-Sm2O3-TiO2陶瓷之製程及微波特性實驗流程圖------------85
圖3-4 Courtney holder的側面圖------------------------------------------86
圖3-5 微波介電特性量測系統圖-------------------------------------------87
圖4-1-1 不同煆燒溫度下BaO-Sm2O3-4TiO2(BST)粉末的XRD圖形----------------88
圖4-1-2 BaO-Sm2O3-4TiO2(BST)粉末結晶相對煆燒溫度之關係圖---------------89
圖4-1-3 不同煆燒溫度下0.94BaO-0.06SrO-Sm2O3- 4TiO2(BSST6)的XRD圖形-----90
圖4-1-4 0.94BaO-0.06SrO-Sm2O3-4TiO2(BSST6)粉末結晶相對煆燒溫度之關係圖-91
圖4-1-5 不同煆燒溫度下0.9BaO-0.1SrO-Sm2O3-4TiO2 (BSST10)的XRD圖形------92
圖4-1-6 0.9BaO-0.1SrO-Sm2O3-4TiO2(BSST10)粉末結晶相對煆燒溫度之關係圖--93
圖4-1-7 (Ba1-xSrx)Sm2Ti4O12粉末之熱差分析(DTA)圖形---------------------94
圖4-2-1 燒結1300℃和1350℃,BST,BSST6與BSST10的XRD圖形----------------95
圖4-2-2 (Ba1-xSrx)Sm2Ti4O12的Sm2Ti2O7積分強度--------------------------96
圖4-2-3 燒結1350℃時,(Ba1-xSrx)Sm2Ti4O12之表面結構--------------------97
圖4-2-4 BST陶瓷的共振模式的圖形----------------------------------------98
圖4-2-5 BSST6陶瓷的共振模式的圖形--------------------------------------99
圖4-2-6 BSST10陶瓷的共振模式的圖形------------------------------------100
圖4-2-7 BSST的密度與介電係數對燒結溫度之關係圖------------------------101
圖4-2-8 燒結1350℃時,(Ba1-xSrx)Sm2Ti4O12陶瓷之微波介電特性-----------102
圖4-3-1 CBLST之XRD圖形------------------------------------------------103
圖4-3-2 CLST、BST、CBLST2與CBLST4之表面結構---------------------------104
圖4-3-3 CBLST4陶瓷之(a)碟狀晶粒,與(b)條狀晶粒之EPMA分析--------------105
圖4-3-4 CLST、BST、CBLST2和CBLST4介電係數對燒結溫度之關係圖-----------106
圖4-3-5 CBLST系列陶瓷之量測和估計的結果-------------------------------107
圖5-2-1 交叉插槽耦合圓極化長方體介電陶瓷天線結構圖--------------------108
圖5-2-2 具有晶片電阻以及BSST2為上層的傳統嵌板微帶天線-----------------109
圖5-3-1 輸入阻抗的史密斯圖(Smith chart) ------------------------------110
圖5-3-2 圓極化介電共振天線的S11圖形-----------------------------------111
圖5-3-3 長短軸比的量測------------------------------------------------112
圖5-3-4 介電共振天線在2091MHz的輻射場形-------------------------------113
圖5-3-5 三種不同微帶天線S11的比較圖形---------------------------------114
圖5-3-6 三種不同天線電場輻射型式的比較圖------------------------------115

表目錄
表2-1 微帶線特性與結構關係表------------------------------------------116
表4-1 CBLST條狀與碟狀晶粒的EDS分析------------------------------------117
表4-2 燒結溫度1325℃時,BST與CBLST系統的微波介電性質------------------118
表5-1 三種不同微帶天線尺寸的比較--------------------------------------119
參考文獻 References
參考文獻

1. R. D. Richtmyer, J. Appl. Phys., pp.391, 1939.
2. Y. C. Chen, W. C. Tzou, C. F. Yang and P. S. Cheng, Jpn. J. Appl. Phys. vol.40, No.5A, pp.3252, 2001.
3. P. Liu, E. S. Kim and K. H. Yoon, Jpn. J. Appl. Phys. vol.40, No. 9B, pp.5769, 2001.
4. T. D. Iveland, IEEE Trans. Microwave Theory and Tech., vol.19, pp.643, 1971.
5. W. D. Kingery, H. K. Bowen and D. R. Uhlmann:"Introduction to Ceramics", 2nd ed., John Wiley & Sons. Inc., New York, 1991.
