Responsive image
博碩士論文 etd-0121106-134708 詳細資訊
Title page for etd-0121106-134708
論文名稱
Title
內波在斜坡及海脊地形的演化實驗
Laboratory experiments on internal wave evolution on uniform slopes and topographic sills
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
335
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-04
繳交日期
Date of Submission
2006-01-21
關鍵字
Keywords
演化、海脊、斜坡、孤立內波、重力內波
evolution, sill, slope, internal gravity wave, internal solitary wave
統計
Statistics
本論文已被瀏覽 5681 次,被下載 0
The thesis/dissertation has been browsed 5681 times, has been downloaded 0 times.
中文摘要
Laboratory work were conducted to investigate the behaviors of an internal solitary wave (ISW) in a two-layer free surface fluid system in a wave flume (12m×0.5m×0.7m) at the National Sun Yat-sen University, Kaohsiung, Taiwan. A series of fundamental experiments on wave generation, propagation and interaction with uniform slopes and topographic features were carried out in the flume with stratified two-layer fresh/brine water. Factors governing the experiments included the thickness ratio of the upper and lower layers H1/H2, interface difference
Abstract
Laboratory work were conducted to investigate the behaviors of an internal solitary wave (ISW) in a two-layer free surface fluid system in a wave flume (12m×0.5m×0.7m) at the National Sun Yat-sen University, Kaohsiung, Taiwan. A series of fundamental experiments on wave generation, propagation and interaction with uniform slopes and topographic features were carried out in the flume with stratified two-layer fresh/brine water. Factors governing the experiments included the thickness ratio of the upper and lower layers H1/H2, interface difference
目次 Table of Contents
Acknowledgements 2
Abstract 3
Contents 6
List of Symbols 11
List of Figures and Tables 15

1.1 Background 27
1.2 Status of domestic and international research efforts 31
1.2.1 Field observations 32
1.2.1.1 surface observation 33
1.2.1.2 sub-surface observation 35
1.2.2 Theoretical models 36
1.2.2.1 Navier-Stokes equations 38
1.2.2.2 Korteweg-deVries equations 39
1.2.3 Laboratory experiments 43
1.2.3.1 uniform slope 44
1.2.3.2 topographic obstacles 46
1.3 Significance 47
1.4 Motivation 48
1.5 Established organizations 49
2.1 Internal waves in the oceans 51
2.1.1 Internal wave generation 53
2.1.2 Internal wave propagation 55
2.1.3 Internal wave dissipation 56
2.2 Internal waves in estuaries 57
2.2.1 Internal wave generation 57
2.2.2 Internal wave dissipation 58
2.3 Internal waves in lakes 59
2.3.1 Internal wave generation 60
2.3.2 Internal wave dissipation 61
2.4 Internal waves in the laboratory 62
2.4.1 Internal wave generation 63
2.4.2 Internal wave dissipation 63
2.5 Internal wave - slope interaction 64
2.5.1 Classification of run-up 65
2.5.2 Internal wave breaking 66
2.5.3 Onslope fluid movement 69
2.6 Internal wave reflection 72
2.6.1 Mechanism and geometry of internal wave reflection 73
2.6.2 Efficiency of internal wave reflection 75
2.6.3 Energetics of internal wave reflection 77
2.6.4 Mixing induced by reflection at sloping boundary 79
2.7 Internal waves on several submerged topography 80
2.7.1 Interaction with slope-shelf topography 80
2.7.2 Interaction with triangular topography 82
2.7.2.1 Reflection and transmission from a triangular obstacle 84
2.7.2.2 Energy dissipation by vortex formation 86
3.1 Experimental setup 88
3.1.1 Geometry 88
3.1.2 Procedure 92
3.2 Instrumentations 95
3.2.1 Ultrasonic probes and capacitance gauges 95
3.2.2 Ultrasonic density probe 97
3.2.3 Capacitance probes 97
3.2.4 Data Acquisition system 99
3.2.5 Oscilloscope 99
3.3 Data analysis 100
3.3.1 Collection 101
3.3.2 Denoise 101
3.3.3 Calibrations 103
3.3.4 Processing 105
3.3.5 Time series and distribution of the recorded internal waves 105
3.4 Experimental objectives and design 107
3.4.1 Uniform slopes 108
3.4.2 Variable topographies 110
4.1 Internal wave generation 114
4.1.1 Wave profiles 119
4.1.2 Discussion on experimental results 121
4.1.3 Summary 122
4.2 Waveforms with different depth parameters 124
4.3 Amplitude decay and energy loss 128
4.4 Wave propagation 131
4.5 Physical parameters of internal solitary wave 133
4.5.1 Wave amplitude, a 142
4.5.2 Wave speed, C 142
4.5.3 Wavelength, Lw 143
4.5.4 Wave energy, E 145
4.5.5 Wave run-up, Ru 145
4.5.6 Breaking depth, db 145
4.6 Theoretical aspects of ISW profiles 147
4.7 Characteristics of ISW properties in a wave flume 151
4.7.1 Wave amplitude 151
4.7.2 Wave speed (C) 155
4.7.3 Frequency-amplitude relationship 159
4.7.4 Verification of wave profiles 162
4.7.5 Wave run-up 166
4.7.6 Breaking depth 166
5.1 General discussion 168
5.2 Experimental setup 173
5.3 Internal solitary wave of elevation-type 174
5.3.1 ISW of elevation on a steep normal slope 174
5.3.1.1 Wave run-up and run-down 175
5.3.1.2 Internal hydraulic jump 177
5.3.1.3 Mechanisms of energy dissipation 178
5.3.2 ISW of elevation on an inverse steep slope 179
5.4 Internal solitary wave of depression-type 183
5.4.1 ISW of depression on a steep normal slope 183
5.4.2 ISW of depression on an inverse steep slope 185
5.5 Summary of ISW interaction with steep slopes 187
5.5.1 The criteria of an ISW evolution on a uniform slope 187
5.5.2 Mixing efficiency due to wave-slope encounter 190
5.6 Wave Reflection from Uniform Slopes 192
5.6.1 Decay of wave amplitude 195
