Responsive image
博碩士論文 etd-0121118-090104 詳細資訊
Title page for etd-0121118-090104
論文名稱
Title
以淨水污泥製作磁化吸附劑移除水中二價銅
Synthesized Magnetic Adsorbents from Drinking Water Treatment Sludge for Copper (Ⅱ) Removal from Aqueous Solution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-02-10
繳交日期
Date of Submission
2018-02-21
關鍵字
Keywords
淨水污泥、鐵錳氧化物、幾丁聚醣、銅吸附
copper adsorption, chitosan, drinking water treatment sludge, ferrite maganese
統計
Statistics
本論文已被瀏覽 5676 次,被下載 84
The thesis/dissertation has been browsed 5676 times, has been downloaded 84 times.
中文摘要
本研究為增加淨水污泥資源化價值及效益,以彰化第三淨水廠之富含鐵、錳淨水污泥製備鐵錳氧化磁體(MnFe2O4, MPs),並比較以幾丁聚醣進行表面改質後(MnFe2O4@ Chitosan, MPs@ Chitosan)兩種材料對水中銅離子的最大吸附量及吸附行為。實驗中以人工配置不同濃度之銅離子溶液並於不同pH值下,於震盪系統中進行批次實驗。結果顯示,兩種吸附劑對於二價銅離子均有吸附效果,且在不同pH下進行吸附,具有不同之吸附行為。其中反應溫度25℃下,pH值為5時, MPs@ Chitosan具有最大吸附容量190.2 mg/g,相較於MPs的最大吸附容量31.87 mg/g有明顯的提升,表示表面改質後之鐵錳氧化磁體可明顯的增加其吸附效率。
若以動力吸附模式討論,兩種吸附材料皆約於6小時達到吸附平衡,在不同吸附條件下之關係較符合擬二階動力模式。而使用Langmuir及Freundlich等溫吸附模式模擬後,發現兩種模式皆可用於解釋兩種吸附材料對於水中銅離子的吸附行為,其中以Freundlich等溫吸附模式所得之n值皆大於1,驗證了兩種吸附材料皆有利於金屬吸附現象。兩種材料之吸附機制為MPs本身帶負電荷,有利於吸附正電荷離子;而經幾丁聚醣表面修飾後之MPs@ Chitosan則同時具備多個吸附機制,其中以螯合作用及陰離子架橋的吸附作用為主,使得MPs@ Chitosan之最大吸附量可達MPs的5倍。由結果中可證明MPs@ Chitosan對於水中銅離子去除是一具有應用潛力之吸附材料,除具有高去除效率外,磁性顆粒亦增加材料回收之便利性,提升了往後淨水污泥再利用價值。
Abstract
In this study, we used drinking water treatment sludge to synthesize MnFe2O4 magnetic particles (MPs) and the MPs modified with chitosan (MPs@ Chitosan) as adsorbents for Cu(II) removal from aqueous solution. The Cu(II) adsorption capacity and behavior of the two magnetic adsorbents were compared under various parameters such as various copper concentrations and pH values.
MPs@ Chitosan was demonstrated as efficient sorbents for Cu(II) with the highest adsorption capacity up to 190.2 mg/g at pH=5. The maximum capacity of MPs@ Chitosan is noticeably higher than the MPs (31.87 mg/g). Notably, when the MPs modified with chitosan, the copper-adsorption capacity exhibit remarkable differences, suggested that mechanism of chitosan play a critical role in adsorption behavior. Based on the isotherm study, the equilibrium data of both magnetic adsorbents agreed well with the Langmuir and Freundlich model. The kinetic data showed a better fit with the pseudo-second order reaction, which suggested that chemical sorption is the rate-limiting step. In this study, MPs@ Chitosan has been found to have higher adsorption capacity. The present work highlights widespread potential applications of magnetic particles in the removal of heavy metals.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 銅(Ⅱ) 3
2.1.1 銅(Ⅱ)之水化特性 3
2.1.2 銅之污染來源及其危害 5
2.2 淨水污泥 (Water treatment residual, WTR) 6
2.2.1 淨水污泥來源 6
2.2.2 淨水污泥產量及處置方式 8
2.2.3 淨水污泥吸附材料之特性 11
2.3 鐵錳氧化磁體 (MnFe2O4 Magnetic particles, MPs) 16
2.3.1 鐵氧化物之構造及特性 16
2.3.2 鐵氧磁體合成方法 19
2.4 幾丁聚醣(Chitosan) 21
2.4.1幾丁聚醣(Chitosan)之特性 21
2.4.2幾丁聚醣吸附重金屬之特性 22
2.5 吸附理論 25
2.5.1 吸附基本概論 25
2.5.2 吸附動力模式 27
2.5.3 等溫吸附模式 28
第三章 實驗方法與設備 29
3.1 研究架構及流程 29
3.2 實驗藥品及儀器 30
3.2.1 實驗藥品 30
3.2.2 實驗儀器及設備 31
3.3 磁性複合材料之合成 32
3.3.1 淨水污泥高溫合成氧化磁體 32
3.3.2 鐵錳氧化磁體表面改質 32
3.4 檢測儀器 33
3.4.1 界達電位分析儀 (Zeta Potential Analyzer) 33
3.4.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 33
3.4.3 X光繞射分析儀 (X-ray Diffraction, XRD) 34
3.4.4 比表面積測定 (BET) 34
3.4.5 超導量子干涉儀 (Superconducting Quantum Interference Device, SQUID ) 35
3.5 平衡吸附實驗 36
3.5.1 Cu (Ⅱ) 動力吸附實驗 36
3.5.2 Cu (Ⅱ) 等溫吸附實驗 38
第四章 結果與討論 41
4.1. 鐵錳氧化磁體改質前後之物理特性 41
4.1.1 外觀 41
4.1.2 SEM分析 42
4.1.3 比表面積 43
4.2 鐵錳氧化磁體改質前後之化學特性 44
4.2.1 結晶型態 44
4.2.2 化學組成 47
4.2.3 表面電位 48
4.2.4 磁滯曲線 49
4.3 吸附實驗 51
4.3.1 平衡吸附實驗 51
4.3.2 pH值的影響 53
4.3.3 動力吸附模式 58
4.3.4 等溫吸附模式 67
第五章 結論與建議 73
5.1 結論 73
5.2 建議 74
參考文獻 75
參考文獻 References
Abo-El-Enein, S. A., Shebl, A., andAbo El-Dahab, S. A. (2017). Drinking
water treatment sludge as an efficient adsorbent for heavy metals removal.
