Responsive image
博碩士論文 etd-0121113-134638 詳細資訊
Title page for etd-0121113-134638
論文名稱
Title
針對大型系統設計具有干擾估測機制之分散式適應性步階迴歸追蹤控制器
Design of Decentralized Adaptive Backstepping Tracking Controllers with Perturbation Estimation for Large-Scale Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-10
繳交日期
Date of Submission
2013-01-21
關鍵字
Keywords
半嚴格回授形式、大型系統、適應性步階迴歸追蹤控制器、分散式控制器、李亞普諾夫穩定理論
semi-strict feedback form, large scale system, adaptive backstepping controller, decentralized controller, Lyapunov stability theorem
統計
Statistics
本論文已被瀏覽 5768 次,被下載 88
The thesis/dissertation has been browsed 5768 times, has been downloaded 88 times.
中文摘要
基於李亞普諾夫穩定度理論,我們針對具有擾動的大型系統提出具有干擾機制之分散式適應性步階迴歸追蹤控制器以解決追蹤問題。受控系統的動態方程式比起純回饋形式更為寬廣。首先將受控系統轉換成具有半嚴格回授的動態系統,且根據步階迴歸控制法則設計分散式追蹤控制器,使得受控系統的輸出可以追蹤到參考訊號。此外,在控制器中加入了適應性與干擾估測機制,其優點分別為對於系統的干擾跟互聯項的上界可不必事先知道,且不須對虛擬控制輸入作微分,以避免設計的過程過度的複雜。另外還可解決動態平面控制(DSC)初始值不能隨意挑選的問題。這樣不僅能保障整個大型系統的穩定度,而且其追蹤的精準度也可以藉由設計的參數來調整。最後本論文提供一個數值範例和一個實際應用來驗證本控制器的可行性。
Abstract
Based on the Lyapunov stability theorem, a decentralized adaptive backstepping tracking control with perturbation estimation scheme is proposed in this thesis for a class of perturbed large scale systems to solve tracking problems. The dynamic equations of the plant is more general than those in the pure feedback form. We first transformed the dynamic equations of the plants into a semi-strict feedback form, then designed the controllers by using backstepping control method, so that the outputs are able to track the reference signals. In addition, perturbation estimation mechanisms are employed so that there is no need to compute the derivatives of the virtual input functions, and the upper bounds of the perturbations as well as perturbation estimation errors are not required to be known in advance either. Therefore, the problems of “explosion of complexity” are totally eliminated. The resultant control scheme guarantees the stability of the whole controlled systems, and the tracking precision can be adjusted by tuning the design parameters. Finally, a numerical example and a practical example are demonstrated to verify the feasibility of the proposed control scheme.
目次 Table of Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . 4
Chapter 2 Design of Adaptive Backstepping Controllers with Estimators 5
2.1 System Descriptions and Problem Formulations . . . .5
2.2 State Transformation and Partition . . . . . . . . . . . . . . . . .8
2.3 Design of Decentralized Controllers . . . . . . . . . . . . . . 11
2.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.5 Design of Decentralized Controllers with Perturbations Estimators embedded in virtual inputs and control inputs . . . . . . . . . . . . . . . . . 26
2.6 Stability Analysis: Perturbation estimators are employed in virtual inputs and control inputs . . . . . . . . . . 33
Chapter 3 Numerical Example 38
3.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Chapter 4 Conclusions 82
Bibliography 83
Appendix A 89
Appendix B 92
參考文獻 References
[1] Z. R. Xi, G. Feng, D. Z. Cheng, and Q. Lu, “Nonlinear decentralized saturated controller design for power systems,” IEEE Transactions on Control Systems Technology, vol. 11, no. 4 , pp. 539-547, 2003.
[2] S. Mehraeen, S. Jagannathan, and M. L. Crow, “Power system stabilization using adaptive neural network-based dynamic surface control,” IEEE Transactions on Power Systems , vol. 26, no. 2 , 2011.