5.6.2 Energy loss 195
5.6.3 Frequency-amplitude relationship 198
5.6.4 Reflection rate 198
5.7 Conclusions for slope effect on an ISW 202
6.1 General discussion 204
6.2 Experimental setup 208
6.3 Internal solitary wave of depression-type 209
6.3.1 ISW of depression with triangular ridge 209
6.3.1.1 Wave evolution on triangular bumps 210
6.3.1.2 Comparison for wave evolution with slope and ridge 212
6.3.1.3 Summary on different range of blockage 216
6.3.2 ISW of depression with semicircular ridge 217
6.3.2.1 Wave evolution on semicircular bumps 217
6.3.2.2 Effect of submarine ridge geometry 219
6.4 Internal solitary wave of elevation-type 220
6.4.1 ISW of elevation over a triangular ridge 221
6.4.2 ISW of elevation over a semicircular ridge 224
6.5 Summary on wave-ridge encounter 226
6.6 ISW characteristics during wave-ridge encounter 228
6.6.1 Time series 228
6.6.2 Effect of obstacles on an ISW of depression-type 228
6.6.2.1 Weak encounter 228
6.6.2.2 Moderate encounter 229
6.6.2.3 Wave breaking 231
6.6.3 Breaker expewssion 232
6.6.4 Reflection induced by topographic obstacle 236
6.6.5 Wave Transmission 241
6.6.6 Energy decay of an ISW 248
6.7 Wave propagation over the double obstacle 250
6.7.1 Arrangement of double obstacles 250
6.7.2 The effect of the obstacle intervals and the depth ratio 252
6.7.3 The effect of the obstacle interval and obstacle position 259
6.8 Wave profiles on an isolated semicircle 265
7.1 Concluding remarks 270
7.2 Suggestion for future research 274
7.2.1 Auxiliary for field investigation 274
7.2.2 Implications for marine geology 275
7.2.3 Implications for biological oceanography 275
7.2.4 The use of PIV technology 276
References 279
Appendix 301
參考文獻 References
Reference

1. Alpers, W. (1985). Theory of radar imaging of internal waves, Nature, 314: 245-247.
2. Andreassen, O., Hvidsten, P.O., Fritts, D.C. and Arendt, S. (1998). Vorticity dynamics in a breaking internal gravity wave. 1. Initial instability evolution. J. Fluid Mech. 367: 27-46.
3. Antenucci, J.P., Imberger, J. and Saggio, A. (2000). Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnol. and Oceanogr., 45(7): 1621-1638.
4. Apel, J.R., Byrne, H.M., Proni, J.R. and Charnell, R.L. (1975). Observation of oceanic internal and surface waves from the Earth Resources Technology Satellite, J. Geophys. Res., 80: 865-881.
5. Apel, J.R., Holbrook, J.R., Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanogr., 15(12): 1625-1651.
6. Apel, J.R., Badiey, M., Chiu, C.S., Finette, S., Headrick, R., Kemp, J., Lynch, J.F., Newhall, A., Orr, M.H., Pasewark, B.H., Tielbuerger, D., Turgut, A., vonderHeydt, K., and Wolf, S. (1995). An overview of the 1995 SWARM shallow-water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng., 22(3): 465-500.
7. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia.
8. Armenio, V. and Sarkar, S. (2002). An investigation of stably-stratified turbulent channel flow using large eddy simulation. J. Fluid Mech., 459, 1-42.
9. Armenio, V. and Sarkar, S. (2004). Mixing in a stably-stratified medium by horizontal shear near. Theoretical and Computational Fluid Dynamics, 17:331-349.
10. Arya, S.P.S. (1975). Buoyancy effects in an horizontal flat-plane boundary layer. J. Fluid Mech., 68: 321-343.
11. ASCE Sedimentation Engineering. (1975). American Society of Civil Engineers Task. Committee for Preparation of Manual on Sedimentation, VA Vanoni, ed. ASCE Manual 54: 518-545.
12. Baines, P.G. (1982). On internal tide generation models. Deep-Sea Res., 29: 307-338.
13. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Phys. Oceanogr., 13: 310-328.
14. Baines, P.G. and Fang, X.H. (1985). Internal tide generation at a continental shelf/slope junction: a comparison between theory and a laboratory experiment. Dyn. Atmos. Oceans, 9: 297-314.
15. Balmforth, N.J., Ierley, G.R. and Young, W.R. (2002). Tidal conversion by subcritical topography. J. Phys. Oceanogr., 32: 2900-2914.
16. Barends, F.B.J. and Spierenburg, S.E.J. (1991). Interaction between ocean waves and sea-bed. Proc., International Conf. on Geotechnical Eng. for Coastal Development-Theory and Practice on Soft Ground (Geot-Coastal’91), Yokohama, Japan, V.2: 1091-1108.
17. Bascom, W. (1980). Waves and Beaches. Anchor Press/Doubleday, Garden City, New York. 366 p.
18. Bathurst, J.C., Graf, W.H. and Cao, H.H. (1983). Initiation of sediment transport in steep channels with coarse bed material. in Mutlu Sumer, M., and Muller, A., eds., Mechanics of sediment transport: Rotterdam, Netherlands,A. A. Balkema, p. 207-214.
19. Bayazit, H. (1983). Flow structure and sediment transport mechanics in steep channels. in Mutlu Sumer, M., and Muller, A., eds., Mechanics of sediment transport: Rotterdam, Netherlands,A. A. Balkema, p. 207-214.
20. Bell, T.H. (1975). Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67: 705-722.
21. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270.
22. Benjamin, T.B. (1967). Internal waves of permanent form in fluids of great depth. J. Fluid Mech., 29: 559-592.
23. Boegman, L., Imberger, J., Ivey, G.N. and Antenucci, J.P. (2003). High-frequency internal waves in large stratified lakes. Limnol. and Oceanogr., 48: 895-919.
24. Bogucki, D. and Garrett, C. (1993). A simple model for the shear-induced decay of an internal solitary wave. J. Phys. Oceanogr., 23: 1767-1776.
