Responsive image
博碩士論文 etd-0121118-165249 詳細資訊
Title page for etd-0121118-165249
論文名稱
Title
高雄都會區室內與室外環境中細懸浮微粒上多環芳香烴的研究
PM2.5 and Polycyclic Aromatic Hydrocarbons in Indoor and Outdoor Environment in Kaohsiung Metropolitan Area
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-02-12
繳交日期
Date of Submission
2018-02-21
關鍵字
Keywords
主成分分析、多環芳香烴、細懸浮微粒、致癌風險評估、集群分析
PM2.5, PAHs, Hierarchical cluster analysis, cancer risk assessment, Principal components analysis
統計
Statistics
本論文已被瀏覽 5629 次,被下載 3
The thesis/dissertation has been browsed 5629 times, has been downloaded 3 times.
中文摘要
本研究於2016年9月至2017年5月,於高雄市南工業區(小港區:SG)、北工業區(楠梓區:NZ)、北高雄重要商圈(左營區:ZY)、工商業區(仁武區:JW)與高雄市中心(前金區:CG)分別設置五個採樣點,採集住宅內的細懸浮微粒(PM2.5)並分析其多環芳香烴化合物(Polycyclic aromatic hydrocarbons, PAHs),以探討高雄住宅內之細懸浮微粒與多環芳香烴之變化和可能之污染來源,並評估其可能致癌風險,並在楠梓區多增加燒香採樣(NZ-BS)來共同探討。
研究結果顯示,五個採樣點的室內PM2.5平均濃度分別:CG為37.0±8.5 μg/m3、JW為46.2±15.2 μg/m3、NZ為43.8±12.4 μg/m3、NZ-BS為45.7±15.5μg/m3、SG為43.6±13.9 μg/m3、ZY為40.7±10.9 μg/m3,而室外則分別:CG為42.0±11.0μg/m3、JW為48.7±10.9μg/m3、NZ為46.8±11.7 μg/m3、SG為46.0±15.2μg/m3、ZY為46.3±15.9μg/m3,整體而言,以JW濃度最高, CG濃度最低。NZ-BS可能因為燒香而產生較多的微粒,使得相比其他室內有較高之濃度。本研究冬季之PM2.5樣品皆超過我國「空氣品質標準」之24小時標準值(35 μg/m3)。
五個採樣點其室內PM2.5-PAHs濃度分別:CG為0.882±0.662ng/m3、JW為1.312±0.814ng/m3、NZ為1.187±0.972ng/m3、NZ-BS為1.271±0.872ng/m3、SG為1.668±1.309ng/m3、ZY為1.056±0.728ng/m3,NZ-BS並沒有因為燒香而有較高之多環芳香烴,可能因為燒香頻率不高與燒香的數量較低。在室外其濃度分別:CG為1.081±0.761ng/m3、JW為1.526±0.879ng/m3、NZ為1.540±0.916ng/m3、SG為1.570±1.523ng/m3、ZY為1.051±0.828μg/m3,同為SG濃度為最高,濃度最低為CG。其組成成分分布以高環數(5-6環)之PAHs化合物為主。
進一步比較室內濃度和室外濃度之比值(I/O),其I/O比值小於1,表示無顯著室內來源影響。在室內外PM2.5有其顯著相關(R=0.838, p<0.01),而PAHs也為顯著相關(R=0.962, p<0.01)。然在成對樣本t檢定(Paired Samples t-test)之結果卻推論都並非每個化合物都受室外來源所影響。根據特徵比(Diagnostic ratio)、主成分分析(PCA)及集群分析(HCA)結果指出,在高雄地區室內環境PM2.5-PAHs來源是以汽柴油混合燃燒之交通污染來源為主,其次為室內活動來源或煤燃燒來源影響。在致癌風險評估方面,以吸入增量終生癌症風險(ILCR)公式推得其風險值,各採樣點皆低於美國環保署(USEPA)的建議值10-6。
Abstract
Fine particulate matter (PM2.5) was collected for analysis of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor environments in Kaohsiung metropolitan area. The distributions and sources of PM2.5 and PAHs were investigated with the health risk assessment of PAHs. Both indoor and outdoor samples were collected at Nanzi (NZ), Siaogan (SG), Chiengin (CG,), Jenwu (JW), and Zuoying (ZY) from September 2016 to May 2017. Indoor environments with incense-burning (NZ-BS) were also collected simultaneously in NZ.
