Responsive image
博碩士論文 etd-0121108-031517 詳細資訊
Title page for etd-0121108-031517
論文名稱
Title
以釋氧物質加強受石油碳氫化合物污染地下水之好氧生物復育效率
Application of oxygen-releasing material to enhance in situ aerobic bioremediation of petroleum-hydrocarbon contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-31
繳交日期
Date of Submission
2008-01-21
關鍵字
Keywords
甲基第三丁基醚(MTBE)、BTEX、滲透性反應牆、變性梯度膠體電泳(DGGE)、釋氧物質、自然衰減
oxygen releasing material, permeable reactive barrier, biodegradation, bioremediation, MTBE, petroleum hydrocarbon, BTEX
統計
Statistics
本論文已被瀏覽 5664 次,被下載 0
The thesis/dissertation has been browsed 5664 times, has been downloaded 0 times.
中文摘要
受石油碳氫化合物污染之地下水在很多國家已是一項很嚴重的問題,而污染物的來源主要來自於地上或地底下的儲油槽、油品輸送管線以及工業廢水的洩漏。石油碳氫化合物主要由苯、甲苯、乙苯及二甲苯(benzene, toluene, ethylbenzene和xylenes, BTEX)或是甲基第三丁基醚(methyl tertiary-butyl ether, MTBE)、萘(naphthalene)、TMB (1,2,4-trimethylbenzene及1,3,5-trimethylbenzene)所組成,當環境中有這些石油碳氫化合物的物質存在時,將會對生物環境造成影響。物理、化學及生物整治技術皆可以應用於地下水污染物的去除,特別是石油碳氫化合物,像是氣體抽取處理法、化學氧化法及氣體抽除系統等,然而這些技術有的在現地的應用上會有所限制,有些則需要較高的整治花費。
一般而言,最重要的自然衰減機制就是以現地自然存在的微生物來降解污染物。由於大部分的石油碳氫化合物在好氧的條件下都能被微生物所分解,因此在含水層中自然存在的微生物需要一定量的氧氣來降解石油碳氫化合物,而受污染的含水層通常因為氧氣的消耗而轉變為微氧或厭氧的狀態。因此添加氧氣進入地下含水層的方法有很多,包括:利用H2O2與UV產生氫氧根、添加H2O2及注入純氧等方法。但這些方法並不建議使用,因為有可能會因為氣體的大量加入,導致污染團經由揮發而不易控制。
目前最具發展潛力且符合經濟效益之整治技術之ㄧ是利用被動式滲透性反應牆搭配釋氧物質來現場整治受污染之含水層。這種不需額外增加作業期間內任何機械設備、電力以及地下水抽取之技術將使地下水的整治多了一個選擇方向。和傳統地下水整治技術[例如抽取處理法(pump-and-treat)及空氣氣化法(air sparging)]相比,這項系統具有以下各項優點:(1)不需要任何機械設備及電力;(2)不需要做地下水之抽取與補注;(3)現地處理污染之地下水;(4)高經濟效益;以及(5)利用有氧生物反應分解污染物,因此不會將污染物轉移至氣相而造成二次污染。搭配釋氧物質更可自行提供氧氣,促進現地好氧微生物作用。
本研究即依此方向,進行四個主題之研究,第一主題是由滲透性反應牆資料收集,評估判斷後續釋氧物質之適用性;第二主題為釋氧物質製作、特性分析,找出最佳釋氧效率與組成等適當條件;第三主題為包覆膜釋氧物質製作,嘗試不同之黏合材料,評估新型式釋氧物質之可行性;第四主題為以石油碳氫化合物污染場址之土壤,搭配管柱試驗進行現地微生物降解評估,以作為未來是否可搭配現地釋氧反應牆系統之參考依據。
第一主題為滲透性反應牆文獻收集。關於滲透性反應牆之設計,必須先依照現地的場址了解受污染區域的環境特性及適用的整治方式。場址特性包括污染物的分布、水文地質、地質化學及地工技術等;整治方式的考量則須以反應介質的選擇為初步,進行污染物處理技術評估、水力性質、地質化學、環境相容性及成本估算等。反應介質的選擇主要考慮因素為污染物的種類,設計上通常可由處理可行性研究取得所需要之參數。例如可藉由批次性實驗求得材料之反應性,如降解半衰期、吸附動力及吸附量等;由地下水管柱實驗模擬現地下水流速及反應牆內的停留時間,並且可同時得到污染物沉澱或飽和所達到的時間,以及水質變化的情形。於評估過程中,可利用水力模式及相關係數估算進行模擬,作為實際建造時之參考依據。最後進行處理能力之試驗,包括放入材質之反應速率、水力特性及長久性評估。