25. Bogucki, D. and Redekopp, L.G. (1999). A mechanism for sediment resuspension by internal solitary waves. Geophys. Res. Letters, 26: 1317-1320.
26. Bogucki, D. and Redekopp, L.G. (2000). Resuspension and boundary mixing stimulated by long internal waves. Proc., fifth International Symposium on Stratified Flows, (eds. by G. A. Lawrence, R. Pieters, and N. Yonemitsu), 283-288.
27. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas, pp. 367-375.
28. Boussinesq, J. (1871a). Theorie de l’itumescence liquide appelee onde solitarie ou de translation, sepropageant dans un canal rectangulaire. Comptes Rendus Hebdomadaires des Séance de lAcademie des Sciences, 72: 755-759.
29. Boussinesq, J. (1871b). Theorie genenerale des mouvements qui sont progages dans un canal rectangulaire horizontal. Comptes Rendus Hebdomadaires des Séance de lAcademie des Sciences, 73: 256-260.
30. Boyd, J.P., and Chen, G.Y. (2001). Weakly nonlinear wavepackets in the Korteweg–de Vries equation: the KdV/NLS connection. Math. and Computers in Simulation, 55(4-6), 317-328.
31. Brandt, P., Alpers, W. and Backhaus, J.O. (1996). Study of the generation and propagation of internal waves in the Strait of Gibraltar using a numerical model and synthetic aperture radar images of the European ERS-1 satellite. J. Geophys. Res., 101(C6): 14237-14252.
32. Brandt, P., Rubing, A., Alpers, W. and Backhaus, J.O. (1997). Internal waves in the Strait of Messina studied by a numerical model and synthetic aperture radar images from the ERS 1/2 satellites, J. Phys. Oceanogr., 27: 648-663.
33. Breusers, H.N.C. and Raudkivi, A.J. (1991). Scouring, Hydraulic Structures Design Manual, Imternational Association for Hydraulic Research, A.A. Balkma, Netherlands.
34. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Sec. (1) xx: 392-397.
35. Cacchione D.A. and Southard, J.B. (1974). Incipient sediment movement by shoaling internal gravity waves, J. Geophys. Res., 79: 2237-2242.
36. Cacchione, D.A. and Wunsch, C. (1974). Experimental study of internal waves over a slope. J. Fluid Mech., 66: 223-239.
37. Cacchione, D.A., Pratson, L.F. and Ogston, A.S. (2002). The shaping of continental slopes by internal tides. Science, 296: 724-727.
38. Chang, K.A., Hsu, T.J. and Liu, P.L.F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part I: Solitary waves. Coastal Eng., 44, 13-36.
39. Chapman, D. C. (1982). Nearly trapped internal edge waves in a geophysical ocean. Deep-Sea Res., 29: 525-533.
40. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103.
41. Chen, C.Y., and Hsu, J.R.C. (2005). Interaction between internal waves and a permeable seabed. Ocean Eng., 32 (5-6): 587-621.
42. Chen, C.Y., and Hsu, J.R.C., Cheng, M.H., Chen, H.H. and Kuo, C.F. (2006a). An investigation on internal solitary waves in a two-layer fluid: propagation and reflection from steep slopes. Ocean Eng. (Accepted)
43. Chen, C.Y., Hsu, J.R.C., Chen, H.H., Kuo, C.F. and Cheng, M.H. (2006b). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Eng. (Accepted)
44. Chen, C.Y., Hsu, J.R.C., Kuo, C.F., Chen, H.H. and Cheng, M.H. (2006c). Wave propagation at the interface of a two-layer fluid system in the laboratory. J. Mar. Sci. Technol. (Accepted)
45. Chen, C.Y., Hsu, J.R.C., Chen, H.H., Kuo, C.F. and Cheng, M.H. (2006d). The evolution of a generated internal solitary wave by gravity collapse. J. Mar. Sci. Technol. (Accepted)
46. Chen, C.Y., Hsu, J.R.C., Kuo, C.F., Cheng, M.H. and Chen, H.H. (2006e). Laboratory observations on internal solitary wave evolution over a submarine ridge. China Ocean Eng. (Accepted)
47. Chen, H.H. (2004). Experimental study on the propagation and reflection of internal solitary wave from a uniform slop. Master thesis, Institute of Physical Oceanography., National Sun Yat-sen University, Taiwan. (In Chinese)
48. Chen, Y. and Liu, P.L.F. (1995). The unified Kadomtsev–Petviashvili equation for interfacial waves, J. Fluid Mech., 288: 383-408.
49. Choi, W. and Camassa, R. (1996a). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103.
50. Choi, W. and Camassa, R. (1996b). Long internal waves of finite amplitude. Phys. Rev. Lett., 77: 1759-1762.
51. Choi, W. and Camassa, R. (1999). Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech., 396: 1-36.
52. Cummins P.F., Vagle, S., Armi, L. and Farmer D.M. (2003). Stratified flow over topography: upstream influence and generation of nonlinear internal waves. Proc. Roy. Soc. Lond. A, 459: 1467-1487.
53. Dauxois, T. and Young, W.R. (1999) Near-critical reflection of internal waves. J. Fluid Mech., 390: 271-295.
54. Dauxois, T., Didier, A. and Falcon, E. (2004). Observation of near-critical reflection of internal waves in a stably stratified fluid. Pysics of Fluid, 16(6): 1936-1941.
55. Da Silva, J.C.B., Ermakov, S.A., Robinson, I.S., Jeans, D.R.G. and Kijashko, S.V. (2000). Role of surface films in ERS SAR signatures of internal waves on the shelf, 1. Short-period internal waves, J. Geophys. Res., 103: 8009-8031.
56. Davis, R.E. and Acrivos, A. (1967). Solitary internal waves in deep water. J. Fluid Mech., 29: 593-607.
57. De Silva , I.P.D., Imberger, J. and Ivey, G.N. (1997). Localised mixing due to a breaking internal wave ray at a sloping bed. J. Fluid Mech., 350: 1-27.
58. Diamessis, P.J. and Nomura, K.K. (2000). Interaction of vorticity, rate-of-strain, and scalar gradient in stratified homogeneous sheared turbulence. Phys. Fluids, 12: 1166-1188.
