Responsive image
博碩士論文 etd-0121113-112358 詳細資訊
Title page for etd-0121113-112358
論文名稱
Title
建立斑馬魚類癲癇模式
Establishment of epilepsy-like model in zebrafish
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-26
繳交日期
Date of Submission
2013-01-21
關鍵字
Keywords
行為、抗癲癇藥物、類癲癇模式、斑馬魚、癲癇
behavior, antiepileptic drugs, epilepsy-like model, zebrafish, epilepsy
統計
Statistics
本論文已被瀏覽 5680 次,被下載 0
The thesis/dissertation has been browsed 5680 times, has been downloaded 0 times.
中文摘要
目前已有哺乳類實驗動物模式以供抗癲癇藥物篩選和疾病機轉探討,然而飼養條件高、生物體積大而且需使用較大藥物量大才可進行分析等限制因素。近年來,斑馬魚(Danio rerio, zebrafish)因有體積小、所需藥物劑量低、低成本、成長週期較短、可產生大量的後代且與人類基因70-80%的同源性等優點,已成為一個相當具發展潛力之模式動物,可以被運用於探討人類相關疾病或藥物活性分析上。本研究利用斑馬魚具有發育完整之神經系統之特性,模擬哺乳類動物模式建立斑馬魚癲癇模式。且這個斑馬魚癲癇動物模式可以被臨床藥物所回復。因此,我們認為此模組未來可以應用於快速活體篩選具治療癲癇活性之化合物。
Abstract
To date, some mammalian animal models were established for screening new drugs and investigating the mechanisms of epilepsy. However, there were several limits in mammalian model, such as higher costs in breeding, nursing, bigger size and higher dosage. Recently, zebrafish (Danio rerio) had become a potential model animal, which has some advatnges, such as lower dosage to mammalian, a short reproductive cycle with massive amount of offspring, and its gene homologous to human for 70-80%. Moreover, zebrafish, with a fully developed nervous system, would be a suitable model animal for exploring and analyzing of human CNS disease. Our results revealed that the epilepsy-like zebrafish model could be attenuated by clinical drugs. Therefore, we intended to use this model for a rapid in vivo screening of threaprutic compounds in the future.
目次 Table of Contents
論文審定書…………………………………………………i
誌謝……………………..……………………………….…ii
中文摘要………………………………...........................…iii
英文摘要……….……….………………………………….iv
目錄…….………………………….....………..…………....v
圖次……..…………..…….……………………...................vi
表次…………………….….……………………….……...viii
第壹章:前言………………………...…………………..…1
第貳章:實驗材料與方法…………………………..….......7
第参章:實驗結果.……………………………………..…12
第肆章:討論………………....…………………………...67
參考文獻……………………....……………………....…...71
參考文獻 References
Akimenko, M. A., Johnson, S. L., Westerfield, M., and Ekker, M., 1995, Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish: Development, v. 121, no. 2, p. 347-357.
Alfaro, J. M., Ripoll-Gomez, J., and Burgos, J. S., 2011, Kainate administered to adult zebrafish causes seizures similar to those in rodent models: The European journal of neuroscience, v. 33, no. 7, p. 1252-1255.
Annegers, J. F., Hauser, W. A., and Elveback, L. R., 1979, Remission of seizures and relapse in patients with epilepsy: Epilepsia, v. 20, no. 6, p. 729-737.
Arvin, K. L., Han, B. H., Du, Y., Lin, S. Z., Paul, S. M., and Holtzman, D. M., 2002, Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury: Annals of neurology, v. 52, no. 1, p. 54-61.
Baraban, S. C., Taylor, M. R., Castro, P. A., and Baier, H., 2005, Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression: Neuroscience, v. 131, no. 3, p. 759-768.
Bayer, T. A., Wiestler, O. D., and Wolf, H. K., 1995, Hippocampal loss of N-methyl-D-aspartate receptor subunit 1 mRNA in chronic temporal lobe epilepsy: Acta neuropathologica, v. 89, no. 5, p. 446-450.