6. S. Nomura, Ferroelectrics, vol.49, pp.61, 1983.
7. H. Ouchi, S. Kawashima, Jan. J. Appl. Phys., vol.24, Supplement 24-2, pp.60, 1985.
8. J. K Plourde, D. F. Linn, H. M. O’Bryan and J. Thomson, J. Am. Ceram. Soc., vol.58, pp.418, 1975.
9. A. Okaya, Proc. IRRE., vol.48, pp.1921, 1960.
10. G. Wolfrram and H. E. Gobel, Mat. Rres. Bull., vol.16, pp.1455, 1981.
11. S. Kawashima, M. Nishida, I. Ueda and H. Ouchi, 87th Annual Meeting, American Ceramic Society, Cincinati, OH May 6, 1985.
12. H. M. O’Bryan, J. R. and J. Thomson,:J. Am. Ceram. Soc., vol.57, pp.450, 1974.
13. P. S. Cheng, C. F. Yang, Y. C. Chen and W. C. Tzou, Ceramics International, vol.26(8), pp.877, 2000.
14. S. Nishgaki, H. Kato, S. Yano and R. Kamimurra, Am. Ceram. Soc. Bull., vol.66, pp.1405, 1987.
15. P. S. Cheng, C. F. Yang, Y. C. Chen and W. C. Tzou, Journal of Materials Science Letters, vol.20 (12), pp.1169, 2001.
16. K. Ezaki, Y. Baba, H. Takhashi, K. Shibata and S. Nakano, Jpn. J. Appl. Phys., vol.32, pp.4319, 1993.
17. S. Kucheiko, J. W. Choi, H. J. Kim and H. J. Jung, J. Am. Ceram. Soc., vol.79, pp.2739, 1996.
18. H. Takahashi, Y. Bada and K. Ezaki, Jpn, J. Appl. Phys. vol. 30, pp.2339, 1991.
19. Y. C. Chen, P. S. Cheng, C. F. Yang and W. C. Tzou, Journal of Materials Science Letters, vol.20(9), pp.863, 2001.
20. Y. C. Chen, P. S. Cheng, C. F. Yang and W. C. Tzou, Ceramics International, vol.27(7), pp.809, 2001.
21. P. S. Cheng, C. F. Yang and Y. C. Chen, abstract proceedings of the eighth national conference on science and technology of national defense, Tao-Yuan, pp.58, 1999.