[3] H. Liu, Z. Hu, and Y. Song, “Lyapunov-based decentralized excitation control for global asymptotic stability and voltage regulation of multi-machine power systems,” IEEE Transactions on Power Systems , vol. 27, no. 4 , 2012.
[4] C. Hua and S. X. Ding, “Decentralized networked control system design using T-S fuzzy approach,” IEEE Transactions on Fuzzy Systems Technology, vol. 20, no. 1 , 2012.
[5] L. Bakule and M. Papik, “Decentralized control and communication,” Annual Reviews in Control, vol. 36, pp. 1-10 , 2012.
[6] C. C. Hua, J. Leng, and X. P. Guan, “Decentralized MRAC for large-scale interconnected systems with time-varying delays and applications to chemical reactor
systems,” Journal of Process Control, vol. 22, pp. 1985-1996, 2012.
[7] D. D. Vecchio and N. Petit, “Boundary control for an industrial under-actuated tubular chemical reactor,” Journal of Process Control, vol. 15, pp. 771-784, 2005.
[8] J. L. Wu, “Stabilizing controllers design for switched nonlinear systems in strictfeedback form,” Automatica, vol. 45, pp. 1092-1096, 2009.
[9] W. Li, Y. Jing, and S. Zhang, “Adaptive state-feedback stabilization for a large class of high-order stochastic nonlinear systems,” Automatica, vol. 47, pp. 819-828, 2011.
[10] H. Ye, W. Gui, and Z. P. Jiang, “Backstepping design for cascade systems with relaxed assumption on Lyapunov functions,” IET Control Theory Applications, Vol. 5, no. 5, pp. 700-712, 2011.
[11] C. Hua, G. Feng, and X. Guan, “Robust controller design of a class of nonlinear time delay systems via backstepping method,” Automatica, vol. 44, pp. 567-573, 2008.
[12] C. Hua, P. X. Liu, and X. Guan, “Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems,” IEEE Transaction on
Industrial Electronics, vol. 56, no. 9, pp. 3723-3732, 2009.
[13] X. Zhang and Y. Lin, “Adaptive output feedback tracking for a class of nonlinear systems,” Automatica, vol. 48, pp. 2372-2376, 2012.
[14] X. Luo, X. Wu, and X. Guan, “Adaptive backstepping fault-tolerant control for unmatched nonlinear systems against actuator dead-zone,” IET Control Theory Applications, Vol. 4, no. 5, pp. 879-888, 2010.
[15] Q. Hu, L. Xu, and A. Zhang, “Adaptive backstepping trajectory tracking control of robot manipulator,” J. Franklin Institute, vol. 349, pp. 1087-1105, 2012.
[16] S. Tong, C. Lin, and Y. Li, “Fuzzy-adaptive decentralized output feedback control for large-scale nonlinear systems with dynamic uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, 2010.
[17] S. Tong, C. Lin, Y. Li, and H. Zhang, “Adaptive fuzzy decentralized output feedback control for large-scale nonlinear systems with time-varying delays and unknown
high-frequency gain sign,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol.41. no.2, 2011.
[18] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc. New York, 1995.
[19] Z. Zhang, S. Xu, and Y. Chu, “Adaptive stabilisation for a class of non-linear state time-varying delay systems with unknown time-delay bound,” IET Control Theory
and Applications, vol. 4, no. 10, pp. 1905-1913, 2010.
[20] H. K. Khalil, Nonlinear Control, Prentice-Hall, New Jersey, 1996.
[21] C. Hua, X. Guan, and P. Shi, “Robust backstepping control for a class of time delayed systems,” IEEE Transactions on Automatic Control, vol. 50, no. 6, 2005.
[22] Y. Yu and Y. S. Zhong, “Robust backstepping output tracking control for SISO uncertain nonlinear systems with unknown virtual control coefficients,” International
Journal of Control, vol. 83, pp. 1182-1192, 2010.
[23] P. Li and G. H. Yang, “A novel adaptive control approach for nonlinear strict feedback systems using nonlinearly parameterized fuzzy approximators,” International Journal of Systems Science, vol. 42, no.3, pp. 517-527, 2011.