Behl, C., Widmann, M., Trapp, T., and Holsboer, F., 1995, 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro: Biochemical and biophysical research communications, v. 216, no. 2, p. 473-482.
Ben-Ari, Y., 1985, Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy: Neuroscience, v. 14, no. 2, p. 375-403.
Ben-Ari, Y., and Dudek, F. E., 2010, Primary and secondary mechanisms of epileptogenesis in the temporal lobe: there is a before and an after: Epilepsy currents / American Epilepsy Society, v. 10, no. 5, p. 118-125.
Berghmans, S., Hunt, J., Roach, A., and Goldsmith, P., 2007, Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants: Epilepsy research, v. 75, no. 1, p. 18-28.
Cilio, M. R., Bolanos, A. R., Liu, Z., Schmid, R., Yang, Y., Stafstrom, C. E., Mikati, M. A., and Holmes, G. L., 2001, Anticonvulsant action and long-term effects of gabapentin in the immature brain: Neuropharmacology, v. 40, no. 1, p. 139-147.
Cockerell, O. C., Johnson, A. L., Sander, J. W., Hart, Y. M., and Shorvon, S. D., 1995, Remission of epilepsy: results from the National General Practice Study of Epilepsy: Lancet, v. 346, no. 8968, p. 140-144.
Dodson, W. E., 1993, Felbamate in the treatment of Lennox-Gastaut syndrome: results of a 12-month open-label study following a randomized clinical trial: Epilepsia, v. 34 Suppl 7, p. S18-24.
Dominguez, M. I., Blasco-Ibanez, J. M., Crespo, C., Nacher, J., Marques-Mari, A. I., and Martinez-Guijarro, F. J., 2006, Neural overexcitation and implication of NMDA and AMPA receptors in a mouse model of temporal lobe epilepsy implying zinc chelation: Epilepsia, v. 47, no. 5, p. 887-899.
Dooley, K., and Zon, L. I., 2000, Zebrafish: a model system for the study of human disease: Current opinion in genetics & development, v. 10, no. 3, p. 252-256.
Du, Y., Ma, Z., Lin, S., Dodel, R. C., Gao, F., Bales, K. R., Triarhou, L. C., Chernet, E., Perry, K. W., Nelson, D. L., Luecke, S., Phebus, L. A., Bymaster, F. P., and Paul, S. M., 2001, Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease: Proceedings of the National Academy of Sciences of the United States of America, v. 98, no. 25, p. 14669-14674.
Egan, R. J., Bergner, C. L., Hart, P. C., Cachat, J. M., Canavello, P. R., Elegante, M. F., Elkhayat, S. I., Bartels, B. K., Tien, A. K., Tien, D. H., Mohnot, S., Beeson, E., Glasgow, E., Amri, H., Zukowska, Z., and Kalueff, A. V., 2009, Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish: Behavioural brain research, v. 205, no. 1, p. 38-44.
Epsztein, J., Represa, A., Jorquera, I., Ben-Ari, Y., and Crepel, V., 2005, Recurrent mossy fibers establish aberrant kainate receptor-operated synapses on granule cells from epileptic rats: The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 25, no. 36, p. 8229-8239.
Escames, G., Guerrero, J. M., Reiter, R. J., Garcia, J. J., Munoz-Hoyos, A., Ortiz, G. G., and Oh, C. S., 1997, Melatonin and vitamin E limit nitric oxide-induced lipid peroxidation in rat brain homogenates: Neuroscience letters, v. 230, no. 3, p. 147-150.
Foster, T. C., Sharrow, K. M., Kumar, A., and Masse, J., 2003, Interaction of age and chronic estradiol replacement on memory and markers of brain aging: Neurobiology of aging, v. 24, no. 6, p. 839-852.
Freitas, R. M., Sousa, F. C., Viana, G. S., and Fonteles, M. M., 2006, Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus: Neuroscience letters, v. 408, no. 2, p. 79-83.
Galanopoulou, A. S., and Moshe, S. L., 2009, The epileptic hypothesis: developmentally related arguments based on animal models: Epilepsia, v. 50 Suppl 7, p. 37-42.