22. P. S. Cheng, C. F Yang, Y. C. Chen, W. C. Tzou, Journal of Wave-Material Interaction, vol.14, No.1-2, pp.26, 1999.
23. G. Burns:"Solid State Physics", John Wiley & Son. Inc., New York, pp.461, 1985.
24. David K. Cheng, "Field and Wave Electromagnetics", 2nd ed., Addison Wesley, New York, 1989.
25. D. Kajfez and P. Guillon:"Dielectric Resonators", McGraw-Hill, New York, 1989.
26. D. Kajfez, Microwave Systems News, vol.13, pp.152, 1983.
27. C. A. Balanis, "Advanced Engineering Electromagnetics", John Wiley & Sons, Inc., 1989.
28. A. Thom and C. J. Apelt, " Field Computations in Engineering and Physics", D. Van Norstrand, London, 1961.
29. K. Chang, "Handbook of Microwave and Optical Component", John Wiley & Sons, Inc., 1989.
30. T. Higashi, T. Makino, IEEE Trans. Microwave Theory and Tech., vol.29, pp.1048, 1981.
31. R. Christoffersen, P. K. Davies and X. Wei, J. Am. Ceram. Soc., vol.77, pp.1441, 1994.
32. S. B. Desu and H. M. O’Bryan, J. Am. Ceram. Soc., vol.68, pp.546 , 1985.
33. T. Negas, G. Yeager, S.Bell and N.Coats, Am. Ceram. Soc. Bull., vol.72 , pp.80, 1993.
34. H. Ohsato, T. Ohhashi, H. Kato, S. Nishigaki and T. Okuda, Jpn. J. Appl. Phys. vol.34, pp.187, 1995.
35. P. Laffez, G. Desgardin and B. Raveau, J. Mater. Sci., vol.30, pp.267, 1995.
36. H. Ohsato, S. Nishigaki, T. Okuda, Jpn. J. Appl. Phys. vol.31, pp.3136, 1992.
37. Y. Kobayashi, S. Tanaka, IEEE Trans. Microwave Theory and Tech., vol.28, pp.1077, 1980.
38. Y. Kobagyashi, M. Katoh, IEEE Trans. Microwave Theory and Tech., vol.33, pp.586, 1985.
39. B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory and Tech., vol.8, pp.402, 1960.
40. W. E. Courtney, IEEE Trans. Microwave Theory and Tech., vol. 8, pp.476, 1970.
41. S. B. Cohn, K. C. Kelly, IEEE Trans. Microwave Theory and Tech., vol.14, pp.406, 1960.
42. P. Wheless, D. Kajfez, IEEE MTT-S Symposium Dig., pp.473, 1985.
43. R. G. Matveeva, M. B.Varfolomeev, and L. S. II'yushchenko, Russ. J. Inor. Chem., vol.29(1), pp.17, 1984.
44. M. B. Varfolomeev, A. S. Mironov, V. S. Kostomarov, L. A. Golubtsova, and T. A. Zolotova, Russ. J. Inor. Chem., vol.33(4), pp.607, 1988.