Applied Clay Science, 146(Supplement C), 343-349.
doi:https://doi.org/10.1016/j.clay.2017.06.027
Abou El-Reash, Y. G. (2016). Magnetic chitosan modified with
cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water.
Journal of Environmental Chemical Engineering, 4(4, Part A), 3835-3847.
doi:https://doi.org/10.1016/j.jece.2016.08.014
Al-Saydeh, S. A., El-Naas, M. H., andZaidi, S. J. (2017). Copper removal
from industrial wastewater: A comprehensive review. Journal of Industrial
and Engineering Chemistry, 56(Supplement C), 35-44.
doi:https://doi.org/10.1016/j.jiec.2017.07.026
Aslibeiki, B., andKameli, P. (2015). Magnetic properties of MnFe2O4
nano-aggregates dispersed in paraffin wax. Journal of Magnetism and
Magnetic Materials, 385(Supplement C), 308-312.
doi:https://doi.org/10.1016/j.jmmm.2015.03.023
Association, A. W. W. (1990). Water quality and treatment: A handbook
of community water supplies Water quality and treatment: a handbook of
community water supplies: AWWA.
Bailey, S. E., Olin, T. J., Bricka, R. M., andAdrian, D. D. (1999). A
review of potentially low-cost sorbents for heavy metals. Water Research,
33(11), 2469-2479. doi:http://dx.doi.org/10.1016/S0043-1354(98)00475-8
Bal Krishna, K. C., Aryal, A., andJansen, T. (2016). Comparative study of
ground water treatment plants sludges to remove phosphorous from
wastewater. Journal of Environmental Management, 180(Supplement C),
17-23. doi:https://doi.org/10.1016/j.jenvman.2016.05.006
Basibuyuk, M., andKalat, D. G. (2004). The use of waterworks sludge for
the treatment of vegetable oil refinery industry wastewater. Environmental
Technology, 25(3), 373-380. doi:10.1080/09593330409355471
Benaïssa, H., andElouchdi, M. A. (2011). Biosorption of copper (II) ions
from synthetic aqueous solutions by drying bed activated sludge. Journal of
Hazardous Materials, 194(Supplement C), 69-78.
doi:https://doi.org/10.1016/j.jhazmat.2011.07.063
Birks, N., Meier, G. H., andPettit, F. S. (2006). Introduction to the high
temperature oxidation of metals: Cambridge University Press.
Calagui, M. J. C., Senoro, D. B., Kan, C.-C., Salvacion, J. W. L., Futalan,
C. M., andWan, M.-W. (2014). Adsorption of indium(III) ions from aqueous
solution using chitosan-coated bentonite beads. Journal of Hazardous
Materials, 277(Supplement C), 120-126.
doi:https://doi.org/10.1016/j.jhazmat.2014.04.043
Campbell, S. J., Kaczmarek, W. A., andWang, G. M. (1995).
Mechanochemical transformation of haematite to magnetite. Nanostructured
Materials, 6(5), 735-738. doi:https://doi.org/10.1016/0965-9773(95)00163-8
Chen, Y., Hu, J., andWang, J. (2012). Kinetics and thermodynamics of
Cu(II) biosorption on to a novel magnetic chitosan composite bead.
Environmental Technology, 33(20), 2345-2351.
doi:10.1080/09593330.2012.668940
Chiang, K.-Y., Chou, P.-H., Hua, C.-R., Chien, K.-L., andCheeseman, C.