第二主題為釋氧物質之製作與測試。在本研究中,以石膏及水泥做為凝固劑進行實驗,並以批次實驗測試釋氧物質的相關特性,預期達到以下的目標:(1)研發可於含水層持續供氧之釋氧物質(2)決定釋氧物質最適當的組成(3)評估釋氧物質的釋氧率及使用期限。由研究結果顯示,設計的釋氧物質有良好的長期釋氧能力。利用釋氧物質可應用於持續釋放氧氣以增加現地的好氧生物復育。以水泥為凝固劑來說:#1組釋氧率是各組中之最高值,為0.087 mg O2/g rock;#1及#4之組成有較高之氧量回收率。因此採用#1或#4之組成,應可製成較有效率及維持度較久之釋氧物質。
第三主題為包覆膜釋氧物質製作與測試。本研究所使用之核藻酸鈉為天然性材質,且實驗材料中除過氧化鈣之外,並無造成pH值上升之其他成分,又可自行提供氧氣,營造現地好氧的環境,增進好氧微生物對污染物之降解效果,對於應用於現地污染整治技術上,具有對環境友善之良好應用性。實驗結果顯示,以實驗2所製成包覆膜釋氧物質包覆效果最好,組合條件以氯化鋇濃度0.3 M;釋氧物質之重量組成比例為CaO2:核藻酸:砂=1.0:8.3:1.0較佳;此組合條件之效果包覆性好且可持續釋放氧氣。在包覆膜穩定測試方面,以3層的核藻酸鈉進行包覆為佳。另外,核藻酸鈉製成之包覆膜在2個月左右即有破損的問題尚需考量。
第四主題為現地微生物降解污染物之管柱試驗。本研究是以受石油碳氫化合物污染場址之土壤進行現地微生物降解評估。管柱共4根,長30公分,實驗以連續流的方式進行。管內填充污染場區含水層土壤,通過管柱土壤之流速為0.263 m/day,與現地符合。基質調配方式是於污染場址採集之地下水中,加入苯、甲苯、乙苯、二甲苯、TMB (BTEX)及MTBE等污染物配製於密閉水袋中,提供土壤中微生物主要基質來源。管柱BTEX降解率中,管柱1降解率介於13-79%之間,管柱2降解率介於16-89%,管柱3降解率介於0-95%,管柱4降解率介於0-98%之間。管柱初期降解百分比升高顯示有吸附現象。於13天降解率下降,而後又逐漸增加,顯示具有有效的生物降解情形產生。整體而言可看出降解趨勢產生。MTBE具有不易降解且不吸附特性,只有在管柱4於後期較有明顯的降解趨勢。四根管柱的分析結果其總生菌數皆高於原始土壤,介於2.45×105-2.35×106 CFU/g of soil之間,顯示微生物能適應管柱中的有機物濃度,並有增長的趨勢。總生菌數分析結果顯示,隨著污染物濃度逐漸降低的趨勢,而微生物卻是逐漸的增加,因此推測微生物對目標污染物具有進行分解之能力。4根管柱於不同時間以變性梯度膠體電泳(denaturing gradient gel electrophoresis, DGGE)進行菌相趨勢之觀測結果顯示,隨著濃度及時間的改變,皆有明顯的亮帶產生,表示土壤中具有不同的優勢菌種存在。
Abstract
Groundwater contamination by petroleum hydrocarbons has become one of the serious environmental problems in many countries. The sources of petroleum-hydrocarbon contaminants may be released from above ground and underground storage tanks, and pipelines. Petroleum hydrocarbons are mainly composed of benzene, toluene, ethyl- benzene, and xylems (BTEX), and other constituents such as methyl-tert-butyl ether (MTBE), naphthalene, 1,3,5-trimethylbenzene (1,3,5-TMB), and 1,2,4-trimethylbenzene (1,2,4-TMB). It is generally recognized that petroleum hydrocarbons have high risks to environmental receptors when hydrocarbon releases occur. Various biological, physical, and chemical remediation technologies (e.g. pump and treat, air sparging, enhanced bioremediation, and chemical oxidation) can be used to remediate petroleum-hydrocarbon contaminated groundwater. However, many of these techniques are typically costly or have limited applications.