Goldsmith, P., 2004, Zebrafish as a pharmacological tool: the how, why and when: Current opinion in pharmacology, v. 4, no. 5, p. 504-512.
Goldsmith, P., Golder, Z., Hunt, J., Berghmans, S., Jones, D., Stables, J. P., Murphree, L., Howden, D., Newton, P. E., and Richards, F. M., 2007, GBR12909 possesses anticonvulsant activity in zebrafish and rodent models of generalized epilepsy but cardiac ion channel effects limit its clinical utility: Pharmacology, v. 79, no. 4, p. 250-258.
Heo, K., Cho, Y. J., Cho, K. J., Kim, H. W., Kim, H. J., Shin, H. Y., Lee, B. I., and Kim, G. W., 2006, Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice: Neuroscience letters, v. 398, no. 3, p. 195-200.
Hewapathirane, D. S., Dunfield, D., Yen, W., Chen, S., and Haas, K., 2008, In vivo imaging of seizure activity in a novel developmental seizure model: Experimental neurology, v. 211, no. 2, p. 480-488.
Hortopan, G. A., Dinday, M. T., and Baraban, S. C., 2010, Zebrafish as a model for studying genetic aspects of epilepsy: Disease models & mechanisms, v. 3, no. 3-4, p. 144-148.
Jones, N. C., Martin, S., Megatia, I., Hakami, T., Salzberg, M. R., Pinault, D., Morris, M. J., O'Brien, T. J., and van den Buuse, M., 2010, A genetic epilepsy rat model displays endophenotypes of psychosis: Neurobiology of disease, v. 39, no. 1, p. 116-125.
Juan M. Alfaro, J. R.-G. m. a. J. S. B., 2011, Kainate administered to adult zebrafish causes seizures similar to those in rodent models: European Journal of Neuroscience, v. 33, p. 1252–1255.
Kalueff, A. V., Lehtimaki, K. A., Ylinen, A., Honkaniemi, J., and Peltola, J., 2004, Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats: Neuroscience letters, v. 365, no. 2, p. 106-110.
Kalueff, A. V., Minasyan, A., Keisala, T., Kuuslahti, M., Miettinen, S., and Tuohimaa, P., 2006, Increased severity of chemically induced seizures in mice with partially deleted Vitamin D receptor gene: Neuroscience letters, v. 394, no. 1, p. 69-73.
Kalueff, A. V., Minasyan, A., and Tuohimaa, P., 2005, Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice: Brain research bulletin, v. 67, no. 1-2, p. 156-160.
Kaufman, K. R., and Sachdeo, R. C., 2003, Caffeinated beverages and decreased seizure control: Seizure : the journal of the British Epilepsy Association, v. 12, no. 7, p. 519-521.
Kazimi, N., and Cahill, G. M., 1999, Development of a circadian melatonin rhythm in embryonic zebrafish: Brain research. Developmental brain research, v. 117, no. 1, p. 47-52.
Klioueva, I. A., van Luijtelaar, E. L., Chepurnova, N. E., and Chepurnov, S. A., 2001, PTZ-induced seizures in rats: effects of age and strain: Physiology & behavior, v. 72, no. 3, p. 421-426.
Kwan, P., and Brodie, M. J., 2000, Early identification of refractory epilepsy: The New England journal of medicine, v. 342, no. 5, p. 314-319.
Langheinrich, U., 2003, Zebrafish: a new model on the pharmaceutical catwalk: BioEssays : news and reviews in molecular, cellular and developmental biology, v. 25, no. 9, p. 904-912.
Liang, L. P., Ho, Y. S., and Patel, M., 2000, Mitochondrial superoxide production in kainate-induced hippocampal damage: Neuroscience, v. 101, no. 3, p. 563-570.
Macdonald, H., Kelly, R. G., Allen, E. S., Noble, J. F., and Kanegis, L. A., 1973, Pharmacokinetic studies on minocycline in man: Clinical pharmacology and therapeutics, v. 14, no. 5, p. 852-861.
Mackenzie, L., Medvedev, A., Hiscock, J. J., Pope, K. J., and Willoughby, J. O., 2002, Picrotoxin-induced generalised convulsive seizure in rat: changes in regional distribution and frequency of the power of electroencephalogram rhythms: Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, v. 113, no. 4, p. 586-596.