(2009). Lightweight bricks manufactured from water treatment sludge and rice
husks. Journal of Hazardous Materials, 171(1), 76-82.
doi:http://dx.doi.org/10.1016/j.jhazmat.2009.05.144
Cho, D.-W., Jeon, B.-H., Chon, C.-M., Kim, Y., Schwartz, F. W., Lee,
E.-S., andSong, H. (2012). A novel chitosan/clay/magnetite composite for
adsorption of Cu(II) and As(V). Chemical Engineering Journal,
200-202(Supplement C), 654-662.
doi:https://doi.org/10.1016/j.cej.2012.06.126
Choi, S. B., andYun, Y.-S. (2006). Biosorption of cadmium by various
types of dried sludge: An equilibrium study and investigation of mechanisms.
Journal of Hazardous Materials, 138(2), 378-383.
doi:https://doi.org/10.1016/j.jhazmat.2006.05.059
Cornell, R. M., andSchwertmann, U. (2003). The iron oxides: structure,
properties, reactions, occurrences and uses: John Wiley & Sons.
Costa, A. C. F. M., Tortella, E., Morelli, M. R., andKiminami, R. H. G. A.
(2003). Synthesis, microstructure and magnetic properties of Ni–Zn ferrites.
Journal of Magnetism and Magnetic Materials, 256(1), 174-182.
doi:https://doi.org/10.1016/S0304-8853(02)00449-3
Cuppett, J. D., Duncan, S. E., andDietrich, A. M. (2006). Evaluation of
Copper Speciation and Water Quality Factors That Affect Aqueous Copper
Tasting Response. Chemical Senses, 31(7), 689-697.
doi:10.1093/chemse/bjl010
Dalida, M. L. P., Mariano, A. F. V., Futalan, C. M., Kan, C.-C., Tsai,
W.-C., andWan, M.-W. (2011). Adsorptive removal of Cu(II) from aqueous
solutions using non-crosslinked and crosslinked chitosan-coated bentonite
beads. Desalination, 275(1), 154-159.
doi:https://doi.org/10.1016/j.desal.2011.02.051
Darder, M., Colilla, M., andRuiz-Hitzky, E. (2003). Biopolymer−Clay
Nanocomposites Based on Chitosan Intercalated in Montmorillonite.
Chemistry of Materials, 15(20), 3774-3780. doi:10.1021/cm0343047
Demiral, H., andGüngör, C. (2016). Adsorption of copper(II) from
aqueous solutions on activated carbon prepared from grape bagasse. Journal
of Cleaner Production, 124, 103-113.
doi:http://dx.doi.org/10.1016/j.jclepro.2016.02.084
Dharmappa, H. B., Hasia, A., andHagare, P. (1997). Water treatment plant
residuals management. Water Science and Technology, 35(8), 45-56.
doi:http://dx.doi.org/10.1016/S0273-1223(97)00150-9
Fan, C., Li, K., Li, J., Ying, D., Wang, Y., andJia, J. (2017). Comparative
and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine
modified chitosan/CoFe2O4 particles. Journal of Hazardous Materials,
326(Supplement C), 211-220.
doi:https://doi.org/10.1016/j.jhazmat.2016.12.036
Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., andSun, M. (2012). Fabrication
of novel magnetic chitosan grafted with graphene oxide to enhance adsorption
properties for methyl blue. Journal of Hazardous Materials,
215-216(Supplement C), 272-279.
doi:https://doi.org/10.1016/j.jhazmat.2012.02.068
Feng, Y., Gong, J.-L., Zeng, G.-M., Niu, Q.-Y., Zhang, H.-Y., Niu,
C.-G., . . . Yan, M. (2010). Adsorption of Cd (II) and Zn (II) from aqueous
solutions using magnetic hydroxyapatite nanoparticles as adsorbents.
Chemical Engineering Journal, 162(2), 487-494.
doi:https://doi.org/10.1016/j.cej.2010.05.049
Futalan, C. M., Kan, C.-C., Dalida, M. L., Hsien, K.-J., Pascua, C.,
andWan, M.-W. (2011). Comparative and competitive adsorption of copper,
lead, and nickel using chitosan immobilized on bentonite. Carbohydrate
Polymers, 83(2), 528-536. doi:https://doi.org/10.1016/j.carbpol.2010.08.013
Gao, J., Zhang, Q., Su, K., Chen, R., andPeng, Y. (2010). Biosorption of
Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge.
Journal of Hazardous Materials, 174(1), 215-225.
doi:http://dx.doi.org/10.1016/j.jhazmat.2009.09.039
Ge, F., Li, M.-M., Ye, H., andZhao, B.-X. (2012). Effective removal of
heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by
polymer-modified magnetic nanoparticles. Journal of Hazardous Materials,
211–212, 366-372. doi:https://doi.org/10.1016/j.jhazmat.2011.12.013
Gerente, C., Lee, V. K. C., Cloirec, P. L., andMcKay, G. (2007).
