Responsive image
博碩士論文 etd-0122108-203151 詳細資訊
Title page for etd-0122108-203151
論文名稱
Title
非晶矽薄膜電晶體低溫特性與光漏電流之研究
Investigation on Electrical Characteristics at Low Temperature and Photo Leakage Current of a-Si Thin Film Transistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-12-26
繳交日期
Date of Submission
2008-01-22
關鍵字
Keywords
非晶矽薄膜電晶體、薄膜電晶體、低溫、光漏電流
low Temperature, a-Si TFT, thin film transistor, photo leakage current, a-Si thin film transistor
統計
Statistics
本論文已被瀏覽 5702 次,被下載 2871
The thesis/dissertation has been browsed 5702 times, has been downloaded 2871 times.
中文摘要
人類生活中傳統的陰極射線管CRT已幾乎被平面顯示器(LCD、OLED、PDP)所取代,顯示器產業更被評為繼半導體產業之後的全球重大產業之一。而市場上大面積的顯示面板主流為TFT-LCD(薄膜電晶體液晶顯示器),正是使用了非晶矽薄膜電晶體為液晶顯示器的畫素開關。
a-Si TFT的製程中,主動層材料(a-Si)的光導係數較高,在光源照射下有較大的漏電流,使得畫素開關動作不完全造成顏色顯示上的問題。若在主動層製程中通入了SiF4,使主動層偏P型半導體及增加了主動層的缺陷密度,對光漏電流的有抑制效果。
又因為液晶的特性,TFT-LCD顯示器的畫素開關的驅動將會施加偏壓,形同對TFT做STRESS。因此針對SPL作DC STRESS的實驗,發現摻雜SiF4的元件比較不會劣化,可靠度較佳。
本論文主要研究a-Si:F TFT在低溫下的光漏電流變化並了解STRESS對TFT影響
Abstract
Since the traditional CRT(Cathode Ray Tube) replaced by FPD(Flat Panel Display), e.g. LCD、OLED、PDP, FPD industry is regarded as the important one of global industry following Semi-conductor industry. The main stream of Large-Area Displays is TFT-LCD(Thin Film Transistor-Liquid Crystal Display) and it’s applied a-Si:H TFT (the hydrogenated Amorphous Silicon Thin Film Transistor) as pixel-switch device on LCD.
In a-Si:H TFT Cell process, the active region material(a-Si:H) with higher Photoconductivity results into higher off-state current under light illumination and that causes color performance discrepancy as incomplete On/Off operation of pixel-switch devices. As long as the introduction of F into a-Si:H modify the density of states in the gap of a-Si:H(:F), that may result the shift of the Fermi level toward the valence band edge and The density-of-states increasing. It’s effective to decrease the photo leakage current.
Due to electro-optical properties of liquid crystal(LC), to drive Pixel-switch device in TFT-LCD shall force On/Off voltage to change Twist Angle of LC is corresponding to have Stress on TFT device. According to DC Stress experiment results, it’s found TFT device with SiF4 dopant can reach better reliability.
This issue is aimed to research the photo leakage current variation of a-Si:H TFT at low temperature and ON/Off state effect by stress on TFT device.
目次 Table of Contents
Chinese Abstract……………………...………………………….I
English Abstract…………………………..…………………….II
Content…………………………...…………………………………….IV
Table Captions…………………………………..…………………….VII
Figure Captions………………………………………………………VIII

Chapter One - Introduction
1.1 Introduction………………………………………………………………….1
1.1.1 Overview
1.1.2 Hydrogenated Amorphous Silicon
1.1.3 Atomic Structure and the Electron Density of States
1.2 Photo leakage current mechanism…...……………………….………….....5
1.3 Some solutions for reducing photo leakage current……....……….......…..9

Chapter Two - Fabrication
2.1 Deposition of Hydrogenated Amorphous Silicon by PECVD ……….….11
2.2 Deposition of SiNx by PECVD……………….…………………………….14
2.3 Deposition of n+ Hydrogenated Amorphous Silicon by PECVD………16
2.4 Process Flow………………………………………………………………..17

Chapter Three - Apparatus and Parameters
3.1 Apparatus List………………………………………………………….…..18
3.2 Setup instruments for Current-Voltage (I-V) Measurement …...………19
3.2.1 The Room Temperature and High Temperature
3.2.2 The Low Temperature
3.3 Method of Device Parameter Extraction…………..………...……….…...21
3.3.1 Determination of the threshold voltage
3.3.2 Determination of the subthreshold swing
3.3.3 Determination of the field-effect mobility
3.4 Density of States……………………………………………………………24
3.4.1 Overview
3.4.2 Evaluation of the density of states--Activation energy method