Permeable reactive barriers (PRBs) are a promising technology for the passive and in situ treatment of contaminated groundwater. A PRB can be defined as “an emplacement of reactive materials in the subsurface designed to intercept a contaminant plume, provide a preferential flow path through the reactive media, and transform the contaminant(s) into environmentally acceptable forms to attain remediation concentration goals at points of compliance.” The oxygen release materials can be emplaced in the PRBs to passive increase dissolved oxygen (DO) in the subsurface to enhance the intrinsic biodegradation of dissolved hydrocarbons.

In the first part of this study, guidelines for PRBs installation have been developed for the remediation of petroleum hydrocarbons, heavy metals, and organic solvents contaminated groundwater. PRB is a cost-effective approach for the remediation of contaminated aquifers. As contaminated groundwater moves through a permeable reactive barrier, the contaminants are scavenged or degraded, and uncontaminated groundwater emerges from the downgradient side of the reactive zone. The permeable reactive barrier concept has several advantages over other remediation technologies currently in use (e.g., pump and treat, air sparging), including absence of mechanical facilities and the electric power, no groundwater extraction and reinjection, treatment in situ, and cost-effective. The first part of this study presents the designs, applications, and case studies of PRB systems on groundwater remediation.

In the second part of this study, oxygen release materials have been constructed and evaluated for the appropriate components in batch experiments. Microbial degradation of petroleum hydrocarbons in groundwater can occur naturally. Since the petroleum-hydrocarbons are generally degraded faster under aerobic conditions, aerobic bioremediation can be applied to enhance the biodegradation of petroleum-hydrocarbons within of the plume if oxygen can be provided to the subsurface economically. Batch experiments were conducted to design and identify the components of the oxygen-releasing materials. Cement and gypsum were used as a binder in this mixtures experments.

(1) using cement as the binding material
The mixtures of the oxygen release material were prepared by blending cement, peat, sand, ethylene-vinyl acetate copolymer(EVA), calcium peroxide (CaO2), and water together at a ratio of 1.0:0.18:0.20:0.10:1.12:1.74 by weight. Cement was used as a binder and regular medium filter sand was used to increase the permeability of the mixture. Calcium peroxide releases oxygen upon contact water. The designed material with a density of 1.9 g/cm3 was made of 3.5 cm cube for the batch experiment. Results show that the oxygen release rate of the material is 0.046 mg O2/day/g rock. The oxygen release material was able to remain active in oxygen release for more than three months.

(2) using gypsum as the binding material
The mixtures of the oxygen release material were prepared by blending gypsum, CaO2, sand, and water together at a ratio of 1:0.5:0.14:0.75 by weight. Gypsum was used as a binder and regular medium filter sand was used to increase the permeability of the mixture. Calcium peroxide releases oxygen upon contact water. The designed material with a density of 1.1 g/cm3 was made of 3.5 cm cube for the batch experiment. Results show that the oxygen release rate of the material is 0.031 mg/day/g. The oxygen release material was able to remain active in oxygen release for more than three months.

In the third part of this study, immobilization technology was applied to produce the low permeability wrapping film for the construction of oxygen-releasing granular materials. The mixtures of the oxygen release material were prepared by blending alginate, CaO2, and sand together at a ratio of 8.3:1.0:1 by weight. The low permeability wrapping film of the oxygen release material was able to remain active in oxygen release for two months.