59. Duda, T.F., Lynch, J.F., Irish, J.D., Beardsley, R.C., Ramp, S.R., Chiu, C.S., Tang, T.Y. and Yang, Y.J. (2004) Internal tide and nonlinear internal wave behavior at continental slope in northern South China Sea. IEEE J. Oceanic Eng., 29:1105-1130.
60. Dunkerton, T.J. (1997). Shear instability of internal inertia-gravity waves. J. Atmos. Sci., 54 (12), 1628-1641.
61. Dyer, K.R. (1986). Coastal and Estuarine Sediment Dynamics. Wiley, Chichester 342pp.
62. Dyer, K. R. (1997). Estuaries - A Physical Introduction (2 ed.): John Wiley & Sons.
63. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices.
64. Ekman, V.M. (1904). On dead-water. Sci. Results, Norwegian North Polar Expedition. 5(15): 1893-1896.
65. Emery, K.O and Gunnerson, C.G.. (1973). Internal swash and surf. Proc. National Academy of Science, USA, 70(8): 2379-2350.
66. Eriksen, C. C. (1982). Observations of internal wave reflection off sloping bottoms, J. Geophys. Res., 87: 525-538.
67. Eriksen, C. C. (1985). Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys. Oceanogr., 15: 1145-1156.
68. Etemad-Shahidi A, and Imberger, J. (2001). Anatomy of turbulence in thermally stratified lakes. Limnol. and Oceanogr., 46(5): 1158-1170.
69. Farmer, D.M. (1978). Observations of long nonlinear internal waves in a lake, J. Phys. Oceanogr., 8: 63-73.
70. Farmer, D.M. and Smith, J.D. (1978). Nonlinear internal waves in a fjord. In Hydrodynamics of Estuaries and Fjords (ed. J. C. J. Nihoul), pp. 465-493. Elsevier.
71. Farmer, D.M. and Smith, J.D. (1980). Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res., 27A: 239-254.
72. Farmer, D.M. and Freeland, H.J. (1983). The physical oceanography of fjords. Prog. Oceanogr. 12: 147-220.
73. Freeland H.J. (1980). The hydrography of Knight Inlet in the light of Long's model of fjord circulation. In, Fjord Oceanography, edited by Freeland, Farmer and Levings. Plenum Press, New work.
74. Fritts, D.C., Arendt, S. and Andreassen, O. (1998). Vorticity dynamics in a breaking internal gravity wave. 2. Vortex interactions and transition to turbulence. J. Fluid Mech. 367: 47-65.
75. Gardner, G.B. and Smith, J.D. (1978). Turbulent mixing in a salt wedge estuary. In Hydrodynamics of Estuaries and Fjords (Nihoul, J. C. J., ed.). Elsevier, Amsterdam, pp. 79-106.
76. Garrett, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264.
77. Garrett, C. and Munk, W. (1979). Internal Waves in the Ocean. Annual Review of Fluid Mechanics. 11: 339-369.
78. Gerz, T., Schumann, U. and Elghobashi, S.E. (1989). Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech., 200: 563-594.
79. Geyer, W.R. and J.D. Smith. (1987). Shear instability in a highly stratified estuary. J. Phys. Oceanogr., 17:1668-1679.
80. Gilbert, D., and Garrett, C. (1989). Implications for ocean mixing of internal wave scattering off irregular topography, J. Phys. Oceanogr., 19: 1716-1729.
81. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press.
82. Graf, W.H. (1971). Hydraulics of Sediment Transport. McGraw Hill Book Company, USA.
83. Grilli, S.T., Svendsen, I.A. and Subramanya, R. (1997). Breaking criterion and characteristics for solitary waves on slopes. J. Waterways, Port, Coastal and Ocean Engineering, ASCE, 123 (3): 102-112.
84. Grissinger E.H. (1982). Bank erosion of cohesive materials. In Gravel-bed Rivers, Fluvial processes, Engineering and Management, Hey RD, Bathurst JC, Thorne CR (eds). Wiley: Chichester; 273-287.
85. Grue, J., Jensen, A., Rusas, P.O., and Sveen, J. K. (1999). Properties of large amplitude internal waves. J. Fluid Mech. 380: 257-278.
86. Grue, J., Jensen, A., Rusas, P. and Sveen, J. (2000). Breaking and broadening of internal solitary waves. J. Fluid Mech., 413: 181-218.
87. Haidvogel, D.B., Wilkin, J.L. and Young, R. (1991). A semi-spectral primitive equation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J. Comp. Phys., 94: 151-168.
88. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, 26.1 - 26.21.
89. Haury, L.R., Briscoe, M.G. and Orr, M.T. (1979). Tidally generated internal wave packets in Massachusetts Bay. Nature, 278-312.
90. Hayami, Y., Fujiwara, T., and Kumagai, M. (1996). Internal surge in Lake Biwa induced by strong winds of a typhoon. Jpn. J. Limnol., 57(4(2)): 425-444.
91. Hegge, B.J., and Masselink, G.. (1996). Spectral analysis of geomorphic time series: auto-spectrum. Earth Surface Processes and Landforms, 21: 1021-1040.
92. Helfrich, K.R., Melville, W.K. and Miles, J.W. (1984). On interfacial solitary waves over slowly varying topography. J. Fluid Mech., 149: 305-317.
93. Helfrich, K. R., and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308.
94. Helfrich, K.R. (1992). Internal solitary wave breaking and run up on a uniform slope. J. Fluid Mech., 243: 133-154.
95. Herb, W.R. and Stefan, H.G. (2005). Dynamics of vertical mixing in a shallow lake with submersed macrophytes. Water Resour. Res., 41(2), W02023. 10.1029/2003WR002613.
96. Hibiya, T. (1986). Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91: 7696-7708.
97. Hibiya, T. (1988). Generation of internal waves by tidal flow over Stellwagen Bank. J. Geophys. Res., 93(C1): 533-542.
98. Holloway, P.E. (1987). Internal hydraulic jumps and solitons at a shelf break region on the Australian north west shelf. J. Geophys. Res., 92: 5405-5416.