Miller, G., 2010, Is pharma running out of brainy ideas?: Science, v. 329, no. 5991, p. 502-504.
Monaghan, D. T., and Cotman, C. W., 1982, The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography: Brain research, v. 252, no. 1, p. 91-100.
Oby, E., and Janigro, D., 2006, The blood-brain barrier and epilepsy: Epilepsia, v. 47, no. 11, p. 1761-1774.
Olney, J. W., Rhee, V., and Ho, O. L., 1974, Kainic acid: a powerful neurotoxic analogue of glutamate: Brain research, v. 77, no. 3, p. 507-512.
Ortiz, G. G., Sanchez-Ruiz, Y., Tan, D. X., Reiter, R. J., Benitez-King, G., and Beas-Zarate, C., 2001, Melatonin, vitamin E, and estrogen reduce damage induced by kainic acid in the hippocampus: potassium-stimulated GABA release: Journal of pineal research, v. 31, no. 1, p. 62-67.
Pangalos, M. N., Schechter, L. E., and Hurko, O., 2007, Drug development for CNS disorders: strategies for balancing risk and reducing attrition: Nature reviews. Drug discovery, v. 6, no. 7, p. 521-532.
Panula, P., Sallinen, V., Sundvik, M., Kolehmainen, J., Torkko, V., Tiittula, A., Moshnyakov, M., and Podlasz, P., 2006, Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases: Zebrafish, v. 3, no. 2, p. 235-247.
Papalexi, E., Antoniou, K., and Kitraki, E., 2005, Estrogens influence behavioral responses in a kainic acid model of neurotoxicity: Hormones and Behavior, v. 48, no. 3, p. 291-302.
Parng, C., Seng, W. L., Semino, C., and McGrath, P., 2002, Zebrafish: a preclinical model for drug screening: Assay and drug development technologies, v. 1, no. 1 Pt 1, p. 41-48.
Pitkanen, A., and Sutula, T. P., 2002, Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy: Lancet neurology, v. 1, no. 3, p. 173-181.
Pratt, G. D., Kokaia, M., Bengzon, J., Kokaia, Z., Fritschy, J. M., Mohler, H., and Lindvall, O., 1993, Differential regulation of N-methyl-D-aspartate receptor subunit messenger RNAs in kindling-induced epileptogenesis: Neuroscience, v. 57, no. 2, p. 307-318.
Prediger, M. E., Gamaro, G. D., Crema, L. M., Fontella, F. U., and Dalmaz, C., 2004, Estradiol protects against oxidative stress induced by chronic variate stress: Neurochemical research, v. 29, no. 10, p. 1923-1930.
Rubinstein, A. L., 2006, Zebrafish assays for drug toxicity screening: Expert opinion on drug metabolism & toxicology, v. 2, no. 2, p. 231-240.
Schachter, S. C., 2007, Currently available antiepileptic drugs: Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, v. 4, no. 1, p. 4-11.
Schmidt, D., and Loscher, W., 2005, Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms: Epilepsia, v. 46, no. 6, p. 858-877.
Serrano, S., Hughes, D., and Chandler, K., 2006, Use of ketamine for the management of refractory status epilepticus in a dog: Journal of veterinary internal medicine / American College of Veterinary Internal Medicine, v. 20, no. 1, p. 194-197.
Sharma, A. K., Reams, R. Y., Jordan, W. H., Miller, M. A., Thacker, H. L., and Snyder, P. W., 2007, Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions: Toxicologic pathology, v. 35, no. 7, p. 984-999.
Shinozaki, H., and Konishi, S., 1970, Actions of several anthelmintics and insecticides on rat cortical neurones: Brain research, v. 24, no. 2, p. 368-371.
Sloviter, R. S., 1996, Hippocampal pathology and pathophysiology in temporal lobe epilepsy: Neurologia, v. 11 Suppl 4, p. 29-32.