In the fourth part of this study, a laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system on the bioremediation of petroleum-hydrocarbon contaminated groundwater. This system was performed using a series of continuous-flow glass columns including four consecutive soil columns. Simulated petroleum-hydrocarbons contaminated groundwater with a flow rate of 0.263 m/day was pumped into this system. In the column experiment, the samples of column influent and specified sampling ports were collected and analyzed for pH, DO, BTEX, MTBE, and microbial populations. Results show that up to 99% of BTEX removal was observed in this passive system.

Results from this study would be useful in designing an efficient and cost-effective passive oxygen-releasing and bioremediation system to remediate petroleum- hydrocarbon contaminated aquifer.
目次 Table of Contents
目 錄
中文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ III
英文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ VI
目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ IX
圖目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ XII
表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ XI
第一章 滲透性反應牆‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-1
1.1前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-1
1.2文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-2
1.3滲透性反應牆之適用條件‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-5
1.4滲透性反應牆之優缺點‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-7
1.5選擇流程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-8
1.6滲透性反應牆之反應機制‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-10
1.7設計基本考量‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-12
1.8參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1-17

第二章 釋氧物質‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-1
2.1前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-1
2.2研究方法及步驟‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-4
2.2.1以水泥為凝固劑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-4
2.2.2以石膏為凝固劑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-7
2.3結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-9
2.3.1以水泥為凝固劑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-9
2.3.2以石膏為凝固劑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-17
2.4釋氧整治牆之設計‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-21
2.4.1以水泥釋氧物質為例‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-21
2.4.2以石膏釋氧物質為例‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-22
2.5結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-24
2.5.1以水泥為凝固劑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-24
2.5.2以石膏為凝固劑‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-25
2.6參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 2-26

第三章 包覆膜釋氧物質‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-1
3.1前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-1
3.2文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-2
3.3研究方法及步驟‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-3
3.3.1設計包覆膜釋氧物質之組成‥‥‥‥‥‥‥‥‥‥‥‥ 3-3
3.3.2包覆膜穩定測試‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-3
3.3.3釋氧物質組合實驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-3
3.3.4批次反應實驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-4
3.4 結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-5
3.5 結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-11
3.6 參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3-12

第四章 管柱實驗‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-1
4.1 前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-1
4.1.1研究緣起‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-1
4.1.2研究目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-3
4.2文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-4
4.3影響現地地下水生物復育系統之各項因子‥‥‥‥‥‥‥‥‥ 4-7
4.3.1化學組成‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-7
4.3.2濃度及毒性‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-8
4.3.3溶解度‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-9
4.4場址背景相關資料‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-11
4.4.1土壤污染來源‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-11
4.4.2土壤種類‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-11
4.4.3地下水‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-11
4.5 材料與方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-13
4.5.1 實驗設備‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-13
4.5.2 分析方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-14
4.5.3土壤之總生菌數測定方法‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-16
4.5.4 菌相鑑定方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-16
4.6 結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-19
4.6.1 管柱濃度變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-19
4.6.2 降解百分比‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-26
4.6.3 BTEX與MTBE的降解速率‥‥‥‥‥‥‥‥‥‥‥‥ 4-27
4.6.4 總生菌數‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-30
4.6.5 營養鹽‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-31
4.6.6 管柱微生物變化‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-32
4.7 結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-34
4.8 參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 4-35