Application of Chitosan for the Removal of Metals From Wastewaters by
Adsorption—Mechanisms and Models Review. Critical Reviews in
Environmental Science and Technology, 37(1), 41-127.
doi:10.1080/10643380600729089
Gu, L., Zhu, N., Zhang, D., Lou, Z., Yuan, H., andZhou, P. (2013). A
comparative study of aerobically digested and undigested sludge in
preparation of magnetic chars and their application in
1-diazo-2-naphthol-4-sulfonic acid adsorption. Bioresource technology,
136(Supplement C), 719-724.
doi:https://doi.org/10.1016/j.biortech.2013.02.120
Gupta, V. K., Agarwal, S., andSaleh, T. A. (2011). Chromium removal by
combining the magnetic properties of iron oxide with adsorption properties of
carbon nanotubes. Water Research, 45(6), 2207-2212.
doi:https://doi.org/10.1016/j.watres.2011.01.012
Guzman, J., Saucedo, I., Revilla, J., Navarro, R., andGuibal, E. (2003).
Copper sorption by chitosan in the presence of citrate ions: influence of metal
speciation on sorption mechanism and uptake capacities. International Journal
of Biological Macromolecules, 33(1), 57-65.
doi:https://doi.org/10.1016/S0141-8130(03)00067-9
Han, R., Li, W., Pan, W., Zhu, M., Zhou, D., andLi, F.-s. (2014). 1D
Magnetic Materials of Fe3O4 and Fe with High Performance of Microwave
Absorption Fabricated by Electrospinning Method. 4, 7493.
doi:10.1038/srep07493
Hao, Y.-M., Man, C., andHu, Z.-B. (2010). Effective removal of Cu (II)
ions from aqueous solution by amino-functionalized magnetic nanoparticles.
Journal of Hazardous Materials, 184(1), 392-399.
doi:https://doi.org/10.1016/j.jhazmat.2010.08.048
Ho, Y. S., andMcKay, G. (1999). Pseudo-second order model for sorption
processes. Process Biochemistry, 34(5), 451-465.
doi:https://doi.org/10.1016/S0032-9592(98)00112-5
Horth, H., Centre, W. R., andResearch, F. f. W. (1994). Treatment and
Disposal of Waterworks Sludge in Selected European Countries: Foundation
for Water Research.
Hsien, K.-J., Futalan, C. M., Tsai, W.-C., Kan, C.-C., Kung, C.-S., Shen,
Y.-H., andWan, M.-W. (2013). Adsorption characteristics of copper(II) onto
non-crosslinked and cross-linked chitosan immobilized on sand. Desalination
and Water Treatment, 51(28-30), 5574-5582.
doi:10.1080/19443994.2013.770191
Hu, C., Zhu, P., Cai, M., Hu, H., andFu, Q. (2017). Comparative
adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite:
Kinetic, thermodynamic and equilibrium studies. Applied Clay Science, 143,
320-326. doi:http://dx.doi.org/10.1016/j.clay.2017.04.005
Hu, X.-j., Liu, Y.-g., Wang, H., Chen, A.-w., Zeng, G.-m., Liu, S.-m., . . .
Liu, S.-h. (2013). Removal of Cu(II) ions from aqueous solution using
sulfonated magnetic graphene oxide composite. Separation and Purification
Technology, 108(Supplement C), 189-195.
doi:https://doi.org/10.1016/j.seppur.2013.02.011
Huang, B., Liu, Y., Li, B., Liu, S., Zeng, G., Zeng, Z., . . . Yang, C. (2017).
Effect of Cu(II) ions on the enhancement of tetracycline adsorption by
Fe3O4@SiO2-Chitosan/graphene oxide nanocomposite. Carbohydrate
Polymers, 157(Supplement C), 576-585.
doi:https://doi.org/10.1016/j.carbpol.2016.10.025
Huang, C.-H., andWang, S.-Y. (2013). Application of water treatment
sludge in the manufacturing of lightweight aggregate. Construction and
Building Materials, 43, 174-183.
doi:http://dx.doi.org/10.1016/j.conbuildmat.2013.02.016
Huang, C., Chung, Y.-C., andLiou, M.-R. (1996). Adsorption of Cu(II)
and Ni(II) by pelletized biopolymer. Journal of Hazardous Materials, 45(2),
265-277. doi:http://dx.doi.org/10.1016/0304-3894(95)00096-8
Huang, G., Yang, C., Zhang, K., andShi, J. (2009). Adsorptive Removal
of Copper Ions from Aqueous Solution Using Cross-linked Magnetic Chitosan
Beads. Chinese Journal of Chemical Engineering, 17(6), 960-966.
doi:https://doi.org/10.1016/S1004-9541(08)60303-1
Hunter, R. J. (2013). Zeta potential in colloid science: principles and
applications (Vol. 2): Academic press.
Ifthikar, J., Wang, J., Wang, Q., Wang, T., Wang, H., Khan, A., . . . Chen,
Z. (2017). Highly Efficient Lead Distribution by Magnetic Sewage Sludge
Biochar: Sorption Mechanisms and Bench Applications. Bioresource
technology, 238, 399-406. doi:https://doi.org/10.1016/j.biortech.2017.03.133
Indira, T., andLakshmi, P. (2010). Magnetic nanoparticles–a review. Int. J.
Pharm. Sci. Nanotechnol, 3(3), 1035-1042.
