Responsive image
博碩士論文 etd-0121118-221534 詳細資訊
Title page for etd-0121118-221534
論文名稱
Title
利用濕法冶金技術回收混合型廢鋰離子電池中有價金屬
Recovery of Valuable Metals from Spent Mixed-type Lithium-ion Batteries Using Hydrometallurgical Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2018-02-21
關鍵字
Keywords
有價金屬、化學沉澱、溶劑萃取、廢鋰離子電池、濕法冶金
Chemical precipitation, Hydrometallurgy, Solvent extraction, Spent lithium-ion battery, Valuable metals
統計
Statistics
本論文已被瀏覽 5662 次,被下載 16
The thesis/dissertation has been browsed 5662 times, has been downloaded 16 times.
中文摘要
本研究係採逆向實務可行之原則加以規劃設計處理流程回收混合型廢鋰離子電池中之有價金屬,希冀在實驗室規模研究各處理程序所求得之最佳操作條件,未來能予以放大驗證及應用。於國內某廢乾電池回收處理廠採集之混合型廢鋰離子電池以Co, Mn, Cu及Zn為其主要元素,分別占整體含量之42%、16%、10%及16%。由酸浸漬/酸溶試驗得知:混合型廢鋰離子電池於80 ºC 添加3 M硫酸及5 vol%過氧化氫可得最佳溶出效率。由金屬離子分離試驗發現:(1) 混合型廢鋰離子電池酸溶出液在pH 4時,由磺化煤油為稀釋劑之0.4 M D2EHPA對Al、Fe及Zn有最佳移除率;(2) 經 (1) 萃取後之萃餘液於pH 6.5對Al及Cu有最佳移除率;(3) 經 (2) 沉澱後之上澄液於pH 10且以添加劑量為莫耳比0.5之碳酸鈉可藉由共沉澱分離出Co/Mn;將共沉澱物以0.4 M 硫酸及2.5 vol%過氧化氫,於室溫下進行酸浸漬/酸溶,可獲得最佳回溶率。金屬離子分離試驗後,於金屬電析精煉試驗發現:在電流密度250 A/m2下,電沉積5小時,即可將MnSO4及CoSO4電解液中Mn及Co回收。混合型廢鋰離子電池中之Mn及Co整體回收率分別為88%及86%,其中,鈷純度為97%,由上述得以證實本研究所設計之回收處理流程具有實廠應用之潛力。
Abstract
Based on the principle of technically feasible reverse implementation, the objective of this work was to determine the optimal operating conditions that can be scaled up to recover valuable metals from spent mixed-type lithium-ion batteries (LIBs). First, after pretreatments the samples of screen undersize of spent mixed-type LIBs were collected from a local spent battery recycling plant. After analysis, it was found that major elements in the spent mixed-type LIBs were Co, Mn, Cu and Zn having 42 wt%, 16 wt%, 10 wt%, and 16 wt%, respectively. Results of the acid leaching tests showed that the optimal leaching conditions were determined to be 80˚C, 3 M H2SO4 and 5 vol% H2O2 for the spent mixed-type LIBs. Then various separation methods have been used for the separation of metallic ions in the leached solution. The relevant test results for the spent mixed-type LIBs are given as follows: (1) Under the condition of pH 4, 0.4 M D2EHPA could extract up to 70% of Zn without co-extraction of target metals; (2) The stripping efficiency for Zn was 100% if 0.4 M H2SO4 was used as the stripping agent; (3) As for raffinate from (1), under the condition of pH 6.5, 90% of Al and 98% of Cu were removed; (4) After precipitation, when ([Co2+] +[Mn2+]) : [CO32-] molar ratio was under 0.5 and pH was adjusted to 10, the precipitation efficiency of Co and Mn were 100%, and the precipitate formed would be dissolved by 0.4 M H2SO4 and 2.5 vol% H2O2. Tests results for electrowinning of metals are given as follows: The operation of electrowinning for 5 h could recover 98% of Co and 97% of MnO2 from CoSO4 and MnSO4 contained in the electrolyte recovered from (4) indicated above. Based on the test results obtained from the aforementioned unit operations, the overall recoveries of 86% Co and 88% Mn were obtained for the spent mixed-type LIBs. Accordingly, a satisfactory recycling flowchart has been devised in this study. It is suggested that a semi-full scale testing should be carried out in the future to verify the findings obtained in this study.