Chapter Four –Experiments Results and Discussion
4.1 Overview of the experiments sample..........................................30
4.1.1 Characteristics
4.1.2 Relative parameters
4.2 Characteristics at Low Temperature……………………….…………..…33
4.2.1 Motivation and Experiment Steps
4.2.2 The electrical characteristics at low temperature
4.2.3 Measured with light illuminated at low temperature
4.2.4 Summary
4.3 Light Illuminated Experiment………………………….………..………..39
4.3.1 Motivation and Experiment Steps
4.3.2 A Discussion on Experiment Results
4.3.3 Summary
4.4 Reliability Experiment—DC Stress……………………………………..44
4.4.1 Motivation and Experiment Steps
4.4.2 A Discussion on Experiments Results
4.4.3 Summary

Chapter Five – Conclusion…………………………………...……..47

References..…………………………………….……………..……….48
Tables…………………………………………………………….…..56
Figures…………………………………….................……….………..57
參考文獻 References
Chapter One – Introduction
[1-1] F. B. Ellis, Jr., R. G. Gordon, W. Paul, and B. G. Yacobi, J. Appl. Phys. 55, 4309 (1984).
[1-2] J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee, J. Non-Cryst. Solids 164-166, 747 (1993).
[1-3] M. Akiyama, T. Kiyota, Y. Ikeda, T. Koizumi, M. Ikeda, and K. Suzuki, SID 95 Digest (Society for Information Display, Florida, 1995), p. 158.
[1-4] P. G. Le Comber and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Phys. Rev. Lett., 25, 509(1970)
[1-5] M. J. Powell, “ The Physics of Amorphous-silicon Thin-film Transistors, ” IEEE Trans. Electron. Devices, 36, 2753 (1989)
[1-6] Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p17, Texas A&M University, U.S.A. 2004.
[1-7] W. H. Zachariasen, “The Atomic Arrangement in Glass, ” J. Am. Chem. Soc., 54, 3841 (1932).
[1-8] F. Urbach, “The Long-wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids, ” Phys. Rev., 92, 1324 (1953).
[1-9] W. E. Spear and P. G. LeComber, “Substitutional Doping of Amorphous Silicon, ” Solid State Comm., 17, 1193 (1975).
[1-10] Sandrine Martin, Jerzy Kanicki, Nicolas Szydlo, Alain Rolland “Analysis of the amorphous silicon thin film transistors behavior under illumination” AM-LCD ‘97
[1-11] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, IDRC ’94 Digest, International Display Research Conference, CA, 1994, p. 369.
[1-12] W. E. Spear, J. Non-Cryst. Solids 59–60, 1 (1983).
[1-13] K. S. Lee, J. H. Choi, S. K. Kim, H. B. Jeon, and J. Jang, “Low off-state leakage current thin-film transistor using Cl incorporated hydrogenated amorphous silicon,” Appl. Phys. Lett., vol. 69, pp. 2403–2405, 1996.
[1-14] J. N. Bullock and S. Wagner, Mater. Res. Soc. Symp. Proc. 336, 97 (1994).
[1-15] T. Oshima, K. Tamaguchi, A. Yamada, M. Koganai, and K. Takahashi, Mater. Res. Soc. Symp. Proc. 336, 91 (1994).
[1-16] M. Nakata and S. Wagner, Appl. Phys. Lett. 65, 1940 (1991).
[1-17] S. K. Kim, K. S. Lee, J. H. Choi, C. S. Kim, and J. Jang, “High performance a-Si : H(: Cl) TFT,” in Proc. Electrochem. Soc., 1996, vol. 96–23, pp. 138–145.
[1-18] W. B. Jackson and N. M. Amer, Phys. Rev. B 25, 5559 (1982).