Jensen, J. N. (2003). A problem-solving approach to aquatic chemistry
(Vol. 1): SciELO Brasil.
Ju, Y.-W., Park, J.-H., Jung, H.-R., Cho, S.-J., andLee, W.-J. (2008).
Electrospun MnFe2O4 nanofibers: Preparation and morphology. Composites
Science and Technology, 68(7), 1704-1709.
doi:https://doi.org/10.1016/j.compscitech.2008.02.015
Kayranli, B. (2011). Adsorption of textile dyes onto iron based
waterworks sludge from aqueous solution; isotherm, kinetic and
thermodynamic study. Chemical Engineering Journal, 173(3), 782-791.
doi:https://doi.org/10.1016/j.cej.2011.08.051
Kim, J., Chung, M. K., Bok, H. K., Ku, J. H., Park, S., Ryu, J., andOh, S.
M. (2010). The role of metallic Fe and carbon matrix in Fe2O3/Fe/carbon
nanocomposite for lithium-ion batteries. Journal of The Electrochemical
Society, 157(4), A412-A417.
Kuang, P.-Y., Liang, M.-H., Kong, W.-Y., Liu, Z.-Q., Guo, Y.-P., Wang,
H.-J., . . . Chen, S. (2015). Anion-assisted one-pot synthesis of 1D magnetic
[small alpha]- and [small beta]-MnO2 nanostructures for recyclable water
treatment application. New Journal of Chemistry, 39(4), 2497-2505.
doi:10.1039/C4NJ02196G
Kurita, K., Koyama, Y., andTaniguchi, A. (1986). Studies on chitin. IX.
Crosslinking of water-soluble chitin and evaluation of the products as
adsorbents for cupric ion. Journal of Applied Polymer Science, 31(5),
1169-1176. doi:10.1002/app.1986.070310502
Letterman, R. D., andAssociation, A. W. W. (1999). Water quality and
treatment: a handbook of community water supplies: McGraw-Hill.
Li, W., Hinton, C. H., Lee, S. S., Wu, J., andFortner, J. D. (2016). Surface
engineering superparamagnetic nanoparticles for aqueous applications: design
and characterization of tailored organic bilayers. Environmental Science: Nano,
3(1), 85-93.
Li, Z., Jiang, N., Wu, F., andZhou, Z. (2013). Experimental investigation
of phosphorus adsorption capacity of the waterworks sludges from five cities
in China. Ecological Engineering, 53(Supplement C), 165-172.
doi:https://doi.org/10.1016/j.ecoleng.2012.12.038
Liu, Y., Chen, L., Li, Y., Wang, P., andDong, Y. (2016). Synthesis of
magnetic polyaniline/graphene oxide composites and their application in the
efficient removal of Cu(II) from aqueous solutions. Journal of Environmental
Chemical Engineering, 4(1), 825-834.
doi:https://doi.org/10.1016/j.jece.2015.12.023
Liu, Z., Du, Z., Zou, W., Li, H., Mi, J., andZhang, C. (2013). Easily
collected nano-absorbents for carbon dioxide capture. Chemical Engineering
Journal, 223(Supplement C), 915-920.
doi:https://doi.org/10.1016/j.cej.2012.12.017
Lu, Y., Yin, Y., Mayers, B. T., andXia, Y. (2002). Modifying the surface
properties of superparamagnetic iron oxide nanoparticles through a sol− gel
approach. Nano letters, 2(3), 183-186.
Makris, K. C., Sarkar, D., andDatta, R. (2006a). Aluminum-based
drinking-water treatment residuals: A novel sorbent for perchlorate removal.
Environmental Pollution, 140(1), 9-12.
doi:https://doi.org/10.1016/j.envpol.2005.08.075
Makris, K. C., Sarkar, D., andDatta, R. (2006b). Evaluating a
drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere,
64(5), 730-741. doi:https://doi.org/10.1016/j.chemosphere.2005.11.054
Meng, Y., Chen, D., Sun, Y., Jiao, D., Zeng, D., andLiu, Z. (2015).
Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite
nanoparticles synthesized by microwave-assisted hydrothermal method.
Applied Surface Science, 324(Supplement C), 745-750.
doi:https://doi.org/10.1016/j.apsusc.2014.11.028
Modrzejewska, Z., Rogacki, G., Sujka, W., andZarzycki, R. (2016).
Sorption of copper by chitosan hydrogel: Kinetics and equilibrium. Chemical
Engineering and Processing: Process Intensification, 109, 104-113.
doi:http://dx.doi.org/10.1016/j.cep.2016.08.014
Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M., andPittman,
C. U. (2014). Cadmium and lead remediation using magnetic oak wood and
oak bark fast pyrolysis bio-chars. Chemical Engineering Journal,
236(Supplement C), 513-528. doi:https://doi.org/10.1016/j.cej.2013.09.057
Mokadem, Z., Mekki, S., Saïdi-Besbes, S., Agusti, G., Elaissari, A.,
andDerdour, A. (2016). Triazole containing magnetic core-silica shell
nanoparticles for Pb2+, Cu2+ and Zn2+ removal. Arabian Journal of
Chemistry. doi:https://doi.org/10.1016/j.arabjc.2016.12.008
Monier, M., Ayad, D. M., Wei, Y., andSarhan, A. A. (2010). Adsorption of
Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin.