目次 Table of Contents
學位論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 xi
圖目錄 xii
第一章 前言 1
1.1研究緣起 1
1.2研究目標 7
1.3研究內容與架構 7
第二章 文獻回顧 11
2.1鋰離子電池 11
2.1.1類型與組成 11
2.1.2組成份元素之潛在危害性 12
2.2 廢鋰離子電池常見之回收處理技術 14
2.2.1火法冶金 15
2.2.2濕法冶金 17
2.2.2.1酸浸漬/酸溶 (Acid leaching) 20
2.2.2.2溶出液中的金屬離子分離 23
2.2.2.3金屬電析精煉 28
第三章 材料與方法 30
3.1實驗材料 30
3.1.1廢鋰離子樣品來源 30
3.1.2材料與試劑 31
3.2實驗設備及儀器 32
3.3實驗方法 33
3.3.1廢鋰離子電池基本特性分析 33
3.3.2酸浸漬/酸溶試驗 34
3.3.3溶出液中的金屬離子分離 36
3.3.3.1溶劑萃取法萃取Al、Cu及Zn 36
3.3.3.2氫氧化物沉澱法移除Al及Cu 39
3.3.3.3共沉澱回收CoCO3及MnCO3 40
3.3.3.4酸浸漬/酸溶試驗回收CoSO4及MnSO4 41
3.3.4金屬電析精煉 42
第四章 結果與討論 44
4.1廢鋰離子電池標基本特性分析 44
4.2酸浸漬/酸溶試驗 48
4.2.1反應溫度對於酸浸漬/酸溶之影響 48
4.2.2硫酸濃度對於酸浸漬/酸溶之影響 50
4.2.3添加過氧化氫對酸浸漬/酸溶之影響 55
4.3混合型廢鋰離子電池溶出液中金屬離子分離 58
4.3.1溶劑萃取法移除Zn 58
4.3.1.1不同稀釋劑對於萃取溶劑效能之影響 58
4.3.1.2不同水相 pH 值對於萃取溶劑效能之影響 60
4.3.1.3不同皂化率對於萃取溶劑效能之影響 61
4.3.1.4萃取溶劑之重複利用對於萃取溶劑效能之影響 64
4.3.2化學沉澱法移除Al及Cu 65
4.3.3化學沉澱法回收CoCO3及MnCO3 66
4.3.4酸回溶CoCO3及MnCO3共沈澱物回收CoSO4及MnSO4 70
4.4 CoSO4及MnSO4之同步電析/電解精煉金屬 72
4.4.1不同電解液組成對於同步電析效果之影響 72
4.4.2不同電流密度對於同步電析效果之影響 75
4.4.3不同反應時間對於同步電析效果之影響 77
4.5 技術可行性評估 87
4.6 經濟可行性評估 90
4.7 綜合討論 92
第五章 結論與建議 93
5.1 結論 93
5.2 建議 94
參考文獻 96
附錄 107
附錄一 廢棄物及底泥中金屬檢測方法-酸消化法 (NIEA M353.02C) 107
附錄二 沉積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法 (NIEA R355.00C) 109
附錄三 乾電池汞、鎘、鉛含量檢測方法 (NIEA R315.02B) 111
附錄四 事業廢棄物水分測定方法-間接測定法 (NIEA R203.02C) 112
碩士在學期間發表之學術論文 113
參考文獻 References
英文部分:
Ahmed, F., "The Battery-Recycling Loop a European Perspective," Journal of Power Sources, Vol. 59, pp. 107-111 (1996).
ATSDR, "Toxicological Profile for Aluminum," U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. (2008)
ATSDR, "Toxicological Profile for Cobalt," U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. (2004).
ATSDR, "Toxicological Profile for Copper," U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. (2004).
ATSDR, "Toxicological Profile for Manganese," U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. (2012).
ATSDR, "Toxicological Profile for Nickel," U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. (2005).
ATSDR, "Toxicological Profile for Zinc," U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. (2005).
Barik, S. P., G. Prabaharan, L. Kumar, "Leaching and Separation of Co and Mn from Electrode Materials of Spent Lithium-Ion Batteries Using Hydrochloric Acid: Laboratory and Pilot Scale Study," Journal of Cleaner Production, Vol. 147, pp. 37-43 (2017).