[24] A. M. Zou, Z. G. Hou, and M. Tan, “Adaptive control of a class of nonlinear purefeedback systems using fuzzy backstepping approach,” IEEE Transactions on Fuzzy
Systems, vol. 16, no. 4, 2008.
[25] T. P. Zhang, Q. Zhu, and Y. Q. Yang, “Adaptive neural control of non-affine purefeedback non-linear systems with input nonlinearity and perturbed uncertainties,”
International Journal of Systems Science, vol.43. no.4, pp. 691-706, 2012.
[26] T. P. Zhang and S. S. Ge, “Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form,” Automatica, vol. 44, pp. 1895-1903, 2008.
[27] S. J. Yoo, J. B. Park, and Y. H. Choi, “Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays,”
IEEE Transactions on Automatic Control , vol. 52, no. 12, 2007.
[28] W. S. Chen, “Adaptive backstepping dynamic surface control for systems with periodic disturbances using neural networks,” IET Control Theory Applications, Vol. 3 , no. 10, pp. 1383-1394, 2009.
[29] D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Transactions on Automatic Control, vo1. 45, no.10, 2000.
[30] C. C. Cheng and Y. H. Ou, “Design of adaptive block backstepping controllers for uncertain nonlinear dynamic systems with n block,” International Journal of Control,
doi, 10.1080/00207179.2012.739710.
[31] C. C. Cheng, G. L. Su, and C. W. Chien, “Block Backstepping Controllers Design for a Class of Perturbed Nonlinear Systems with m Blocks,” IET Control Theory
Applications, doi, 10.1049/iet-cta.2011.0431.
[32] Y. Chang and C. C. Cheng, “Block backstepping control of multi-input nonlinear systems with mismatched perturbations for asymptotic stability,” International Journal
of Control, vol. 83, no. 10, pp. 2028-2039, 2010.
[33] S. Tong, Y. Li, and P. Shi, “Observer-based adaptive fuzzy backstepping output feedback control of uncertain MIMO pure-feedback nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 4, 2012.
[34] J. Zhou and C. Wen, “Decentralized backstepping adaptive output tracking of interconnected nonlinear systems,” IEEE Transactions on Automatic Control, vo1. 53, no.10, 2008.
[35] S. Jain and F. Khorrami, “Decentralized adaptive control of a class of large-scale interconnected nonlinear systems,” IEEE Transactions on Automatic Control, vol. 42, no. 2, 1997.
[36] H. Fan, L. Han, C. Wen, and L. Xu, “Decentralized adaptive output feedback controller design for stochastic nonlinear interconnected systems,” Automatica, vol. 48, pp. 2866-2873, 2012.
[37] S. J. Yoo, J. B. Park, and Y. H. Choi, “Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs,”
Automatica, vol. 45, pp. 436-443, 2009.
[38] T. Li, D. Wang, J. Li, and Y. Li, “Adaptive decentralized NN control of nonlinear interconnected time-delay systems with input saturation,” Asian Journal of Control,
vol. 15, no. 3, pp. 1-10, 2013.
[39] Q. Zhou, P. Shi, H. Liu, and S. Xu, “Neural-network-based decentralized adaptive output feedback control for large scale stochastic nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, vol.42. no.6, 2012.
[40] C. C. Cheng, J. M. Hsiao, and Y. P. Lee, “Design of robust tracking controllers using sliding mode technique,” JSME international journal, Series C, vol. 44, no. 1, pp.
89-95, 2001.
[41] C. C. Cheng and M. W. Chang, “Design of derivative estimator using adaptive sliding mode technique,” Proc. of the 2006 American Control Conference, pp. 2611-
2615, 2006.
[42] P. A. Ioannou and J. Sun, Robust Adaptive Control, New Jersey: PTR Prentice-Hall, 1996.
[43] Y. J. Lin, S. C. Tong, and T. S. Li, “Observer-based adaptive fuzzy tracking control for a class of uncertain nonlinear MIMO systems,” Fuzzy Sets and Systems, vol. 164, pp. 25-44, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code