Journal of Hazardous Materials, 177(1), 962-970.
doi:https://doi.org/10.1016/j.jhazmat.2010.01.012
Monteiro, O. A., andAiroldi, C. (1999). Some thermodynamic data on
copper–chitin and copper–chitosan biopolymer interactions. Journal of
Colloid and Interface Science, 212(2), 212-219.
Peng, S., Meng, H., Ouyang, Y., andChang, J. (2014). Nanoporous
Magnetic Cellulose–Chitosan Composite Microspheres: Preparation,
Characterization, and Application for Cu(II) Adsorption. Industrial &
Engineering Chemistry Research, 53(6), 2106-2113. doi:10.1021/ie402855t
Peng, Z. G., Hidajat, K., andUddin, M. S. (2004). Adsorption of bovine
serum albumin on nanosized magnetic particles. Journal of Colloid and
Interface Science, 271(2), 277-283.
doi:https://doi.org/10.1016/j.jcis.2003.12.022
Pimneva, L., Malyshkina, E., andSalnikova, E. (2016). Regularities of
Sorption of Cations of Zinc and Copper by Natural Sorbent. Procedia
Engineering, 165, 853-859.
doi:http://dx.doi.org/10.1016/j.proeng.2016.11.784
Ren, Y., Abbood, H. A., He, F., Peng, H., andHuang, K. (2013). Magnetic
EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization,
and application in heavy metal adsorption. Chemical Engineering Journal,
226(Supplement C), 300-311. doi:https://doi.org/10.1016/j.cej.2013.04.059
Ren, Y., Li, N., Feng, J., Luan, T., Wen, Q., Li, Z., andZhang, M. (2012).
Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous
ferrospinel MnFe2O4. Journal of Colloid and Interface Science, 367(1),
415-421. doi:https://doi.org/10.1016/j.jcis.2011.10.022
Ren, Y., Wei, X., andZhang, M. (2008). Adsorption character for removal
Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. Journal of
Hazardous Materials, 158(1), 14-22.
doi:https://doi.org/10.1016/j.jhazmat.2008.01.044
Rhazi, M., Desbrieres, J., Tolaimate, A., Rinaudo, M., Vottero, P.,
andAlagui, A. (2002). Contribution to the study of the complexation of copper
by chitosan and oligomers. Polymer, 43(4), 1267-1276.
Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., andSing, K. S.
(2013). Adsorption by powders and porous solids: principles, methodology
and applications: Academic press.
Rozada, F., Otero, M., Morán, A., andGarcía, A. I. (2008). Adsorption of
heavy metals onto sewage sludge-derived materials. Bioresource technology,
99(14), 6332-6338. doi:http://dx.doi.org/10.1016/j.biortech.2007.12.015
Schlick, S. (1986). Binding sites of copper2+ in chitin and chitosan. An
electron spin resonance study. Macromolecules, 19(1), 192-195.
Siswoyo, E., Mihara, Y., andTanaka, S. (2014). Determination of key
components and adsorption capacity of a low cost adsorbent based on sludge
of drinking water treatment plant to adsorb cadmium ion in water. Applied
Clay Science, 97(Supplement C), 146-152.
doi:https://doi.org/10.1016/j.clay.2014.05.024
Sonavane, G., Tomoda, K., andMakino, K. (2008). Biodistribution of
colloidal gold nanoparticles after intravenous administration: Effect of particle
size. Colloids and Surfaces B: Biointerfaces, 66(2), 274-280.
doi:https://doi.org/10.1016/j.colsurfb.2008.07.004
Song, X., Pan, Y., Wu, Q., Cheng, Z., andMa, W. (2011). Phosphate
removal from aqueous solutions by adsorption using ferric sludge.
Desalination, 280(1), 384-390. doi:https://doi.org/10.1016/j.desal.2011.07.028
Stumm, W., andMorgan, J. J. (1970). Aquatic chemistry; an introduction
emphasizing chemical equilibria in natural waters.
Stumm, W., andMorgan, J. J. (1996). Aquatic Chemistry.
TABOADA, E., Cabrera, G., andCardenas, G. (2003). Retention capacity
of chitosan for copper and mercury ions. Journal of the Chilean Chemical
Society, 48(1), 7-12.
Toth, J. (2002). Adsorption: CRC Press.
Uauy, R., Olivares, M., andGonzalez, M. (1998). Essentiality of copper in
humans. The American journal of clinical nutrition, 67(5), 952S-959S.
USEPA. (1985). Ambient Water Quality Criteria for Copper
WashingtonOffice of Water and Office of Science and Technology.
Vijaya, Y., Popuri, S. R., Boddu, V. M., andKrishnaiah, A. (2008).
Modified chitosan and calcium alginate biopolymer sorbents for removal of
nickel (II) through adsorption. Carbohydrate Polymers, 72(2), 261-271.
doi:https://doi.org/10.1016/j.carbpol.2007.08.010
Wan, M.-W., Kan, C.-C., Rogel, B. D., andDalida, M. L. P. (2010).