Bernardes, A. M., D. C. R. Espinosa, and J. A. S. Tenório, "Recycling of Batteries: A Review of Current Processes and Technologies," Journal of Power Sources, Vol. 130, pp. 291-298 (2004).
Battery University, BU-205: Types of Lithium-Ion -- Become Familiar with the Many Different Types of Lithium-Ion Batteries. http://batteryuniversity.com/learn/article/types_of_lithium_ion. Accessed March 12, 2017.
Chen, X., B. Xu, T. Zhou, D. Liu, H. Hu, and S. Fan, "Separation and Recovery of Metal Values from Leaching Liquor of Mixed-Type of Spent Lithium-Ion Batteries," Separation and Purification Technology, Vol. 144, pp. 197-205 (2015b)
Churl Kyoung, L. and K.I. Rhee, "Preparation of LiCoO2 from Spent Lithium-Ion Batteries," Journal of Power Source, Vol. 109, pp. 17-21 (2002).
Churl Kyoung, L. and K.I. Rhee, "Reductive Leaching of Cathodic Active Materials from Lithium Ion Battery Wastes," Hydrometallurgy, Vol. 68, pp. 5-10 (2003).
Catillo, S., F. Ansart, C. Laberty-Robert, and J. Portal, "Advances in The Recovering of Spent Lithium Battery Compounds," Journal of Power Sources, Vol. 112, pp. 247-254 (2002).
Contestabile, M., S. Panero, and B. Scrosati, "A Laboratory-Scale Lithium- Ion Battery Recycling Process," Journal of Power Sources, Vol. 92, pp. 65-69 (2001).
Dini, J. W., "Electrodeposition: The Materials Science of Coatings and Substrates," Noyes Publications, Park Ridge, New Jersey, USA (1993).
Dorella, G. and M. B. Mansur, "A Study of The Separation of Cobalt from Spent Li-Ion Battery Residues," Journal of Power Sources, Vol. 170, pp. 210-215 (2007).
de Souza, C. C. B. M., D. C. de Oliveira, and J. A. S. Tenório, "Characterization of Used Alkaline Batteries Powder and Analysis of Zinc Recovery by Acid Leaching," Journal of Power Sources, Vol. 103, pp. 120-126 (2001).
Ekberg, C. and M. Petranikova, "Lithium Batteries Recycling," Lithium Process Chemistry, pp.233-264 (2017).
Fossi, P. and E. Sambarino, "Process for The Recovery of Indium," U.S. Patent No. 4372922 (1983).
Freitas, M. B. J. G. and E. M. Garcia, "Electrochemical Recycling of Cobalt from Cathodes of Spent Lithium-Ion Batteries," Journal of Power Sources, Vol. 171, pp. 953-959 (2007).
Ferreira, D. A., L. M. Z. Prados, D. Majuste, and M. B. Mansur, "Hydrometallurgical Separation of Aluminium, Cobalt, Copper and Lithium from Spent Li-Ion Batteries," Journal of Power Sources, Vol. 187, pp. 238-246 (2009).
Guo, Y., F. Li, H. Zhu, G. Li, J. Huang, and W. He, "Leaching Lithium from the Anode Electrode Materials of Spent Lithium-Ion Batteries by Hydrochloric Acid (HCl)," Waste Management, Vol. 51, pp. 27-233 (2016).
Hoh, Y. C., W. S. Chuang, B. D. Lee, and C. C. Chang, "The Separation of Manganese from Cobalt by D2EHPA," Hydrometallurgy, Vol. 12, pp. 375-386 (1984).
Horeh, N. B., S. M. Mousavi, and S. A. Shojaosadati, "Bioleaching of Valuable Metals from Spent Lithium-Ion Mobile Phone Batteries Using Aspergillus Niger," Journal of Power Sources, Vol. 320, pp. 257-266 (2016).
Huang, Y., G. H. Han, J. T. Liu, W. C. Chai, and W. J. Wang, "A Stepwise Recovery of Metals from Hybrid Cathodes of Spent Li-Ion Batteries with Leaching-Flotation-Precipitation Process," Journal of Power Sources, Vol. 325, pp. 555-564 (2016).