第五章 總結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 5-1
參考文獻 References
Ahmad F., Schnitker S. P. and Newell C. J. (2007) “Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers”. Journal of Contaminant Hydrology, 90, pp.1-20.
Alez, G. G., Herrera, M.G., Garc_ýa, M.T., Pe~na, M.M. (2001) ”Biodegradation of phenol in a continuous process comparative study of stirred tank and fluidized-bed bioreactors”. Bioresource Technology, 76, pp.245-251.
Applied Power Concepts, Inc. CA. (1993) “ Operation Procedure”. 93-MGO2-1.
Barton C. S., Stewart D. I., Morris,K., and Bryant D. E. (2004) “Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB”, Journal of Hazardous Materials, B116, pp.191-204.
Bedient, P. B., Rifai, H. S., Newell, C. J. (1999) “Ground Water ContaminationTransport and Remediation”. PTR Prentice-Hall, Inc., New Jersey.
Borden, R. C. (2007) “Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier”. Journal of Contaminant Hydrology, 94, pp.13-33
Borden, R. C., Kao, C. M. (1992)“Evaluation of Groundwater Extraction for Remediation of Petroleum Contaminated Aquifers”. Water Environment Research, 64, No. 1.
Borden, R.C., Goin, R. T., Kao, C. M. (1997) “Control of BETX Migration Using a Biologically Enhanced Permeable Barrier”. Ground Water Monitoring and Remediation, Winter, 17, No.1.
Boulding, J. R. (1996) “EPA Environment Assessment Sourcebook”. Am Arbor Press, Inc., Chelsea, MI.
Bransfield, S. J., Cwiertny, D. M., Livi, K. and Fairbrother, D. H. (2007) “Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms”. Applied Catalysis B-Environmental, 76, 3-4, pp.348-356.
Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D., Meunier, J. F. (2006) “Blais, Bioremediation of hazardous wastes - a review”. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10, pp.59-72.
Chen, K. F., Kao, C. M., Chen, T. Y., Weng, C. H., Tsai, C. T. (2006)“Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site”. Environmental Geology, 50, pp.439-445.
Chen, K. F., Kao, C. M., Hsieh, C. Y., Chen, S. C. and Chen, Y. L. (2005a) “Natural biodegradation of MTBE under different environmental conditions: Microcosm and microbial identification studies”, Bulletin of Environmental Contamination and Toxicology, 74(2), pp.356-364.
Chen, K. F., Kao, C. M., Wang, J. Y. and Chien, C. C. (2005b) “Natural attenuation of MTBE at two petroleum-hydrocarbon spill sites”, Journal of Hazardous Materials, 125 (1-3), pp.10-16.
Chizuko, M. N., Hisayoshi, I., Kashihara, M., Tanaka, M., Arita, M., S Miyoshi, H. I., Shinoda, S. (2006) “Biodegradation of dichloromethane by the polyvinyl alcohol-immobilized methylotrophic bacterium Ralstonia metallidurans PD11”. Appl Microbiol Biotechnol, 70, pp. 625-630.
Choe, S., Lee, S. H., Chang, Y. Y., Hwang, K. Y. and Khim, J. (2001) “Rapid reductive destruction of hazardous organic compounds by nanoscale Fe-0” Chemosphere, 42, pp.367-372.
Conea, J. L., Wright, J. (2006) “An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd”. Applied Geochemistry, 21, pp.1288-1300.
Dias, J. C. T., Rezende, R. P., Linardi, V. R. (2001) “Bioconversion of nitriles by Candida guilliermondii CCT 7207 cells immobilized in barium alginate”. Appl. Microbiol. Biotechnol. 56, pp.757-761 .
Domenico, P. A., Schwartz, F. W. (1998) “Physical and Chemical Hydrology”. John Wiley & Son, Inc. New York.
Dursun, A. Y., Tepe, O. (2005) ”Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha”. Journal of Hazardous Materials B, 126, pp.105-111.
Gavaskar, A. R. (1999) “Design and construction techniques for permeable reactive barriers”, Journal of Hazardous Materials, 68, pp.41-71.
Gusmao A. D., de Campos T. M. P., Nobre M. D. M. and Vargas E. D. (2004) “Laboratory tests for reactive barrier design”, Journal of Hazardous Materials, 110, pp.105-112.