The average indoor PM2.5 concentrations at CG, JW, NZ, NZ-BS, SG and ZY sites were 37.0±8.5, 46.2±15.2, 43.8±12.4, 45.7±15.5, 43.6±13.9 and 40.7±10.9 μg/m3, respectively. The average outdoor PM2.5 concentrations were 42.0±11.0, 48.7±10.9, 46.8±11.7, 46.0±15.2, and 46.3±15.9 μg/m3 at CG, JW, NZ, SG and ZY sites, respectively. The highest PM2.5 concentration was found in JW; while CG was the lowest. It indicated that burning incense leads to higher concentration than other sites in Kaohsiung. The PM2.5 concentrations in winter all exceeded the air quality standard of EPA (24-hour standard value less than 35 μg/m3).
In addition, the mean indoor PAHs concentrations at CG, JW, NZ, NZ-BS, SG, and ZY were 0.882±0.662, 1.312±0.814, 1.187±0.972, 1.271±0.872, 1.668±1.309 and 1.056±0.728 ng/m3, respectively. It is noted that not especially high concentration in NZ-BS was observd. The mean outdoor PAHs concentrations at CG, JW, NZ, SG, and ZY were 1.081±0.761, 1.526±0.879, 1.540±0.916, 1.570±1.523 and 1.051±0.828ng/m3, respectively. SG displayed the highest average PAHs concentration; while CG was the lowest. The compositional pattern of PAHs exhibited dominace of the high molecular weight (HMW) PAHs in PM2.5.
Moreover, the indoor/outdoor ratios of PM2.5 and PAHs were mostly lower than 1, indicating that there was no obviously source of PAHs from indoor environment. A significant correlation between indoor and outdoor were found in PM2.5 (R=0.838, p<0.01) and PAHs (R=0.962, p<0.01). The results of paired t-test demonstrate that individual PAHs was not necessarily influenced by outdoor sources. Results of Principle components analysis (PCA), hierarchical cluster analysis (HCA), and diagnostic ratio indentify the predominant sources of PAHs, as vehicular emissions, including gasoline and diesel engines; while coal combustion and indoor sources were also noted. Incremental lifetime cancer risk (ILCR) at 5 sites in three seasons showed the inhaled cancer risk of PAHs alone in Kaohsiung was found lower than the regulatory 10-6 by USEPA.
目次 Table of Contents
第一章、前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章、文獻回顧 3
2-1 大氣中細懸浮微粒 3
2-1-1 大氣中細懸浮微粒來源 3
2-1-2 細懸浮微粒對人體的影響 3
2-2 多環芳香烴 4
2-2-1 多環芳香烴特性 4
2-2-2 多環芳香烴對人體的影響 7
2-2-3 大氣中多環芳香烴來源 9
2-2-4 室內與室外環境中PM2.5-PAHs相關研究 11
2-2-5 多環芳香烴之特徵比 13
第三章、研究方法 14
3-1 研究流程 14
3-2 材料與儀器 15
3-2-1 材料 15
3-2-2 試藥與器具前處理 15
3-2-3 設備與分析儀器 16
3-3 採樣與保存 17
3-3-1 採樣時間與地點 17
3-3-2 採樣方法 22
3-4 樣品分析 23
3-4-1 PAHs分析 23
3-5 品質保證與品質管制(QA/QC) 26
3-5-1 空白試驗 26
3-5-2 方法偵測極限(Method detection limit) 26
3-5-3 擬似標準品回收率 26
3-6 資料分析 27
3-6-1 主成份分析(Principal Components Analysis, PCA) 27
3-6-2 集群分析(Hierarchical Cluster Analysis, HCA) 27
3-6-3 特徵比(Diagnostic ratio) 28
3-6-4 成對樣本t檢定(Paired Samples t-test) 28
3-6-5 健康風險評估 28
第四章、結果與討論 30
4-1室內與室外環境之細懸浮微粒 30
4-1-1 室內PM2.5濃度變化 30
4-1-2 室外PM2.5濃度變化 34
4-1-3 室內與室外PM2.5文獻比較 37
4-2室內與室外環境之多環芳香烴 39
4-2-1 室內PM2.5-PAHs濃度變化 39
4-2-2 室外PM2.5-PAHs濃度變化 42
4-2-3 PM2.5-PAHs文獻比較 44
4-2-4 PM2.5-PAHs成分組成 46
4-2-5 PM2.5與PM2.5-PAHs之相關性 50
4-3室內與室外關係 52