99. Holt, S.E., Koseff, J.R. and Ferziger, J.H. (1992). A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech., 237: 499-539.
100. Hondzo, M. and Haider, Z. (2004). Boundary mixing in a small stratified lake. Water Resour. Res., 40, W03101, doi:10.1029/2002WR001851.
101. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102.
102. Horn, D.A., Imberger, J., and Ivey, G.N. (2001). The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech. 434: 181-207.
103. Hsu, J.R.C. and Ariyaratnam, J. (2000). Pressure fluctuations and a mechanism for sediment suspension in swash zone. Proc. 27th Inter. Conf. on Coastal Eng., ASCE, 1: 610-623.
104. Hsu, M.K., Liu, A.K. and Liu, C. (2000). A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Res., 20: 389-410.
105. Hughes, B.A. (1978). The effect of internal waves on surface wind waves, 2, Theoretical analysis, J. Geophys. Res., 83: 455-465.
106. Hunkins, K., and Fliegel, M. (1973). Internal undular surges in Seneca Lake: a natural occurrence of solitons. J. Geophys. Research, 78: 539-548.
107. Huttemann, H., and Hutter, K. (2001). Baroclinic solitary water waves in a two-layer fluid system with diffusive interface. Experiments in Fluids, 30(3): 317-326.
108. Imberger, J. (1994). Transport processes in lakes: a review. In Limnology Now: A Paradigm of Planetary Problems, Margalef, R. (editor), Elsevier Science, Amsterdam.
109. Imboden, D. and Wuest, A. (1995). Mixing mechanisms in lakes, in Lerman, A., Imboden, D., and Gat, J., eds., Physics and Chemistry of Lakes: Berlin, Springer-Verlag, p. 83-138.
110. Isobe, M., Nishimura, H. and Horikawa, K. (1982). Theoretical considerations on perturbation solutions for waves of permanent type. Bulletin Faculty Eng., Yokohama Nat. Univ., Japan, Vo1. 31, pp.29-57.
111. Ivey, G.N. and Nokes, R.I. (1989). Vertical mixing due to the breaking of critical internal waves in sloping boundaries. J. Fluid Mech., 204: 479-500.
112. Ivey, G.N. and Nokes, R.I. (1990). Mixing driven by the breaking of internal waves against sloping boundaries. Proceedings of International Conference on Physical Modelling of Transport and Dispersion, MIT, Boston, ED429 GI.
113. Ivey, G.N., Silva, P. De, and Imberger, J. (1995). Internal waves, bottom slopes and boundary mixing. Proc. 1995 'Aha Huliko'a Hawaiian Winter Workshop on Topographic Effects in the Ocean, P. Muller and D. Henderson (editors), U. Hawaii, Honolulu, HI, 199-205.
114. Ivey, G.N., Winters, K.B. and De Silva, I.P.D. (2000). Turbulent mixing in a sloping benthic boundary layer energized by internal waves. J. Fluid Mech., 418:59-76.
115. Jacobitz, F.G., Sarkar, S. and Van Atta, C.W. (1997). Direct numerical simulations of the turbulence evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech., 342: 231-261.
116. Jacobs, W. (1997). The effect of density stratification on surface and internal gravity waves, B.Eng (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia.
117. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia.
118. Johnson, D.R., Weidemann, A., and Pegau, W.S. (2001). Internal tidal bores and bottom nepheloid layers. Continental Shelf Research, 21: 1473-1484.
119. Cooker, M.J., Peregrine, D.H., Vidal, C. and Dold, J.W. (1990). The interaction between a solitary wave and a submerged semicircular cylinder. J. Fluid. Mech. 215: 1-22.
120. Joseph, R.I. (1977). Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen. 10, L225-L227.
121. Kaltenbach, H.J., Gerz, T. and Schumann, U. (1994). Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech., 280: 1-40.
122. Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech., 159: 19-53.
123. Katz, E.J. (1967). Effect of the propagation of internal waves in underwater sound transmission. J. Acoustic Society of America, 42: 83-87.
124. Kay, D.J. and Jay, D.A. (2003). Interfacial mixing in a highly stratified estuary - 1. Characteristics of mixing. J. Geophys. Res., 108(C3): 3072, doi:10.1029/2000JC000252.
125. Keulegan G.H. (1953). Characteristics of internal solitary waves. J Res Nat Bur Standards. 51: 133-140.
126. Khatiwala, S. (2003). Generation of internal tides in an ocean of finite depth; analytical and numerical calculations. Deep-Sea Res., 50: 3-21
127. Kjerfve, B. (1988). Hydrodynamics of Estuaries. Vol. I: Estuarine Physics. 163 pp. CRC Press. Boca Raton.
128. Kjerfve, B. (1988). Hydrodynamics of estuaries. Vol. II: Case Studies. 125 pp. CRC Press. Boca Raton.
129. Komori, S., Ueda, H., Ogino, F. and Mizushina, T. (1983). Turbulent structure in stably stratified open-channel flow. J. Fluid Mech., 130: 13-26.
130. Koop, G. and Browand, F.K. (1979). Instability and turbulence in stratified fluids with shear. J. Fluid Mech., 93: 135-159.
131. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251.
132. Korteweg, D.J. and De Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Phil. Magazine, 39(5): 422-443.
133. Krauss, W. (1981). The erosion of the pycnocline. J. Phys. Oceanogr.. 11: 415-433.
134. Kubota, T., Ko, D.R.S. and Dobbs, L.D. (1978). Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth. AIAA J. Hydrodyn., 12: 157-165.
135. Kuo, C.F. (2005). Experimental study on the evolution and effect of bottom obstacle on internal solitary wave. Master thesis, Institute of Physical Oceanography., National Sun Yat-sen University, Taiwan. (In Chinese)
136. Kundu, P. K. (1993). On internal waves generated by traveling wind. J. Fluid Mech., 254: 529-559.
137. Laitone, E.V. (1960). The second approximation to cnoidal and solitary waves. J. Fluid Mech., 9: 430-444.
138. Lamb, H. (1932). Hydrodynamics. 6th ed. NY: Dover Publications, Republished in 1945.
139. Lamb, K.G. (1994). Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge, J. Geophys. Res., 99: 843-864.
140. Lamb, K.G. (2002). A numerical investigation of solitary internal waves with trapped cores formed via shoaling. J. Fluid Mech., 451: 109-144.