Hanisch, C., T. Loellhoeffel, J. Diekmann, K. J. Markley, W. Haselrieder, and A. Kwade, "Recycling of Lithium-Ion Batteries: A Novel Method to Separate Coating and Foil of Electrodes," Journal of Cleaner Production, Vol. 108, pp. 301-311 (2015).
IARC, "Cobalt and Cobalt Compounds," IARC Monographs, Vol. 52, pp. 363-472 (1991).
Jha, M. K., A. Kumari, A. K. Jha, V. Kumar, J. Hait, and B. D. Pandey, "Recovery of Lithium and Cobalt from Waste Lithium Ion Batteries of Mobile Phone," Waste Management, Vol. 33, pp. 1890-1897 (2013).
Ke, J., R. Qiu, and C. Chen, "Recovery of Metal Values from Copper Smelter Flue Dust," Hydrometallurgy, Vol. 12, pp. 217-224 (1984).
Li, L., J. Ge, R. Chen, F. Wu, S. Chen, and X. Zhang, "Environmental Friendly Leaching Reagent for Cobalt and Lithium Recovery from Spent Lithium-Ion Batteries," Waste Management, Vol.30, pp. 2615-2621 (2010a).
Li, L., J. Ge, F. Wu, R. Chen, S. Chen and B. Wu, "Recovery of Cobalt and Lithium from Spent Lithium Ion Batteries Using Organic Citric Acid as Leachant," Journal of Hazardous Materials, Vol.176, pp. 288-293 (2010b).
Li, L., J. Lu, Y. Ren, X. X. Zhang, R. J. Chen, F. Wu, and K. Amine, "Ascorbic-Acid-Assisted Recovery of Cobalt and Lithium from Spent Li-Ion Batteries," Journal of Power Sources, Vol. 218, pp. 21-27 (2012).
Li, L., W. Qu, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, "Succinic Acid-Based Leaching System: A Sustainable Process for Recovery of Valuable Metals from Spent Li-Ion Batteries," Journal of Power Sources, Vol. 282, pp. 544-551 (2015).
Li, L., L. Zhai, X. Zhang, J. Lu, R. Chen, F. Wu, and K. Amine, "Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Ultrasonic- Assisted Leaching Process," Journal of Power Sources, Vol. 262, pp. 380-385 (2014).
Lupi, C. and M. Pasquali, "Electrolytic Nickel Recovery from Lithium-Ion Batteries," Minerals Engineering, Vol. 16, pp. 537-542 (2003).
Lupi, C., M. Pasquali, and A. Dell'Era, "Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Processes," Waste Management, Vol. 25, pp. 215-220 (2005)
Ma, L., Z. Nie, X. Xi, X. Li, "Theoretical Simulation and Experimental Study on Nickel, Cobalt, Manganese Separation in Complexation- Precipitation System," Separation and Purification Technology, Vol.108, pp. 124-132 (2013).
Meng, Q., Y. Zhang, P. and Dong, "A Combined Process for Cobalt Recovering and Cathode Material Regeneration from Spent LiCoO2 Batteries: Process Optimization and Kinetics Aspects," Waste Management, Vol. 71, pp. 372-380 (2018).
Meshram, P., B. D. Pandey, and T. R. Mankhand, "Recovery of Valuable Metals from Cathodic Active Material of Spent Lithium Ion Batteries: Leaching and Kinetic Aspects," Waste Management, Vol. 45, pp. 306-313 (2015a).
Meshram, P., B. D. Pandey, and T. R. Mankhand, "Hydrometallurgical Processing of Spent Lithium Ion Batteries (Libs) in The Presence of A Reducing Agent With Emphasis on Kinetics of Leaching," Chemical Engineering Journal, Vol. 281, pp. 418-427 (2015b).
Masamoto, S., T. Junichiro, G. Hisashi, and O. Masaharu, "Recovery of Cadmium from Small Sealed Ni/Cd Batteries," Proceeding of the TMS Annual Meeting 1993, TMS, Warrendale, pp. 815-818 (1993).
McKnight, R. F., M. Adida, K. Budge, S. Stockton, G. M. Goodwin, and J. R. Geddes, "Lithium Toxicity Profile: A Systematic Review and Meta-Analysis," The Lancet, Vol. 379, pp. 721-728 (2012).