Adsorption of copper (II) and lead (II) ions from aqueous solution on
chitosan-coated sand. Carbohydrate Polymers, 80(3), 891-899.
doi:https://doi.org/10.1016/j.carbpol.2009.12.048
Wang, X., Zhang, D., Ren, X., Gao, J., Han, Y., Chen, X., . . . Yang, H.
(2016). Fe3C/Fe nanoparticles with urea: Synthesis, structure and magnetic
properties. Journal of Magnetism and Magnetic Materials, 420(Supplement C),
241-244. doi:https://doi.org/10.1016/j.jmmm.2016.07.036
Wang, Z., Guo, H., Yu, Y., andHe, N. (2006). Synthesis and
characterization of a novel magnetic carrier with its composition of
Fe3O4/carbon using hydrothermal reaction. Journal of Magnetism and
Magnetic Materials, 302(2), 397-404.
doi:https://doi.org/10.1016/j.jmmm.2005.09.044
Wei, D., Li, M., Wang, X., Han, F., Li, L., Guo, J., . . . Wei, Q. (2016).
Extracellular polymeric substances for Zn (II) binding during its sorption
process onto aerobic granular sludge. Journal of Hazardous Materials, 301,
407-415. doi:http://dx.doi.org/10.1016/j.jhazmat.2015.09.018
WHO. (1998). World Health Organization Guidelines for Drinking Water
Quality.
Won, S. W., Choi, S. B., andYun, Y.-S. (2006). Performance and
mechanism in binding of Reactive Orange 16 to various types of sludge.
Biochemical Engineering Journal, 28(2), 208-214.
doi:https://doi.org/10.1016/j.bej.2005.11.006
Wong, E. T., Chan, K. H., Irfan, M., Idris, A., andMisran, E. (2015).
Enhanced Removal of Cu(II) by Photocatalytic Reduction Using Maghemite
PVA-Alginate Separable Beads: Kinetic and Equilibrium Studies. Separation
Science and Technology, 50(4), 487-494. doi:10.1080/01496395.2014.953177
Wu, Y., Wang, Y., Luo, G., andDai, Y. (2009). In situ preparation of
magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by
cross-linking and oxidation in aqueous solution. Bioresource technology,
100(14), 3459-3464. doi:https://doi.org/10.1016/j.biortech.2009.02.018
Xiao, Y., Liang, H., andWang, Z. (2013). MnFe2O4/chitosan
nanocomposites as a recyclable adsorbent for the removal of hexavalent
chromium. Materials Research Bulletin, 48(10), 3910-3915.
doi:https://doi.org/10.1016/j.materresbull.2013.05.099
Xie, J., Li, C., Chi, L., andWu, D. (2013). Chitosan modified zeolite as a
versatile adsorbent for the removal of different pollutants from water. Fuel,
103, 480-485. doi:http://dx.doi.org/10.1016/j.fuel.2012.05.036
Xu, J., Yang, H., Fu, W., Du, K., Sui, Y., Chen, J., . . . Zou, G. (2007).
Preparation and magnetic properties of magnetite nanoparticles by sol–gel
method. Journal of Magnetism and Magnetic Materials, 309(2), 307-311.
doi:https://doi.org/10.1016/j.jmmm.2006.07.037
Yang, L., Wei, J., Liu, Z., Wang, J., andWang, D. (2015). Material
prepared from drinking waterworks sludge as adsorbent for ammonium
removal from wastewater. Applied Surface Science, 330(Supplement C),
228-236. doi:https://doi.org/10.1016/j.apsusc.2015.01.017
Yavuz, C. T., Mayo, J. T., Yu, W. W., Prakash, A., Falkner, J. C., Yean,
S., . . . Colvin, V. L. (2006). Low-Field Magnetic Separation of Monodisperse
Fe<sub>3</sub>O<sub>4</sub> Nanocrystals.
Science, 314(5801), 964.
Yi, X., He, J., Guo, Y., Han, Z., Yang, M., Jin, J., . . . Xu, X. (2018).
Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride
hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions.
Ecotoxicology and Environmental Safety, 147(Supplement C), 699-707.
doi:https://doi.org/10.1016/j.ecoenv.2017.09.036
Yu, X., andZhou, J. (2017). Grain Boundary in Oxide Scale During
High-Temperature Metal Processing. In T. Tanski & W. Borek (Eds.), Study of
Grain Boundary Character (pp. Ch. 04). Rijeka: InTech.
Yuwei, C., andJianlong, W. (2011). Preparation and characterization of
magnetic chitosan nanoparticles and its application for Cu(II) removal.
Chemical Engineering Journal, 168(1), 286-292.
doi:https://doi.org/10.1016/j.cej.2011.01.006
Zhang, H., Liu, J., Ou, C., Faheem, Shen, J., Yu, H., . . . Wang, L. (2017a).