45. W. Wersing, "Electronic Ceramics", pp.67, Elsevie, London, 1991.
46. J. Takahashi and T. Ikegami, J. Am. Ceram. Soc. vol.74, pp.1868, 1991.
47. R. E. Munson, IEEE Trans. Antennas Proporgat., vol.22, pp. 74, 1974.
48. L. C. Shen, S. A. Long, M. R. Allerding and M. D. Walton, IEEE Trans. Antennas Proporgat., vol.25, pp. 595, 1977.
49. J. Q. Howell, IEEE Trans. Antennas Proporgat., vol.23, pp. 90, 1975.
50. G. Kumar and K. C. Gupta, IEEE Trans. Antennas Propagat., vol.32, pp.1375, 1984.
51. Y. F. Lin and K. L. Wong, Microwave Opt. Technol. Lett., vol.17, pp.169, 1998.
52. M. L. Yazidi, M. Himdi and J. P. Daniel, Electron. Lett., vol.29, pp.1506, 1993.
53. S. Maci, G. Biffi Gentili, P. Piazzesi and C. Salvador, IEE Proc. H, vol.142, pp.225, 1995.
54. C. Salvador, L. Borselli, A. Falciani and S. Maci, Electron. Lett., vol.31, pp.1706, 1995.
55. H. Nakano and K. Vichien, Electron. Lett., vol.25, pp.1067, 1989.
56. D. Sanchez-Hernandez and I. D. Robertson, IEEE Trans. Antennas Propagat., vol.43, pp.201, 1995.
57. B. F. Wang and Y. T. Lo, IEEE Trans. Antennas Propagat., vol.32, pp.938, 1984.
58. S. Maci, G. Biffi Gentili and G. Avitabile, Electron. Lett., vol.29, pp.1441, 1993.
59. J. H. Lu and K. L. Wong, Electron. Lett., vol.34, pp.1171, 1998.
60. S. T. Fang and K. L. Wong, APMC Int. Symp. Dig., vol.2, pp.1027, 1998.
61. P. C. Sharma and K. C. Gupta, IEEE Trans. Antennas Propagat., vol.29, pp.949, 1983.
62. D. H. Schaubert, F. G. Ferrar, A. Sindoris and S. T. Hayes, IEEE Trans. Antennas Propagat., vol.29, pp.118, 1981.
63. R. C. Johnson and H. Jasik, Antennas Engineering Handbook. New York: McGraw-Hill, 1984.
64. W. F. Richards, S. E. Davidson and S. A. Long, IEEE Trans. Antennas Propagat., vol.33, pp.556, 1985.
65. H. D. Weinschel, IEEE AP-S Int. Symp. Dig., pp.177, 1975.
66. S. S. Zhong and Y. T. Lo, Electron. Lett., vol.19, pp.298, 1983.
67. L. C. Shen, IEEE Trans. Antennas Propagat., vol.29, pp.90, 1981.
68. M. Hamish, T. Nambara and S. Yoshida, Electron. Lett., vol.18, pp.191, 1982.
69. W. F. Richards, Y. T. Lo and D. D. Harrison, IEEE Trans. Antennas Propagat., vol.29, pp.38, 1981.
70. Y. M. M. Antar, A. I. Ittipiboon and A. K. Bhattachatyya, Microwave Opt. Technol. Lett., vol.8, pp.309, 1995.
71. Y. Murakami, W. Chujo, I. Chiba and M. Frujise, Electron. Lett., vol.29, pp.1906, 1993.
72. M. Deepukumar, J. George, C. K. Aanandan, P. Mohanan and K. G. Nair, Electron. Lett., vol.32, pp.1531, 1996.
73. S. H. Al-Charchafchi, W. K. W. Ali and S. Sinkeree, IEEE AP-S Int. Symp. Dig., vol.2, pp.948, 1997.
74. S. A. Long and M. D. Walton, IEEE Trans. Antennas Propagat., vol.27, pp.270, 1979.
75. J. S. Dahele, K. F. Lee and D. P. Wong, IEEE Trans. Antennas Propagat., vol.35, pp.1281, 1987.
76. J. Wang, R. Fralich, C. Wu and J. Litva, Electron. Lett., vol.26, pp.2067, 1990.
77. K. L. Wong and J. Y. Wu, Electron. Lett., vol.33, pp.1833, 1997.
78. F. Croq and D. Pozar, IEEE Trans. Antennas Propagat., vol.40, pp.1367, 1992.
79. H. Iwasaki, IEEE Trans. Antennas Propagat., vol.44, pp.1399, 1996.
80. K. L. Wong and Y. F. Lin, Electron. Lett., vol.34, pp.831, 1998.
81. K. L. Wong and C. M. Chang, Microwave Opt. Technol. Lett., vol.15, pp.67, 1997.
82. S. C. Pan and K. L. Wong, IEEE Trans. Antennas Propagat., vol.45, pp.1889, 1997.
83. C. L. Tang, H. T. Chen and K. L. Wong, Electron. Lett., vol.33, pp.1112, 1997.
84. R. B. Waterhouse and N. V. Shuley, Electron. Lett., vol.28, pp.606, 1992.
85. K. L. Wong, W. H. Hsu, and C. K. Wu, Microwave Optical Technol. Lett., vol.18, pp.306, 1998.
86. K. W. Leun, K. M. Luk, E.K N. Yung and S. Lai, Electron. Lett. , vol.31(6), pp.417, 1995.
87. M. B. Oliver, Y.M.M. Antar, R.K. Mongia and A. Ittipiboon, Electron. Lett., vol.31(6), pp.418, 1995.
88. M. Haneishi and H. Takazawa, Electron. Lett., vol.21(10), pp.437, 1985.
89. P. L. Sullivan and D. H. Schaubert, IEEE Trans. Antennas Propagat. , vol.34(8), pp.977, 1986.
90. C.Y. Huang, J.Y. Wu, C.F. Yang and K.L. Wong, Electronics Letters, vol.34(2), pp.138, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.150.59
論文開放下載的時間是 校外不公開

Your IP address is 13.58.150.59
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code