Responsive image
博碩士論文 etd-0122108-062049 詳細資訊
Title page for etd-0122108-062049
論文名稱
Title
氧化鋅薄膜在光電元件上的應用與研究
Investigation on the ZnO Thin Film for Optoelectronic Device Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-12-26
繳交日期
Date of Submission
2008-01-22
關鍵字
Keywords
溶膠凝膠、氧化鋅
Znic Oxide, ZnO, sol-gel
統計
Statistics
本論文已被瀏覽 5668 次,被下載 1748
The thesis/dissertation has been browsed 5668 times, has been downloaded 1748 times.
中文摘要
近年來,一些透明且導電的金屬氧化物,例如氧化鎘、氧化銦、氧化錫和氧化鋅,已可以用於半導體上的透明薄膜,因此透明電子將是下一新時代光電元件上應用的重要技術。
氧化鋅(ZnO)是一個II-VI族結合的半導體材料,擁有3.37 eV寬的直接能隙,因此,氧化鋅應用在透明薄膜電晶體(TFTs)已經被廣泛地研究,而對於氧化鋅薄膜在多樣化的應用來說,許多的製作方法也已經被嘗試在做。在本論文中,元件的主動層為鋯摻雜氧化鋅薄膜,是使用一種溶膠凝膠(sol-gel)以旋轉塗佈(spin-coating)的方式製作,其元件結構為底閘極底接觸(bottom-gate bottom-contact)式的。
實驗結果得知鋯摻雜氧化鋅薄膜電晶體(ZrZnO TFTs)的電性強烈受到可見光和周遭的氧影響。另外,關於溫度對鋯摻雜氧化鋅薄膜電晶體的電性上影響結果也在此探討。最後,以溶膠凝膠方式製作的鋯摻雜氧化鋅薄膜電晶體除了應用在開關元件上,在氣體感應器上的應用也具有極大潛力。
Abstract
In recent years, transparent and conductive layers of some metallic oxide, such as cadmium oxide, indium oxide, tin oxide and zinc oxide, can be used for semiconducting transparent coatings. Transparent electronics are nowadays a crucial technology for the next generation of optoelectronic devices.
Zinc oxide (ZnO) is a II-VI compound semiconductor with a wide direct bandgap of 3.37 eV. Therefore, ZnO based transparent thin film transistors (TFTs) have been studied extensively. For the wide variety of applications, numerous ZnO films preparation methods have been attempted. In this thesis, the devices of ZnZrO active channel layers were fabricated by the sol-gel spin-coating method. These ZnZrO TFTs were fabricated by bottom-gate bottom-contact-type TFTs.
The Experimental results have shown that the electrical properties of the ZnZrO TFTs are strongly dependent on visible light and ambient oxygen. In addition, in this study, the results concerning the influence of temperature on the electrical properties of ZnZrO TFTs also have been discussed. Finally, except for the application of switch devices, the ZnZrO TFTs by sol-gel spin-coating process exhibits a potential application for gas sensors.
目次 Table of Contents
Content
Chinese Abstract……………………………………………………..i
English Abstract……………………………………………………..ii
Acknowledgement…………………………………………………..iii
Content……………………………………………………………....iv
Table Captions……………………………………………………..vii
Figure Captions……………………………………………………viii
Chapter 1 – Introduction
1.1 Overview…………………………………………………………. 1
1.2 Motivation………………………………………………………... 3
Chapter 2 – Background of Zinc oxide
2.1 Zinc oxide.......................................................................................4
2.2 Surface conductivity and Photoconductivity..................................5
2.3 Physisorption and Chemisorption……………………………….7
2.4 Scattering mechanism…………………………………………….8
Chapter 3 – Fabrication and instruments
3.1 Device Fabrication........................................................................11
3.1.1 TFT Fabrication………………………………………………….11
3.1.2 Deposition of Active channel layer by spin-coating…………11
3.1.3 Baking……………………………………………………………..12
3.1.4 Patterning…………………………………………………………12
3.1.5 Annealing………………………………………………………….12
3.1.6 Film Thickness……………………………………………………13
3.2 Instruments and measurement step……………………………...14
3.2.1 Instruments………………………………………………………..14
3.2.2 Set up instruments for I-V……………………………………….15
Chapter 4 – Results and Discussion
4.1 The influence of illumination…………………………………...16
4.1.1 Experiment………………………………………………………..16
4.1.2 The influence of illumination under atmosphere…………….17
4.1.3 The influence of illumination under vacuum…………………18
4.1.4 The different wavelength of illumination……………………..19
4.2 The influence of ambient gas…………………………………....20
4.2.1 Experiment………………………………………………………..20
4.2.2 The influence of ambient gas under various pressures……...21
4.3 The steady state of the device…………………………………...22
4.3.1 Experiment………………………………………………………..22
4.3.2 The steady state of time mode and bias mode………………..23
4.3.3 The steady state of bias mode after illumination…………….23
4.4 The influence of temperature…………………………………....25
4.4.1 Experiment………………………………………………………..25
4.4.2 The influence of temperature under atmosphere…………….25
4.4.3 The influence of termperature under vacuum………………..26
Chapter 5 – Conclusion....................................................................27
References…………………………………………………………..29
Tables…………………………………………………….………....35
Figures……………………………………………………………....37
參考文獻 References
Reference
Chapter 1
[1.1] H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”, pp. 3.