4-3-1 室內與室外之PM2.5和PM2.5-PAHs濃度比較 52
4-3-2 I/O比值與成對樣本t檢定(Paired Samples t-test) 56
4-4 PM2.5-PAHs來源分析 61
4-4-1 特徵比(Diagnostic ratio) 61
4-4-2 主成分分析(Principal Component Analysis, PCA) 64
4-4-3 集群分析(Hierarchical Cluster Analysis, HCA) 71
4-5 室內與室外環境PM2.5-PAHs致癌風險評估 78
4-5-1 室內與室外PM2.5-BaP濃度之時空變化 78
4-5-2 PM2.5-PAHs暴露致癌風險評估 79
第五章、結論與建議 81
5-1 結論 81
5-2 建議 83
參考文獻 84
附錄 91
參考文獻 References
Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123.
Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A., & Takada, H. (2007). Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Science of The Total Environment, 384(1), 420-432.
Burnett, R. T., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., . . . Cohen, A. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397-403.
Callén, M. S., Iturmendi, A., & López, J. M. (2014). Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environmental Pollution, 195, 167-177.
Castro, D., Slezakova, K., Delerue-Matos, C., Alvim-Ferraz, M. D., Morais, S., & Pereira, M. D. (2011). Polycyclic aromatic hydrocarbons in gas and particulate phases of indoor environments influenced by tobacco smoke: Levels, phase distributions, and health risks. Atmospheric Environment, 45(10), 1799-1808.
Chen, C., Zhao, B., Zhou, W., Jiang, X., & Tan, Z. (2012). A methodology for predicting particle penetration factor through cracks of windows and doors for actual engineering application. Building and Environment, 47, 339-348.
Chen, Y., Li, X. H., Zhu, T. L., Han, Y. J., & Lv, D. (2017). PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Science of The Total Environment, 586, 255-264.
Chiang, K. C., Chio, C. P., Chiang, Y. H., & Liao, C. M. (2009). Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 166(2-3), 676-685.
Delgado-Saborit, J. M., Stark, C., & Harrison, R. M. (2011). Carcinogenic potential, levels and sources of polycyclic aromatic hydrocarbon mixtures in indoor and outdoor environments and their implications for air quality standards. Environment International, 37(2), 383-392.
EEA. (2017). Air quality in Europe - 2017 report- European Environment Agency.
EPA/540/1–89/002. Office of Emergency and Remedial Response, Washington,DC
Gehle, K. (2009). Agency for Toxic Substances and Disease Registry (ATSDR) case studies in environmental medicine toxicity of polycyclic aromatic hydrocarbons (PAHs).
Grimmer, G. (1983). Environmental carcinogens polycyclic aromatic hydrocarb: CRC.
Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37(38), 5307-5317.
Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environmental Science & Technology, 30(3), 825-832.
Hassanvand, M. S., Naddafi, K., Faridi, S., Nabizadeh, R., Sowlat, M. H., Momeniha, F., . . . Yunesian, M. (2015). Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Science of The Total Environment, 527, 100-110.
Keller, C. D., & Bidleman, T. F. (1984). Collection of airborne polycyclic aromatic hydrocarbons and other organics with a glass fiber filter-polyurethane foam system. Atmospheric Environment (1967), 18(4), 837-845.
Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71-80.
Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143.
Kliucininkas, L., Krugly, E., Stasiulaitiene, I., Radziuniene, I., Prasauskas, T., Jonusas, A., . . . Martuzevicius, D. (2014). Indoor-outdoor levels of size segregated particulate matter and mono/polycyclic aromatic hydrocarbons among urban areas using solid fuels for heating. Atmospheric Environment, 97, 83-93.
Kulkarni, P., & Venkataraman, C. (2000). Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment, 34(17), 2785-2790.
Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:  a comparison of three methods. Environmental Science & Technology, 37(9), 1873-1881.
Lewtas, J. (2007). Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutation Research-Reviews in Mutation Research, 636(1-3), 95-133.
Li, A., Schoonover, T. M., Zou, Q. M., Norlock, F., Conroy, L. M., Scheff, P. A., &Wadden, R. A. (2005). Polycyclic aromatic hydrocarbons in residential air of ten Chicago area homes: Concentrations and influencing factors. Atmospheric Environment, 39(19), 3491-3501.
Liao, C. M., Chen, S. C., Chen, J. W., & Liang, H. M. (2006). Contributions of Chinese-style cooking and incense burning to personal exposure and residential PM concentrations in Taiwan region. Science of The Total Environment, 358(1-3), 72-84.
Lin, T. C., Chang, F. H., Hsieh, J. H., Chao, H. R., & Chao, M. R. (2002). Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. Journal of Hazardous Materials, 95(1-2), 1-12.
Liu, G.-R., Peng, X., Wang, R.-K., Tian, Y.-Z., Shi, G.-L., Wu, J.-H., . . . Feng, Y.-C. (2015). A new receptor model-incremental lifetime cancer risk method to quantify the carcinogenic risks associated with sources of particle-bound polycyclic aromatic hydrocarbons from Chengdu in China. Journal of Hazardous Materials, 283, 462-468.
Lung, S. C. C., & Hu, S. C. (2003). Generation rates and emission factors of particulate matter and particle-bound polycyclic aromatic hydrocarbons of incense sticks. Chemosphere, 50(5), 673-679.
Lv, J., Xu, R., Wu, G., Zhang, Q., Li, Y., Wang, P., . . . Wei, F. (2009). Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. Journal of Environmental Monitoring, 11(7), 1368-1374.
Ma, W. L., Li, Y. F., Qi, H., Sun, D. Z., Liu, L. Y., & Wang, D. G. (2010). Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere, 79(4), 441-447.
Manoli, E., Kouras, A., & Samara, C. (2004). Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere, 56(9), 867-878.
Manoli, E., Voutsa, D., & Samara, C. (2002). Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment, 36(6), 949-961.
Massey, D., Kulshrestha, A., Masih, J., & Taneja, A. (2012). Seasonal trends of PM10, PM5.0, PM2.5 & PM1.0 in indoor and outdoor environments of residential homes located in North-Central India. Building and Environment, 47, 223-231.
Massey, D., Masih, J., Kulshrestha, A., Habil, M., & Teneja, A. (2009). Indoor/outdoor relationship of fine particles less than 2.5 mu m (PM2.5) in residential homes locations in central Indian region. Building and Environment, 44(10), 2037-2045.
Menzie, C. A., Potocki, B. B., & Santodonato, J. (1992). Exposure to carcinogenic PAHs in the environment. Environmental Science & Technology, 26(7), 1278-1284.
Minguillon, M. C., Schembari, A., Triguero-Mas, M., de Nazelle, A., Dadvand, P., Figueras, F., . . . Querol, X. (2012). Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmospheric Environment, 59, 426-436.
Mohammed, M. O. A., Song, W. W., Ma, Y. L., Liu, L. Y., Ma, W. L., Li, W. L., . . . Khan, A. U. (2016). Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone. Chemosphere, 155, 70-85.
Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290-300.