Reuse of Fenton sludge as an iron source for NiFe2O4 synthesis and its
application in the Fenton-based process. Journal of Environmental Sciences,
53(Supplement C), 1-8. doi:https://doi.org/10.1016/j.jes.2016.05.010
Zhang, Q., Hu, J., Lee, D.-J., Chang, Y., andLee, Y.-J. (2017b). Sludge
treatment: Current research trends. Bioresource technology, 243, 1159-1172.
doi:http://dx.doi.org/10.1016/j.biortech.2017.07.070
Zhang, S., Niu, H., Cai, Y., Zhao, X., andShi, Y. (2010). Arsenite and
arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials:
MnFe2O4 and CoFe2O4. Chemical Engineering Journal, 158(3), 599-607.
doi:https://doi.org/10.1016/j.cej.2010.02.013
Zhang, X., Niu, Y., Meng, X., Li, Y., andZhao, J. (2013). Structural
evolution and characteristics of the phase transformations between [small
alpha]-Fe2O3, Fe3O4 and [gamma]-Fe2O3 nanoparticles under reducing and
oxidizing atmospheres. CrystEngComm, 15(40), 8166-8172.
doi:10.1039/C3CE41269E
Zhao, F., Yu, B., Yue, Z., Wang, T., Wen, X., Liu, Z., andZhao, C. (2007).
Preparation of porous chitosan gel beads for copper(II) ion adsorption. Journal
of Hazardous Materials, 147(1), 67-73.
doi:http://dx.doi.org/10.1016/j.jhazmat.2006.12.045
Zhao, Y. Q., Babatunde, A. O., Razali, M., andHarty, F. (2008). Use of
dewatered alum sludge as a substrate in reed bed treatment systems for
wastewater treatment. J Environ Sci Health A Tox Hazard Subst Environ Eng,
43(1), 105-110. doi:10.1080/10934520701750264
Zhou, L., Wang, Y., Liu, Z., andHuang, Q. (2009). Characteristics of
equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions
by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous
Materials, 161(2), 995-1002.
doi:https://doi.org/10.1016/j.jhazmat.2008.04.078
Zhou, Y.-F., andHaynes, R. J. (2011). Removal of Pb(II), Cr(III) and
Cr(VI) from Aqueous Solutions Using Alum-Derived Water Treatment Sludge.
Water, Air, & Soil Pollution, 215(1), 631-643. doi:10.1007/s11270-010-0505-y
Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., andCao, X.
(2014). Biochar-supported zerovalent iron for removal of various
contaminants from aqueous solutions. Bioresource technology,
152(Supplement C), 538-542.
doi:https://doi.org/10.1016/j.biortech.2013.11.021
Zhou, Y., Gao, B., Zimmerman, A. R., Fang, J., Sun, Y., andCao, X.
(2013). Sorption of heavy metals on chitosan-modified biochars and its
biological effects. Chemical Engineering Journal, 231, 512-518.
doi:http://dx.doi.org/10.1016/j.cej.2013.07.036
Zhu, H. Y., Jiang, R., Fu, Y. Q., Jiang, J. H., Xiao, L., andZeng, G. M.
(2011). Preparation, characterization and dye adsorption properties of
γ-Fe2O3/SiO2/chitosan composite. Applied Surface Science, 258(4),
1337-1344. doi:https://doi.org/10.1016/j.apsusc.2011.09.045
Zhu, S., Fang, S., Huo, M., Yu, Y., Chen, Y., Yang, X., . . . Huo, H. (2015).
A novel conversion of the groundwater treatment sludge to magnetic particles
for the adsorption of methylene blue. Journal of Hazardous Materials,
292(Supplement C), 173-179.
doi:https://doi.org/10.1016/j.jhazmat.2015.03.028
Zhu, Y., Hu, J., andWang, J. (2012). Competitive adsorption of Pb(II),
Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of
Hazardous Materials, 221-222(Supplement C), 155-161.
doi:https://doi.org/10.1016/j.jhazmat.2012.04.026
王文弘. (2016). 以淨水污泥製備鐵錳氧化磁體之研究. (碩士), 嘉南
藥理大學, 台南市.
放流水標準, 1030005842 C.F.R. (2014).
林敬智. (2001). 下水污泥灰渣應用於銅離子去除之初步探討. (碩士),
國立中央大學, 桃園縣.
林聖寰. (2003). 淨水污泥取代黏土作為水泥生料對卜特蘭水泥影響
之研究. (碩士), 國立交通大學, 新竹市.
康世芳. (2001). 淨水污泥餅再利用技術調查及應用於臺北自來水事
業處淨水場可行性評估期末報告: 臺北自來水事業處.
陳啟明, and 鄭秀娥. (1999). <98 淨水污泥之處置及再生利用探討-陳
啟明-鄭秀娥.pdf>.
蕭宇廷. (2012). 淨水污泥餅作為吸附材料處理含磷廢水之研究. (碩
士), 國立中央大學, 桃園縣.
顏慧敏, 李孟翰, 陳志偉, 於望聖, 孫世勤, and 朱敬平. (2014). <台灣
都市污水處理廠污泥減量與資源再利用推動現況.pdf>.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code