Jeff R. Z., Mark A. W. John T. N. (2003)“Aerobic Biodegradation of Methyl Tert-Butyl Ether in Gasoline-Contaminated Aquifer Sediments”. Journal of Environmental Engineering, pp. 642-650.
Jorgensen, K. S. (2007) “In situ bioremediation”. Advances in Applied Microbiology, 61, pp.285-305.
Kao, C. M., Borden, R. C. (1992) “Denitrification of BETX Using Nutrient Briquets as the Nutrient Source: Laboratory Microcosm and Colum Studies”. The Third Subsurface Restoration Conference, Dallas, TX.
Kao, C. M., Borden, R. C. (1994) “Enhanced Aerobic Degradation of Gasoline Contaminated Aquifer by Oxygen-releasing Barrier”. Hydrocarbon Biodegradation, CRC Press, Boca Raton, FL.
Kao, C. M., Borden, R. C. (1997) “Enhance Biodegradation of BETX in a Nutrient Briquet-Peat Barrier System”. Journal of Environmental Engineering, 123(1), pp.18-24.
Kao, C. M., Huang, W. Y., Chang, L. J., Chien, H. Y. and Hou, F. (2005) “Application of monitored natural attenuation to remediate a petroleum- hydrocarbon spill site”, Water Science and Technology, 53, pp.321-328.
Kao, C. M., Prosser, J. (2001) ”Evaluation of natural attenuation rate at a gasline spill site”. Journal of Hazardous Materials, B82, pp.275-289.
Kao, C. M., Wang, C. C. (2000) “Control of BTEX migration by intrinsic bioremediation at a gasoline spill site”. Water Research, 34(13), pp.3413-3423.
Kao, C. M., Wu, M. J. (2000) “Enhanced TCDD degradation by Fenton's reagent preoxidation”. Journal of Hazardous Materials, 74(3), pp.197-211.
Kelin, R. M. (2004) “Engineered passive bioreactive barriers: risk-managing the legacy of industrial soil and groundwater pollution”, Current Opinion in Microbiology, 7 (3), pp.227-238.
Landmeyer, J., Chapter, F., Herlong, H., Bradly, P. (2001) “Methyl tert-Butyl Ether Biodegradation by Indigenous Aquifer Microorganisms under Natural and Artificial Oxic Conditions”. Environmental Science & Technology, 35, pp.1118-1126.
Lawrence C. D., Larry E. E. (2004)“A Review of Bioremediation and Natural Attenuation of MTBE”. Environmental Progress, 23(3), pp.243-252.
Lenka, V., Jan N., Martina S. and Martin K. (2006) “The bio filtration permeable reactive barrier: Practical experience from Synthesia”, International Biodeterioration & Biodegradation, 58, pp.224-230.
Lien, H. L. and Wilkin R. T. (2005) “High-level arsenite removal from groundwater by zero-valent iron”, Chemosphere, 59, pp.377-386.
Liu, S. J., Jiang, B., Huang, G. Q., Li, X. G. (2006)“Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier”. Water Research, 40, pp.3401-3408.
Liu, Y., Phenrat, T., Lowry, G. V. (2007) “Effect of TCE concentration and dissolved groundwater solutes on NUI-Promoted TCE dechlorination and H-2 evolution”. Environmental Science & Technology, 41, 22, pp.7881-7887.
Morrison, S. J., Metzler, D. R., and Dwyer, B. P. (2002) “Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling”, Journal of Contaminant Hydrology, 56, pp.99-116.
Morrison, S. J., Spangler, R. R. (1993)“Chemical Barriers for Controlling Groundwater Contamination”. Environmental Progress, 12(3), pp.175-181.
NCDWQ. (1997)“Groundwater Section Guidelines for the Investigation and Remediation of Soil and Groundwater”. North Carolina Division of Water Quality.
Nyer, E. K., Fam, S., Kidd, D. F., Johns II, F. J., Palmer, P. L., Boettcher, G., Crossman, T. L., Suthersan, S. S. (1996) “In Situ Treatment Technology”. Geraghty & Miller Environmental Science and Engineering Series, Lewis Pub.
Office of Underground Storage Tank (OUST). (1990) “LUST Trust Fund Monthly Progress Report”. US. EPA, Washington, D.C.
Rael, J., Shelton, S. Member, ASCE, and Dayaye, R. (1995) “Permeable Barriers to Remove Benzene: Candidate Media Evalution”, Journal of Environmental Engineering, pp.411-415.
Rayner, J. L., Snape, I., Walworth, J. L., Harvey, P. M., Ferguson, S. H. (2007) “Petroleum-hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island”. Cold Regions Science and Technology, 48(2), pp.139-153.