Ohura, T., Amagai, T., Sugiyama, T., Fusaya, M., & Matsushita, H. (2004). Characteristics of particle matter and associated polycyclic aromatic hydrocarbons in indoor and outdoor air in two cities in Shizuoka, Japan. Atmospheric Environment, 38(14), 2045-2054.
Olsson, A. C., Fevotte, J., Fletcher, T., Cassidy, A., t Mannetje, A., Zaridze, D., . . . Boffetta, P. (2010). Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: a multicenter study in Europe. Occupational and Environmental Medicine, 67(2), 98-103.
Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78-97.
Perrone, M. G., Carbone, C., Faedo, D., Ferrero, L., Maggioni, A., Sangiorgi, G., & Bolzacchini, E. (2014). Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes. Atmospheric Environment, 82, 391-400.
Polidori, A., Turpin, B., Meng, Q. Y., Lee, J. H., Weisel, C., Morandi, M., . . . Maberti, S. (2006). Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes. Journal of Exposure Science and Environmental Epidemiology, 16(4), 321-331.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Raysoni, A. U., Armijos, R. X., Weigel, M. M., Montoya, T., Eschanique, P., Racines, M., & Li, W. W. (2016). Assessment of indoor and outdoor PM species at schools and residences in a high-altitude Ecuadorian urban center. Environmental Pollution, 214, 668-679.
Romagnoli, P., Balducci, C., Perilli, M., Gherardi, M., Gordiani, A., Gariazzo, C., . . . Cecinato, A. (2014). Indoor PAHs at schools, homes and offices in Rome, Italy. Atmospheric Environment, 92, 51-59.
Sarigiannis, D. A., Karakitsios, S. P., Kermenidou, M., Nikolaki, S., Zikopoulos, D., Semelidis, S., . . . Tzimou, R. (2014). Total exposure to airborne particulate matter in cities: The effect of biomass combustion. Science of The Total Environment, 493, 795-805.
Sarigiannis, D. A., Karakitsios, S. P., Zikopoulos, D., Nikolaki, S., & Kermenidou, M. (2015). Lung cancer risk from PAHs emitted from biomass combustion. Environmental Research, 137, 147-156.
Sarigiannis, D. Α., Karakitsios, S. P., Zikopoulos, D., Nikolaki, S., & Kermenidou, M. (2015). Lung cancer risk from PAHs emitted from biomass combustion. Environmental Research, 137, 147-156.
Shen, H. Z., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G. F., . . . Tao, S. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science & Technology, 47(12), 6415-6424.
Sheu, H.-L., Lee, W.-J., Lin, S. J., Fang, G.-C., Chang, H.-C., & You, W.-C. (1997). Particle-bound PAH content in ambient air. Environmental Pollution, 96(3), 369-382.
Suman, S., Sinha, A., & Tarafdar, A. (2016). Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Science of The Total Environment, 545, 353-360.
Tiwari, M., Sahu, S. K., & Pandit, G. G. (2017). PAHs in size fractionate mainstream cigarette smoke, predictive deposition and associated inhalation risk. Aerosol and Air Quality Research, 17(1), 176-186.
Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162(Supplement C), 110-119.
Tuckett, C. J., Holmes, P., & Harrison, P. T. C. (1998). Airborne particles in the home. Journal of Aerosol Science, 29, S293-S294.
Tuominen, J., Salomaa, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela, T., . . . Himberg, K. (1988). Polynuclear aromatic-compounds and genotoxicity in particulate and vapor-phases of ambient air - effect of traffic, season, and meteorological conditions. Environmental Science & Technology, 22(10), 1228-1234.
U.S. Environmental Protection Agency (USEPA)Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual
USEPA. Risk assessment guidance for superfund, vol. I: Human health evaluation manual (Part A)[R]. US Environmental Protection Agency, Office of Emergency and Remedial Response. EPA 540/1-89/002, Washington, DC, 1989. Google Scholar.
US EPA. Risk assessment guidance for superfund, Volume 1, Human health evaluation manual (Part B, Development of risk-based preliminary remediation goals).OSWER; 1991 [9285.7-01B. EPA/540/R-92/003].