141. Lamb, K.G. (2004). On boundary-layer separation and internal wave generation at the Knight Inlet sill, Proc. Roy. Soc. Lond. A, 459: 2305-2337.
142. Lamb, K.G. (2004). Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys. Res. Lett, 31, doi:10.1029/2003GL019393.
143. LeBlond, P.H. and Mysak, L.A. (1978). Waves in the Ocean. Amsterdam: Elsevier.
144. Leder, N. (2002). Wind-induced internal wave dynamics near the Adriatic shelf break. Continental Shelf Research, 22: 445-463.
145. Lee C.Y. and Beardsley, R.C. (1974). The generation of long nonlinear internal waves in a weakly stratified shear flow, J. Geophys. Res., 79: 453-462.
146. Legg, S. and Adcroft, A. (2003). Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33: 2224-2246.
147. Legg, S. (2004a). Internal tides generated on a corrugated continental slope Part I; cross-slope barotropic forcing. J. Phys. Oceanogr., 34: 156-173.
148. Legg, S. (2004b). Internal tides generated on a corrugated continental slope Part II; along slope barotropic forcing. J. Phys. Oceanogr., 34: 1824-1838.
149. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea,” Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese)
150. Liu, A.K., Holbrook, J.R. and Apel, J.R. (1985). Nonlinear internal wave evolution in the Sulu Sea. J. Phys. Oceanogr., 15: 1613-1624.
151. Liu, A.K. (1988). Analysis of nonlinear internal waves in the New York Bight. J. Geophys. Res. 93: 122-317.
152. Liu, A.K., Chang, Y.S., Hsu, M.K. and Liang, N.K. (1998). Evolution of nonlinear internal waves in East and South China Seas. J. Geophys. Res., 103: 7995-8008.
153. Liu, A.K. and Hsu, M.K. (2004). Internal wave study in the South China Sea using Synthetic Aperture Radar. International Journal of Remote Sensing, 25: 1261-1264.
154. Losada, M.A., Vidal, C. and Medina, R. (1989). Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophys. Res., 94: 557-566.
155. Love, A.E.H. (1891). Wave-motion in a heterogeneous heavy liquid. Proc. London Math. Soc., 22: 307-316.
156. Lynch, J.F., Jin, G., Pawlowicz, R., Ray, A.D., Plueddemann, J., Chiu, C.S., Miller, J.H., Bourke, R.H., Parsons, A.P., and Muench, R. (1996). Acoustic travel-time perturbations due to shallow-water internal waves and internal tides in the Barents Sea Polar Front: Theory and experiment. J. Acoustic Society of America, 99: 803-821.
157. Martin, A.J., Walker, S.A. and Easson, W.J. (1998). An experimental investigation of solitary internal waves. Proc. 17th Inter. Conf. Offshore Mech. & Arctic Eng., ASME.
158. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916.
159. Maurer, J., Hutter, K. and Diebels, S. (1996). Viscous effects in internal waves of two-layered fluids with variable depth. Eur. J. Mech. B-Fluids, 15: 445-470.
160. Lynett, P. and Liu, P.L.F., (2002). A two-dimensiona l depth-integrated model for internal wave propagation. Wave Motion, 36: 221-240.
161. Martin, A.J. (1997). A PhD thesis on internal waves (http://www.mech.ed.ac.uk/~ally/thesis).
162. Matsuno, Y. (1993) A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916.
163. Maxworthy, T. (1979). A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84: 338-346.
164. Michallet, H. and Barthelemy, E. (1997). Ultrasonic probes and data processing to study interfacial solitary waves. Exp. Fluid., 22: 380-386.
165. Michallet, H. and Barthelemy, E. (1998). Experimental study of large interfacial solitary waves. J. Fluid Mech., 366: 159-177.
166. Michallet, H. and Ivey, G.N. (1999). Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res., 104 (C6): 13467-13477.
167. Monismith, S.G. (1986). An experimental study of the upwelling response of stratified reservoirs to surface shear stress. J. Fluid Mech., 171: 407-439.
168. Mortimer, C.H. (1952). Water movements in lakes during summer stratification: Evidence from the distribution of temperature in Windermere, Philos. Trans. R. Soc. London, Ser. B, 236: 355-404.
169. Mortimer, C. H. (1974). Lake hydrodynamics. Mitt. Intl Verein. Limnol., 20: 124-197.
170. Muller, P., Holloway, G., Henyey, F. and Pomphrey, N. (1986). Nonlinear interactions among internal gravity waves. Reviews of Geophysics, 24(3): 493-536.
171. Muller, P., and Liu X. (2000a). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J. Phys. Oceanogr., 30: 532-549.
172. Muller, P., and Liu X. (2000b). Scattering of internal waves at finite topography in two dimensions. Part II: Spectral calculations and boundary mixing. J. Phys. Oceanogr., 30: 550-563.
173. Munroe, J. R. and K. G. Lamb (2005). Topographic amplitude dependence of internal wave generation by tidal forcing over idealized three-dimensional topography, J. Geophys. Res., 110, (C2), 2521-2537.
174. Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6.
175. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition, 3(9): 1893-1896.
176. Nino, Y., Caballero, R. and Reyes, L. (2003). Mixing and interface dynamics in a two-layer stratified fluid due to surface shear stress. Journal of Hydraulic Research, 41(6): 609-621.
177. Noble, M.A., and Xu, J.P. (2003). Observations of large-amplitude sheared cross-shore current pulses over the shelf break, Santa Monica, CA. Marine Environmental Research, Special Issue on Santa Monica Bay, 56: 127-149.
178. Ono, H. (1975). Algebraic solitary waves in stratified fluid. J. Phys. Soc. Japan, 39: 1082-1091.
179. Osborne, A.R., Burch, T.L. and Scarlet, T.I. (1978). The influence of internal waves on deepwater drilling. J. Petroleum Tech., 30: 1497-1504.
180. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (4443): 451-460.
181. Palmarsson, S., Schladow, S.G., Steissberg, T.E., Hook, S.J. and Prata, A.J. (2004) An extraordinary upwelling event in a deep thermally stratified lake. Geophys. Res. Letters, 31, doi:10.1029/2004GL020392.
182. Partch, E.N. and Smith, J.D. (1978). Time dependent mixing in a salt wedge estuary. Estuarine, Coastal and Marine Science, 6: 3-19.
183. Perry, R.B. and Schimke, G.R. (1965). Large-amplitude internal waves observed off the northwest coast of Sumatra. J. Phys. Oceanogr., 70(10): 2319-2324.
184. Peters, H. (1997). Observations of stratified turbulent mixing in an estuary: Neap-to-spring variations during high river flow. Estuarine, Coastal Shelf Sci., 45(1): 69-88.
185. Phillips, O.M. (1977). The Dynamics of the Upper Ocean (2nd ed.). Cambridge University Press.
186. Piccirillo, P.S. and Van Atta, C.W. (1995). The evolution of a uniformly sheared thermally stratified turbulent flow. J. Fluid Mech., 334: 61-86.
187. Piat, J.F. and Hopfinger, E.J. (1981). A boundary layer topped by a density interface. J. Fluid Mech., 113: 411-432.
188. Pierini, S. (1989). A model for the Alboran Sea internal solitary waves, J. Phys. Oceanogr.., 19: 755-772.
189. Ramp, S.R., Tang, T.Y., Duda, T.F., Lynch, J.F., Liu, A.K., Chiu, C.S., Bahr, F., Kim, H.R. and Yang, Y.J. (2004). Internal solitons in the Northeastern South China Sea Part I: sources and deep water propagation. IEEE J. Oceanic Engineering, 29: 1157-1181.
190. Rayleigh, Lord. (1876). On Waves. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Ser. 5, 1 (4): 257-279.
191. Rayleigh, Lord. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14: 170-177.
192. Ribbe, J. and Holloway, P.E. (2001). A model of suspended sediment transport by internal tides. Cont. Shelf Res., 21(4): 395-422.
193. Rohr, J.J., Itsweire, E.C., Helland, K.N. and Van Atta, C.N. (1988). Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech., 195: 65-77.
194. Roisin, B.C. (1994). Introduction to Geophysical Fluid Dynamics. New Jersey: Prentice-Hall.
195. Rubenstein, D. (1999). Observations of cnoidal internal waves and their effect on acoustic propagation in shallow water. IEEE J. Oceanic Eng., 24: 346-357.
196. Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390.
197. Saffarinia, K. and Kao, T.W. (1996). A Numerical Study of the Breaking of an Internal Soliton and Its Interaction with a Slope. Dynamics of Atmospheres and Oceans, 23, 379-391.
198. Saggio, A. and Imberger, J. (1998). Internal wave weather in a stratified lake. Limnol. and Oceanogr., 43(8): 1780-1795.
199. Sandstrom, H. and Elliot, J.A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work, J. Geophys. Res., 89(C4): 6415-6428.
200. Saucier, F.J. and Chasse, J. (2000). Tidal circulation and buoyancy effects in the St. Lawrence Estuary. Atmos.-Ocean, 38: 505-556.
201. Schroder, M. and Siedler, G. (1989). Turbulent momentum and salt transport in the mixing zone of the Elbe estuary. Estuarine, Coastal and Shelf Science, 28: 615-638.
202. Seabra-Santos, F.J., Renouard, D.P. and Temperville, A.M. (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacles. J. Fluid Mech., 176: 117-134.
203. Segur, H. and Hammack, J.L. (1982). Soliton models of long internal waves. J. Fluid Mech., 118: 285-304.
204. Sellschopp, J. (1997). A towed CTD chain for high-resolution hydrography, Deep-Sea Res., 44: 147-165.
205. Sherwin, T.J. (1988). Analysis of an internal tide observed on the Malin Shelf, North of Ireland. J. Phys. Oceanogr., 18(7): 1035-1050.
206. Sherwin, T.J., Dale, A.C., Inall, M.E. and Jeans, D.R.G. (1996). Linear and non-linear internal tides around the European Atlantic shelf edge. Proc. 6th Int. Conf. Offshore & Polar Eng. (ISOPE), 131-137.
207. Simons, D.B. and Sentürk, F. (1977). Sediment transport technology. Water Resources Publications, Fort Collins, Colorado, USA. 919pp.
208. Slinn, D.N. and Riley, J.J. (1996). Convection, entrainment and mixing-Turbulent mixing in the ocean boundary layer caused by internal wave reflect from sloping terrain. Dynamics of Atmospheres and Oceans, 24: 51-62.
209. Small, R.J. and Hornby, R.P. (2004). A comparison of weakly and fully non-linear models of the shoaling of a solitary internal wave. Ocean Modelling, 8(4): 395-416.
210. Smyth, W.D. and Moum, J.N. (2000). Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12: 1327-1342.
211. Southard, J.B. and Cacchione, D.A. (1972). Experiments on bottom sediment movement by breaking internal waves, in Shelf Sediment Transport, Process and Pattern, ed. by Swift, D.J.P., Duane, D.B. and Pilkey, O.H., Dowden, Hutchinson and Ross, Stroudsburg, PA, 83-98.
212. Spigel, R.H. and Imberger, J. (1980). The classification of mixed-layer dynamics in lakes of small to medium size. J. Phys. Oceanogr. 10: 1104-1121.
213. Stacey, M.W., Pond, S. and Nowak, Z.P. (1995). A numerical model of the circulation in Knight Inlet, British Columbia, Canada. J. Phys. Oceanogr., 25(6): 1037-1062.
214. Staquet, C. (1995). Two-dimensional secondary instabilities in a strongly stratified shear layer. J. Fluid Mech., 296: 73-126.
215. Stevens, C. and Imberger, J. (1996). The initial response of a stratified lake to a surface shear stress. J. Fluid Mech., 312: 39-66.