Chapter Two –Fabrication
[2-1] W. M. M. Kessels, A. H. M. Smets, D. C. Marra, E. S. Aydil, D. C. Schram, and M. C. M. van de Sanden, “ On the growth mechanism of a-Si:H,” Thin Solid Films, vol.383, pp. 154-160, 2000.
[2-2] K. Nomoto, Y. Urano, J. L. Guizot, G.. Ganguly, and A. Matsuda. “ Role of hydrogen atoms in the formation process of hydrogenated microcrystalline silicon,” Jpn. J. Appl. Phys., vol.29, pp. L1372-L1375, 1990.
[2-3] A. Asano, “Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films,” Appl. Phys. Lett., vol.56, pp.533-535, 1990.
[2-4] C. C. Tasi, G. B. Anderson, and R. Thompson, “ Growth of amorphous, microcrystalline, and epitaxial silicon in low-temperature plasma deposition,” Mat. Res. Soc. Symp. Proc., vol.192, pp.475-480, 1990.
[2-5] J. Mort and F. Jansen, “Plasma-Deposited Thin Films,” p.28-33 (CRC Press, Boca Raton, FL, 1986).
[2-6] F. J. Kampas and R. W. Griffith, “ Hydrogen elimination during the glow- discharge deposition of a-Si:H alloys,” Appl. Phys. Lett., vol.39, pp.407-409,1981
[2-7] F. J. Kampas, “Reactions of atomic hydrogen in the deposition of hydrogenated amorphous silicon by glow discharge and reactive sputtering,” J. Appl. Phys., vol. 53, pp.6408-6412, 1982.
[2-8] P. A. Longeway, “Semiconductors and Semimetals 21A,” pp.179-193 (In: J. I. Pankove, ed., Academic Press, New York, 1984).
[2-9] F. Giorgis, C. F. Pirri, and E. Tresso, “Structural properties of a-Si1-xNx:H films grown by plasma-enhanced chemical vapor deposition by SiH4 + NH3 + H2 gas mixtures,” Thin Solid Films, vol.307, pp.298-305, 1997.
[2-10] R. Ishihara, H. Kanoh, Y. Uchida, O. Sugiura, and M. Matsumura, “Low-temperature chemical vapor deposition of silicon nitride from tetrasilane and hydrogen azide,” Mat. Res. Soc. Symp. Proc., vol.284, pp.3-8, 1992.
[2-11] S. Yamakawa, S. Yabuta, A. Ban, M. Okamoto, M. Katayama, Y. Ishii, and M. Hijikigawa, “The effect of plasma treatment on the off-current characteristics of a-Si TFTs,” SID 98 Digest, pp.443-446, 1998.
[2-12] K. Takechi, H. Uchida, and S. Kaneko, “Mobility-improvement mechanism in a-Si:H TFTs with Smooth a-Si:H/SiNx Interface,” Mat. Res. Soc. Symp. Proc., vol.258, pp.955-960, 1992.
[2-13] C. R. Kagan, P. Andry, The Film Transistors, p52-p57, IBM T. J. Watson Research Center, Yorktown Heights, New York, U.S.A. 2003.

Chapter Three - Apparatus and Parameters
[3-1] R. A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, 1991.
[3-2] W. E. Spear and P. G. Le Comber, “Investigation of the Localized State Distribution in Amorphous Si Film, ” J. Non-Cryst. Solids, 8-10, 727-738 (1972).
[3-3] M. J. Powell, “Analysis of Field-effect-conductance Measurements on Amorphous Semiconductors, ” Phil. Mag. B, 43 (1), 93 (1981).
[3-4] C. Y. Huang, S. Guha, and S. J. Hudgen, “Study of Gap States in Hydrogenated Amorphous Silicon by Transient and Steady-state Photoconductivity Measurement, ” Phys. Rev. B, 27 (12), 7460 (1983)
[3-5] J. D. Cohen, D. V. Lang, and J. P. Harbison, “Direct Measurement of the Bulk Density of Gap States in n-type Hydrogenated Amorphous Silicon, ” Phys. Rev. Lett., 45 (3), 197 (1980).
[3-6] M. Hirose, T, Suzuki, and G. H. Döhler, “Electronic Density of States in Discharge-produced Amorphous Silicon, ” Appl. Phys. Lett., 34 (3), 234 (1979).
[3-7] P. Viktorovitch and G. Moddel, “Interpretation of the Conductance and Capacitance Frequency Dependence of Hydrogenated Amorphous Silicon Schottky Barrier Diodes, ” J. Appl. Phys., 51 (9), 4847 (1980).
[3-8] M. Shur and M. Hack, “Physics of Amorphous Silicon Based Alloy Field-effect Transistors, ” J. Appl. Phys., 55 (10), 3831 (1984).
[3-9] S. Kishida, Y. Naruke, Y. Uchida, and M. Matsumura, “Theoretical Analysis of Amorphous-silicon Field-effect-transistors, ” Jpn. J. Appl. Phys., 22 (3), 511 (1983).
[3-10] J. G. Shaw and M. Hack, “An Analytical Model for Calculating Trapped Charge in Amorphous Silicon, ” J. Appl. Phys., 64 (9), 4562 (1988).
[3-11] M. S. Shur, M. D. Jacunski, H. C. Slade, and M. Hack, “Analytical Models for Amorphous-silicon and Poly-silicon Thin-film Transistors for High-definition-display Technology, ” J. of the SID, 3-4, 223 (1995)
[3-12] Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p83, Texas A&M University, U.S.A. 2004.
[3-13] Dosi Dosev, Josep Pallares and Joaquim Puigdollers, “Fabrication, Characterisation and Modelling of Nanocrystalline Silicon Thin-Film Transistors Obtained by Hot-Wire Chemical Vapour Deposition”, p. 64, Barcelona 2003.
[3-14] T. Globus, H. C. Slade, M. S. Shur, and M. Hack, "Density of deep bandgap states in amorphous silicon from the temperature dependence of thin film transistor current", Mat. Res. Soc. Proc., vol. 336, pp. 823, 1994.
[3-15] Dosi Dosev, Josep Pallares and Joaquim Puigdollers, “Fabrication, Characterisation and Modelling of Nanocrystalline Silicon Thin-Film Transistors Obtained by Hot-Wire Chemical Vapour Deposition”, p. 59, Barcelona 2003.