Nan, J., D. Han, and X. Zuo, "Recovery of Metal Values from Spent Lithium-Ion Batteries with Chemical Deposition and Solvent Extraction," Journal of Power Sources, Vol. 152, pp. 278-284 (2005).
Nayl, A. A., Mostafa M. Hamed, and S. E. Rizk, "Selective Extraction and Separation of Metal Values from Leach Liquor of Mixed Spent Li-Ion Batteries," Journal of the Taiwan Institute of Chemical Engineers, Vol. 55, pp. 119-125 (2015).
Paulino, J. F., N. G. Busnardo, and J. C. Afonso, "Recovery of Valuable Elements from Spent Li-Batteries," Journal of Hazardous Materials, Vol.150, pp. 843-849 (2008).
Pereira, D. D., S. D. F. Rocha, and M. B. Mansur, "Recovery of Zinc Sulphate from Industrial Effluents by Liquid-Liquid Extraction Using D2EHPA (Di-2-Ethylhexyl Phosphoric Acid)," Separation and Purification Technology, Vol. 53, pp. 89-96 (2007).
Pagnanelli, F., E. Moscardini, P. Altimari, T. A. Atia, and L. Toro, "Cobalt Products from Real Waste Fractions of End of Life Lithium Ion Batteries," Waste Management, Vol. 51, pp. 214-221 (2016).
Ritcey, G. M. and B. H. Lucas, "Purification of Manganese Solutions Containing Copper and Zinc by Liquid-Liquid Extraction, Using Di-(2- Ethylhexyl) Phosphoric Acid," Canadian Metallurgical Quarterly, Vol. 10, pp. 223-228 (1971).
Sun, L. and K. Qiu, "Organic Oxalate as Leachant and Precipitant for the Recovery of Valuable Metal from Spent Lithium-Ion Batteries," Waste Management, Vol. 32, pp. 1575-1582 (2012).
Shen, Y., W. Xue, and W. Niu, "Recovery of Co(II) and Ni(II) from Hydrochloric Acid Solution of Alloy Scrap," Transactions of Nonferrous Metals Society of China, Vol. 18, pp. 1262-1268 (2008).
Shin, S. M., N. Y. Kim, J. S. Sohn, D. H. Yang, and Y. H. Kim, "Development of A Metal Recovery Process from Li-Ion Battery Wastes," Hydrometallurgy, Vol. 79, pp. 172-181 (2005).
Sakultung, S., K. Pruksathorn, and M. Hunsom, "Simultaneous Recovery of Valuable Metals from Spent Mobile Phone Battery by An Acid Leaching Process," Korean, Journal of Chemical Engineering, Vol. 24, pp. 272-277 (2007).
Tarascon, J. M. and M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries," Nature, Vol. 414, pp. 359-367 (2001).
Winslow, K. M., S. J. Laux, and T. G. Townsend, "A Review on The Growing Concern and Potential Management Strategies of Waste Lithium-Ion Batteries," Resources, Conservation & Recycling, Vol. 129, pp. 263-277 (2018).
Xu, J., H. R. Thoma, Francis, K. R. Lum, J. Wang, and B. Lian, "A Review of Processes and Technologies for The Recycling of Lithium-Ion Secondary Batteries," Journal of Power Sources, Vol. 177, pp. 512-27 (2008).
Xue, Z., Z. Hua, N. Yao, and S. Chen, "Separation and Recovery of Nickel and Cadmium from Spent Cd-Ni Storage Batteries and Their Process Wastes," Separation Science and Technology, Vol. 27, pp. 213-221 (1992).
Xianlai, Z., J. Li, and N. Singh, "Recycling of Spent Lithium-Ion Battery: A Critical Review," Critical Reviews in Environmental Science and Technology, Vol. 44, pp. 1129-1165 (2014).
Yang, G. C. C., Y. C. Huang, S. C. Huang, "Recovery of Valuable Metals from Cylindrical 18650-Type Spent Lithium-Ion Batteries," The 5th International conference on sustainable solid waste management, June 21-24, Athens, Greece (2017).
Zhu, S. G., W. Z. He, G. M. Li, Z. Xu, J. W. Zhang, and J. W. Huang, "Recovery of Co and Li from Spent Lithium-Ion Batteries by Combination Method of Acid Leaching and Chemical Precipitation," Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 2274- 2281 (2012).