USEPA. (2014). User’s Guide, Regional Screening Levels, U.S. Environmental Protecetion Agency, Available:http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_tab
Wallace, L. (1996). Indoor particles: a review. Journal of the Air & Waste Management Association, 46(2), 98-126.
Wang, J., Lai, S. C., Ke, Z. Y., Zhang, Y. Y., Yin, S. S., & Zheng, J. Y. (2014). Exposure assessment, chemical characterization and source identification of PM2.5 for school children and industrial downwind residents in Guangzhou, China. Environmental Geochemistry and Health, 36(3), 385-397.
Wang, W., Huang, M. J., Kang, Y., Wang, H. S., Leung, A. O. W., Cheung, K. C., & Wong, M. H. (2011). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of The Total Environment, 409(21), 4519-4527.
Witt, G. (1995). Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31(4), 237-248.
World Health Organization. (1987). Polynuclear aromatic hydrocarbons (PAH). In: Air Quality Guidelines for Europe. Regional Office for Europe, Copenhagen, pp 105–117.
World Health Organization. (2013). Outdoor air pollution a leading environmental cause of cancer deaths. Press release, 221.
World Health Organization. (2014). Ambient (outdoor) air quality and health. Fact sheet, 313.
Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489-515.
Zhou, Z. H., Liu, Y. R., Yuan, J. J., Zuo, J., Chen, G. Y., Xu, L. Y., & Rameezdeen, R. (2016). Indoor PM2.5 concentrations in residential buildings during a severely polluted winter: A case study in Tianjin, China. Renewable & Sustainable Energy Reviews, 64, 372-381.
Zhu, L., & Wang, J. (2003). Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere, 50(5), 611-618.
Zhu, L. Z., Lu, H., Chen, S. G., & Amagai, T. (2009). Pollution level, phase distribution and source analysis of polycyclic aromatic hydrocarbons in residential air in Hangzhou, China. Journal of Hazardous Materials, 162(2-3), 1165-1170.
Zhu, L. Z., & Wang, J. (2003). Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere, 50(5), 611-618.
吳家安. (2013). 高雄地區大氣中細懸浮微粒之監測分析及管制策略. (碩士), 國立中山大學, 高雄市.
李明遠. (2014). 校園室內空氣品質(O 3 、PM 2.5 、PM 10 )之研究-以大仁科技大學為例. (碩士), 大仁科技大學, 屏東縣.
李郁惠. (2005). 愛河及前鎮河水體中多環芳香烴含量分佈之研究. (碩士), 國立中山大學, 高雄市.
張文馨. (2008). 北投焚化爐附近社區空氣中PM2.5、PM10及PAHs濃度研究. (碩士), 國立陽明大學, 台北市.
温燿旭. (2011). 屏東市區細懸浮微粒PM2.5之預測模型. (碩士), 國立屏東科技大學, 屏東縣.
何建弘. (2016). 高雄地區室內環境中細懸浮微粒多環芳香烴特性與來源之探討. (碩士), 國立中山大學, 高雄市.
黃互慶. (2016). 南臺灣大氣多環芳香烴之傳輸、時空分佈與預測分析. (博士), 國立中山大學, 高雄市.
潘侑興. (2016). 高雄都會區大氣細懸浮微粒上多環芳香烴的調查研究. (碩士), 國立中山大學, 高雄市.
鄭金娥. (2015). 多環芳香烴於恆春半島濃度、來源及海氣交換之研究. (博士), 國立中山大學, 高雄市.
賴臆雯. (2000). 大氣塵粒中多環芳香烴粒徑分布特性之研究. (碩士), 國立清華大學, 新竹市.
鐘泰龍. (2010). 組成元素、多環芳香烴、戴奧辛與呋喃化合物於都市固體廢棄物焚化爐灰渣之特徵與型態分佈. (博士), 國立屏東科技大學, 屏東縣.
交通部統計查詢網.交通統計縣市指標.
2016:http://geostat.motc.gov.tw/dmz/mocdx/stat-o.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code