Reeter, C., Gavaskar, A., Gupta, N., Sass B. (1997) “Permeable Reactive Wall Remediation of Chlorinated Hydrocarbons in Groundwater Nas Moffett Field”. CA. 1997 Annual Meeting of the American Institute of Hydrology-International Conference on Advances in Ground Water, pp.16-19.
Scow, K. M., Hicks, K. A. (2005)“Natural attenuation and enhanced bioremediation of organic contaminants in groundwater”. Current Opinion in Biotechnology, 16, pp.246-253.
Seagren, E. A., Rittmann, B. E., Valocchi, A. J. (2002) “Bioenhancement of NAPL pool dissolution: experimental evaluation”. Journal of Contaminant Hydrology, 55(1-2), pp.57-85.
Seigrist, R. L., Urynowicz, M. A., West, O. R., Crimi, M. L. and Lowe, K. S. (2001) “Principle and Practices of In Situ Chemical Oxidation Using Permanganate”, Battelle Press.
Siegrist, R. L. (2002) “Fundamentals of In Situ Chemical Oxidation (ISCO)”, Teleconference of In Situ Treatment of Groundwater Contaminated with Non-aqueous Phase Liquids, Dec. 10-11, Chicago, IL.
Soga K., Page J.W.E., Illangasekare T.H., (2004) “A review of NAPL source zone remediation efficiency and the mass flux approach”, Journal of Hazardous Materials, 110, pp.13-27.
Starr, C. M., Cherry, J. A. (1996) “In Situ Remediation of Contaminated Groundwater: The Funnel-and Gate System”. Ground Water, 32, pp.465-467.
Surampalli, R., Banerji, S. (2002) “Long-term performance monitoring at natural attenuation site”. Practice periodical of hazardous, toxic, and radioactive waste management, 6(3), pp.173-176.
Suthersan, S. S. (1997) “Remediation Engineering-Design Concepts”. Geraghty & Miller, Environmental Science and Engineering Series.
U.S. EPA (2002) “A Citizen’s Guide to Permeable Reactive Barrier”
U.S. EPA. (1995) “The hydrocarbon spill screening model(HSSM), Vol. 2: Theoretical background and source codes”. EPA/600/R-94-039b.
U.S. EPA. (2001) “Evaluation of the Protocol for Natural Attenuation of Chlorinated Solvents: Case Study at the Twin Cities Army Ammunition Plant”. EPA/600/R-01/025.
U.S. EPA. (2004) “Performance Monitoring of MNA Remedies for VOCs in Ground Water”. EPA/600/R-04/027.
Walworth, J., Pond, A., Snape, I., Rayner, J. L., Harvey, P. M. (2007) “Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil”. Cold Regions Science and Technology 48, pp.84-91.
Weng, C. H., Lin, Y. T., Lin, T. Y., Kao, C. M. (2007) “Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron”. Journal of Hazardous Materials, 149, 2, pp.292-302.
Williams, R. L., Mayer, K. U., Amos, R. T., Blowes, D. W., Ptacek, C. J., Bain, J. G. (2007) “Using dissolved gas analysis to investigate the performance of an organic carbon permeable reactive barrier for the treatment of mine drainage”. Applied Geochemistry, 22, pp.90-108.
Wilson, R. D., Mackay, D. M., Scow, K.M. (2002) “In situ MTBE biodegradation supported by diffusive oxygen release”. Environmental Science & Technology, 36, pp.190-199.
Wu, Y. W., Huang, G. H., Chakma, A., Zeng, G. M. (2005) “Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation”. Energy Sources, 27, pp.221-232.
Xiong, Z., Zhao, D., Pan, G. (2007) “Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles”. Water Research, 41, 15, pp.3497-3505.
Zhang, T. C. (2003) “Modeling hydraulic characteristics and nitrogen removal in a fixed-bed reactor for septic tank effluent treatment”, Environmental Engineering Sciences, 20(4), pp.347-360.
Zoeckler, J. R., Widdowson, M. A., Novak, J. T. (2003) “Aerobic Biodegradation of Methyl Tert-Butyl Ether in Gasoline-Contaminated Aquifer Sediments”. Journal of Environment Engineering, pp.642-650.
方瑋寧,(2002) “MTBE好氧分解之可行性研究”,國立中山大學環境工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.88.249
論文開放下載的時間是 校外不公開

Your IP address is 18.191.88.249
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code