216. Stevens, C., Lawrence, G., Hamblin, P. and Carmack, E. (1996). Wind forcing of internal waves in a long narrow stratified lake. Dynamics of Atmospheres and Oceans, 24: 41-50.
217. Stevens, C.L., Lawrence, G.A. and Hamblin, P.F. (2004). Horizontal dispersion in the surface layer of a long narrow lake. Journal of Environmental Engineering and Science, 3(5): 413-417.
218. Stevens, C.L., Fisher, T.S.R., Lawrence, G.A. (2005). Turbulent layering beneath the pycnocline in a strongly stratified pit lake. Limnol. and Oceanogr., 50(1): 197-206.
219. Stokes, G.G. (1847). On the theory of oscillatory waves. Trans. Cambridge Phil. Soc., 8: 441-455.
220. Strang, E.J. and Fernando, H.J.S. (2001). Entrainment and mixing in stratified shear flows. J. Fluid Mech., 428: 349-386.
221. Summers H.J. and Emery, K.O. (1963). Internal waves of tidal period off Southern California. J. Geophys. Res., 68(3): 827-839.
222. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188.
223. Tang, T.Y., and Yang, Y.J. (2000). Moored current observations in the South China Sea. Asia Sea International Acoustic Experiment Workshop, Hawaii.
224. Taylor, J.R. (1993). Turbulence and mixing in the boundary layer generated by shoaling internal waves. Dynamics of Atmospheres and Oceans: 19: 233-258.
225. Teoh, S.G., Ivey, G.I. and Imberger, J. (1997). Laboratory study of the interactions between two internal wave rays. J. Fluid Mech., 336: 91-122.
226. Thorpe, S. A., Hall, A. J. and Croft, I. (1972). The internal surge in Loch Ness, Nature, 237: 96-98.
227. Thorpe, S.A. (1973). Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech., 61: 731-752.
228. Thorpe, S.A. (1974). Near-resonant forcing in a shallow two-layer fluid: A model for the internal surge in Loch Ness. J. Fluid Mech., 63: 509-527.
229. Thorpe, S.A. (1975). The excitation, dissipation, and interaction of internal waves in the deep ocean. J. Geophys. Res., 80(3): 328-338.
230. Thrope, S.A. (1987). On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech., 178: 279-302.
231. Thrope, S.A. (1992). Thermal fronts caused by internal gravity waves reflecting from a slope. J. Phys. Oceanogr., 22: 105-108.
232. Thorpe, S.A. (1994a). The stability of statically unstable layers. J. Fluid Mech. 260, 315-331.
233. Thorpe, S.A. (1994b). Statically unstable layers produced by overturning internal gravity waves. J. Fluid Mech. 260: 333-350.
234. Thrope, S.A. (1999). Fronts formed by obliquely reflecting internal waves at a sloping boundary. J. Phys. Oceanogr., 29: 2462-2467.
235. Tomasson G.G. and Melville, W.K. (1992). Geostrophic adjustment in a channel: nonlinear and dispersive effects, J. Fluid Mech., 241: 23-57.
236. Trevorrow, M.V. (1998). Observations of internal solitary waves near the Oregon coast with an inverted echo sounder, J. Geophy. Res., 103(C4): 7671-7680.
237. Umeyama, M. and Shintani, T. (2004). Visualization analysis of runup and mixing of internal waves on an upper slope. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130: 89-97.
238. Uncles, R.J. (2002). Estuarine physical processes research: some recent studies and progress. Estuarine, Coastal and Shelf Science, 55: 829-856.
239. Valle-Levinson, A., Jara, F., Molinet, C. and Soto, D. (2001). Observations of intratidal variability of exchange flows over a sill/contraction combination in a Chilean Fjord, J. Geophys. Res., 106(C4), 7051-7064.
240. van Haren, H., Maas, L., Zimmerman, J.T.F., Ridderinkhof, H., Malschaert, H. (1999). Strong inertial currents and marginal internal wave stability in the central North Sea. Geophys. Res. Letters, 26: 2993-2996.
241. Vlasenko, V.I. and Hutter, K. (2001). Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics, 8: 223-239.
242. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr., 32(6): 1779-1793.
243. Walker, L.R. (1973). Interfacial solitary waves in a two fluid medium. Phys. Fluids, 16, 1796-1815.
244. Walker, S.A., Martin, A.J., Easson, W.J. and Evans A.B. (2003). Comparison of laboratory and theoretical internal solitary wave kinematics. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(5): 210-218.
245. Wallace, B.C. and Wilkinson, D.L. (1988). Run-up of internal waves on a gentle slope in a two-layered system. J. Fluid Mech., 191: 419-442.
246. Watson, G. and Robinson, I.S. (1990). A study of internal wave-propagation in the Strait of Gibraltar using shore-based marine radar images. J. Phys. Oceanogr., 20(3): 374-395.
247. Watson, G. and Robinson, I.S. (1991). A numerical-model of internal wave refraction in the Strait of Gibraltar. J. Phys. Oceanogr., 21(2): 185-204.
248. Wei, G., and Kirby J.T. (1995). A time-dependent numerical code for extended Boussinesq equations, J.Waterway, Port, Coastal Ocean Eng., 120: 251-261.
249. Wessels, F. and Hutter, K. (1996) Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr., 26 (1): 5-20.
250. West, J.R. and Shiono, K. (1988). Vertical turbulent mixing processes on ebb tides in partially mixed estuaries. Estuarine, Coastal and Shelf Science, 26: 51-66.
251. Wiegand, R.C. and Carmack, E.C. (1986). The climatology of internal waves in a deep temperate lake. J. Geophys. Res., 91(C3), 3951-3958.
252. Wüest A. and Lorke, A. (2003). Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech., 35: 373-412.
253. Yang, Y.J., Tang, T.Y., Chang, M.H., Liu, A.K., Hsu, M.K. and Ramp, S.R. (2004). Soliton northeast of Tung-Sha island during the ASIAEX pilot studies. IEEE J. Oceanic Engineering, 29: 1182-1199.
254. Zabusky, N.J. and Kruskal, M.S. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15: 240-243.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.132.194
論文開放下載的時間是 校外不公開

Your IP address is 18.191.132.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code