Chapter Four - Experiments Results and Discussion
[4-1] Min-Chuan Wang,” Novel Technology of Thin-Film Transistor” National Tsing Hua University, ROC, Dissertation, 2007.
[4-2] M. Akiyama, T. Kiyota, Y. Ikeda, T. Koizumi, M. Ikeda, and K. Suzuki, “A13.8-in.-diagonal 1-Mpixel TFT-LCD with Light-Shielded FullySelf-Aligned TFTs, “ SID ’95 Digest, Society for Information Display,Florida , p. 158, (1995)
[4-3] W. E. Spear,” An investigation of some fundamental properties of a-Si from measurements of interface and surface effects,“ J. Non-Cryst. Solids 59/60, 1,(1983).
[4-4] M. C. Wang, Po-Tsun Liu, S. W. Tsao, J. R. Chen, “ Photo-leakage-current characteristic of F incorporated hydrogenated amorphous silicon thin film transistor,” J. Appl. Phys. 90, 192114 _2007
[4-5] R. E. I. Schropp, J. Snijder, and J. F. Verwey, “A self-consistent analysis of temperature-dependent field-effect measurements in hydrogenated amorphous silicon thin-film transistors,” J. Appl. Phys. 60 , p.643, (1986).10
[4-6] R. Schumacher, P. Thomas, K. Weber, W. Fuhs, F. Djamdji, P. G. Le Comber, and R. E. I. Schropp,” Temperature-dependent effects in field-effect measurements on hydrogenated amorphous silicon thin-film transistor,” Phil. Mag. B, vol.58, p.389, (1988).
[4-7] T. Globus, H. C. Slade, M. S. Shur, and M. Hack,” Density of deep bandgap states in amorphous silicon from the temperature dependence of thin-film transistor current,” Mat. Res. Soc. Proc.,vol 336,p823, (1994).
[4-8] Chi-Wen Chen,”Study on Array Technilogy of Thin-Film Transistor Actire Matrix Panel”, National Chiao Tung University, ROC, Dissertation, 2005.
[4-9] M. J. Kirton and M. J. Uren, “Capture and emission kinetics of individual Si:SiO2 interface states”, Appl. Phys. Lett. Vol. 48, No 19, 12 May 1986
[4-10] R. E. Stahlbush and G. A. Brown, “Bulk trap formation by high temperature annealing of buried oxides,” IEEE Trans. Nucl. Sci. 42, 1708-1716(1995)
[4-11] Sandrine Martin, Jerzy Kanicki, Nicolas Szydlo, Alain Rolland “Analysis of the amorphous silicon thin film transistors behavior under illumination” AM-LCD ‘97
[4-12] J. S. Byun, H. B. Jeon, K. H. Lee, and J. Jang, “Effect of Cl incorporation on the stability of hydrogenated amorphous silicon,” Appl. Phys. Lett., vol. 67, pp. 3786–3788, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code