Sowunmi, A., Gbotosho, G. O., Happi, C. T., Folarin, O., Okuboyejo, T., Michael, O., and Fatunmbi, B., 2011, Use of area under the curve to evaluate the effects of antimalarial drugs on malaria-associated anemia after treatment: American journal of therapeutics, v. 18, no. 3, p. 190-197.
Sperk, G., 1994, Kainic acid seizures in the rat: Progress in neurobiology, v. 42, no. 1, p. 1-32.
Stilwell, G. E., Saraswati, S., Littleton, J. T., and Chouinard, S. W., 2006, Development of a Drosophila seizure model for in vivo high-throughput drug screening: The European journal of neuroscience, v. 24, no. 8, p. 2211-2222.
Sun, D. A., Sombati, S., Blair, R. E., and DeLorenzo, R. J., 2002, Calcium-dependent epileptogenesis in an in vitro model of stroke-induced "epilepsy": Epilepsia, v. 43, no. 11, p. 1296-1305.
Sun, D. A., Sombati, S., and DeLorenzo, R. J., 2001, Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced "epilepsy": Stroke; a journal of cerebral circulation, v. 32, no. 10, p. 2344-2350.
Tasker, R. A., Connell, B. J., and Strain, S. M., 1991, Pharmacology of systemically administered domoic acid in mice: Canadian journal of physiology and pharmacology, v. 69, no. 3, p. 378-382.
Teitelbaum, J., Zatorre, R. J., Carpenter, S., Gendron, D., and Cashman, N. R., 1990, Neurological sequelae of domoic acid intoxication: Canada diseases weekly report = Rapport hebdomadaire des maladies au Canada, v. 16 Suppl 1E, p. 9-12.
Tiedeken, J. A., and Ramsdell, J. S., 2007, Embryonic exposure to domoic Acid increases the susceptibility of zebrafish larvae to the chemical convulsant pentylenetetrazole: Environmental health perspectives, v. 115, no. 11, p. 1547-1552.
-, 2009, DDT exposure of zebrafish embryos enhances seizure susceptibility: relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions: Environmental health perspectives, v. 117, no. 1, p. 68-73.
Tryphonas, L., Truelove, J., and Iverson, F., 1990a, Acute parenteral neurotoxicity of domoic acid in cynomolgus monkeys (M. fascicularis): Toxicologic pathology, v. 18, no. 2, p. 297-303.
Tryphonas, L., Truelove, J., Nera, E., and Iverson, F., 1990b, Acute neurotoxicity of domoic acid in the rat: Toxicologic pathology, v. 18, no. 1 Pt 1, p. 1-9.
Weaver, C. E., Jr., Park-Chung, M., Gibbs, T. T., and Farb, D. H., 1997, 17beta-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors: Brain research, v. 761, no. 2, p. 338-341.
Williams, F. E., and Messer, W. S., Jr., 2004, Muscarinic acetylcholine receptors in the brain of the zebrafish (Danio rerio) measured by radioligand binding techniques: Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, v. 137, no. 4, p. 349-353.
Wilson, J. M., Bunte, R. M., and Carty, A. J., 2009, Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio): Journal of the American Association for Laboratory Animal Science : JAALAS, v. 48, no. 6, p. 785-789.
Winter, M. J., Redfern, W. S., Hayfield, A. J., Owen, S. F., Valentin, J. P., and Hutchinson, T. H., 2008, Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs: Journal of pharmacological and toxicological methods, v. 57, no. 3, p. 176-187.
Wise, P. M., Dubal, D. B., Wilson, M. E., Rau, S. W., Bottner, M., and Rosewell, K. L., 2001, Estradiol is a protective factor in the adult and aging brain: understanding of mechanisms derived from in vivo and in vitro studies: Brain research. Brain research reviews, v. 37, no. 1-3, p. 313-319.
Yrjanheikki, J., Tikka, T., Keinanen, R., Goldsteins, G., Chan, P. H., and Koistinaho, J., 1999, A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window: Proceedings of the National Academy of Sciences of the United States of America, v. 96, no. 23, p. 13496-13500.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.173.43.215
論文開放下載的時間是 校外不公開

Your IP address is 54.173.43.215
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code