Zeng, X., J. Li, and B. Shen, "Novel Approach to Recover Cobalt and Lithium from Spent Lithium-Ion Battery Using Oxalic Acid," Journal of Hazardous Materials, Vol. 295, pp. 112-118 (2015).
Zhang, P., T. Yokoyama, O. Itabashi, T. M. Suzuki, and K. Inoue, "Hydrometallurgical Process for Recovery of Metal Values from Spent Lithium-Ion Secondary Batteries," Hydrometallurgy, Vol. 47, pp. 259- 271 (1998).
中文部分:
王文裕,「回收廢鋰電池再生資源之研究」,103 年度補助應回收廢棄物回收處理創新及研究發展計畫期末報告 (2014)。
江懿秦,「廢鋰二次電池中有價金屬回收製程之研究」,碩士學位論文,國立雲林科技大學環境與安全工程系,雲林縣 (2007)。
行政院環境保護署,「廢乾電池及廢照明光源回收處理 體系調查分析暨執行成效評估專案工作計畫」,台北 (2017)。
吳芳,「從廢舊鋰離子二次電池中回收鈷和鋰」,中國有色金屬學報,第 14 卷,第 4 期,第 697-701 頁 (2004)。
李勛創、鄔霞、張志強及劉永梅,「溶劑萃取回收廢棄鋰電池中鈷金屬的研究」,廣東化工,第 39 卷,第 2 期,第 12-13 頁 (2012)。
周正華,「從廢舊蓄電池中無污染火法冶煉再生鉛及合金」,上海有色金屬,第 4 期,第 157-163 頁 (2002)。
林民禾,「以電沉積法由廢鋰離子電池中回收有價金屬」,碩士學位論文,國立勤益科技大學化工與材料工程系,台中市 (2013)。
林育全,「從鋰離子二次電池中回收有價值金屬之新方法」,碩士學位論文,大同大學化學工程學系,台北市 (2008)。
林佳良,「回收廢二次鋰電池有價金屬」,碩士學位論文,朝陽科技大學環境工程與管理系,台中市 (2014)。
洪淑惠,「廢棄鋰離子電池回收處理技術評估」,博士學位論文,國立臺灣大學環境工程研究所,台北市 (2014)。
陳志成、李清華、游智翔及鄭玠弦,「廢鋰電池回收處理技術研究」,102 年度應回收廢棄物回收處理創新研發成果發表會摘要手冊,第 (5-1)-(5-5) 頁 (2013)。
陳明傑,「廢鋰電池資源再生之研究」,碩士學位論文,大葉大學環境工程研究所,彰化縣 (2002)。
曾華梁、吳仲達、陳鈞武、呂佩仁及秦月文,「電鍍工藝手冊」,第 2 版,機械工業出版社,北京 (1997)。
舒利民,「P204 萃取分離鈷、錳過程解析」,中國新技術新產品,第 22 期,第 85-86 頁 (2012)。
楊金鐘、黃聖智及黃昱蓁,「利用濕法冶金技術回收處理圓柱 18650 型廢理鈷電池中的有價金屬」,中國礦冶工程學會 105 年年會,高雄市,11 月 10 日,台灣 (2016a)。
楊金鐘、黃聖智及黃昱蓁,「利用濕法冶金技術回收圓柱 18650 型廢理鈷電池中有價金屬」,中華民國環境工程學會第二十八屆年會暨廢棄物處理技術研討會,台南市,11 月 18-19 日,台灣 (2016b)。
詹茵舒,「廢棄鋰離子電池有價金屬之回收」,碩士學位論文,國立臺北科技大學化學工程研究所,台北市 (2010)。
潘秀麗、田軍、馬松艷及趙東江,「採用酸浸法從廢鋰離子電池回收金屬鈷」,哈爾濱理工大學學報,第 16 卷,第 2 期,第 106-109 (2011)。
蔡宗育,「廢電池之金屬回收研究」,碩士學位論文,國立雲林科技大學環境與安全工程系,雲林縣 (2009)。
賴俊諾,「廢鋰電池中金屬鈷回收技術開發」,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2017)。
韓東梅及南俊民,「廢舊電池的回收利用」,電源技術,第 2 期,第 128-131 頁 (2005)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code