[1.2] R. Navamathavan, J. H. Lim, D. K. Hwang, B. H. Kim, J. Y. Oh, J.H. Yang, H. S. Kim, S. J. Park, “Thin-Film Transistors Based on ZnO Fabricated by Using Radio-Frequency Magnetron Sputtering,” Journal of the Korean Physical Society, vol. 48, no. 2, pp. 271-274, February 2006.
[1.3] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett, vol.82, no. 7,pp. 1117-1119, February 2003
[1.4] K. Kaiya, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, H. Yamamoto, Thin Solid Films, vol.409 , pp.116, 2002.
[1.5] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Appl. Phys. Lett, vol.81,no. 10,pp. 1830-1832, 2002.
[1.6] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys, vol. 85, no. 11, pp. 7884-7887, 1999.
[1.7] M. J. Alam, D. C. Cameron, J. Vac. Sci. Technol A, vol.19, no. 4, pp. 1642-1646, 2001.
[1.8] J. H. Lee, P. Lin, J. C. Ho, C. C. Lee, “Chemical solution Deposition of Zn1-xZrxO thin films as active channel layers of thin-film transistors,” Electrochemical and Solid-State Letters, 9 (4) pp. G117-G120, 2006.
[1.9] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,” Science, vol. 300, no. 5623, pp.1269-1272, May 2003.
[1.10] J. F. Wager, “Transparent Electronics,” Science, vol. 300, no. 5623, pp. 1245-1246, May 2003.
[1.11] Y. Ohya, T. Niwa, T. Ban, Y. Takahashi, Jpn. J. Appl. Phys, Part 1 vol. 40, pp. 297, 2001.
[1.12] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, J. Appl. Phys, Vol. 93, pp. 1624, 2003.
[1.13] J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohmoto, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, M. Kawasaki, Jpn. J. Appl. Phys, vol. 42, pp. L347, 2003.
Chapter 2
[2.1] H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”, pp. 17.
[2.2] W. T. Pawlewicz, J. B. Mann, W. H. Lowdermilk and Milam, Appl. Phys. Lett, vol. 34, pp. 196, 1979.
[2.3] R. T. Chen and D. Robinson, Appl. Phys. Lett, vol. 60, pp. 1541, 1992.
[2.4] B. J. Kellett, A. Gauzzi, J. H. James, B. Dwir, D. Paveuna and F. K. Reinhart, Appl. Phys. Lett, vol.57, pp.2588, 1990.
[2.5] Yasutaka Takahashi, Masaaki Kanamori, Akiko Kondoh, Hideki Minoura and Yutaka Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films”, Jpn. J. Appl. Phys. Vol. 33, pp.6611-6615, 1994.
[2.6] R. Keezer: J. Appl. Phys 35, pp.1866 (1961).
[2.7] D. A. Melnick, “Zinc Oxide Photoconduction, an Oxygen Adsorption Process”, J. Chem. Phys, vol. 26, no. 5, pp.1136-1146, 1957.
[2.8] Y. Takahashi, A. Ogiso, R. Tomoda, K. Sugiyama, H. Minoura and M.Tsuili, J. Chem. Soc. Faraday Trans, 178, pp.2563, 1982.
[2.9] M. F. Ogawa, Y. Natsume, T. Hirayama, H. Sakata, J. Mater. Sci. Lett, 9, pp.1351, (1990).
[2.10] Y. Natsume, H. Sakata, T. Hirayama, Phys. Stat. Sol. (a) 148, pp.485, (1995).
[2.11] S. Bandyopadhyay, G. K. Paul, R. Roy, S.K. Sen, S. Sen, ”Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique”, Materials Chemistry and Physics, 74, pp.83-91(2002).
[2.12] J. W. Orton, M. J. Powell, Rep. Prog. Phys. 43, pp.1263 (1980).
[2.13] N.F. Mott, Philos. Mag. 19, pp.835 (1969).
Chapter 4
[4.1] D. A. Melnick, “Zinc Oxide Photoconduction, an Oxygen Adsorption Process”, J. Chem. Phys, vol. 26, no. 5, pp.1136-1146, 1957.
[4.2] Q. H. Li, T. Gao, Y. G. Wang and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements”, Appl. Phys. Lett, vol.86, 123117, pp.1-3, 2005.
[4.3] Y. Shapira, R. B. McQuistan, and David Lichtman, “Relationship between photodesorption and surface conductivity in ZnO”, Physical Review B, vol. 15, no. 4, 1977.
[4.4] Yasutaka Takahashi, Masaaki Kanamori, Akiko Kondoh, Hideki Minoura and Yutaka Ohya, “Photoconductivity of Ultrathin Zinc Oxide Films”, Jpn. J. Appl. Phys. Vol. 33, pp.6611-6615, 1994.
[4.5] S. A. Studenikin, Nickolay Golego, and Michael cocivera, “Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films”, J. Appl. Phys., vol. 87, no. 5, pp.2413-2421, 2000.
[4.6] R. Martins, P. Barquinha, A. Pimentel, L. Pereira, E. Fortunato, Phys. Stat.Sol. (a) 202 (9) (2005) R95.
[4.7] H. S. Bae, Seongil Im, “Ultraviolet detecting properties of ZnO-based thin film transistors”, Thin Solid Films, 469-470 (2004) 75-79.
[4.8] P. Barquinha , A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, “Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide”, J. Non-Crystalline Solids, 352 (2006) 1756-1760.
[4.9] D. H. Zhang, “Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering”, J. Phys. D: Appl. Phys. 28 (1995) 1273-1277.
[4.10] R. J. Collins and D. G. Thomas, “Photoconduction and Surface Effects with Zinc Oxide Crystals”, Physical Review, vol. 12, no. 2, 1958.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code