Responsive image
博碩士論文 etd-0122109-164942 詳細資訊
Title page for etd-0122109-164942
論文名稱
Title
真「蟹形」自然及人工步態之討論與比較
Discussion and Comparison Between Natural and Artificial True Crab Gaits
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-01-09
繳交日期
Date of Submission
2009-01-22
關鍵字
Keywords
穩定極限、誤差極限、對稱步態、異相步態
none
統計
Statistics
本論文已被瀏覽 5608 次,被下載 0
The thesis/dissertation has been browsed 5608 times, has been downloaded 0 times.
中文摘要
以螃蟹為概念發展出六足機器人朝Y軸行走,與機器人行走具有角度,加以探討機器人朝各軸向行走時之穩定和誤差極限,並以穩定極限大和誤差極限小作為標準,進行機器人構造比例分析,個別找出適合於各軸向行走之機器人構型比例。
本文將對稱步態和異相步態套用至六足機器人上,在本文所假設之模型中,機器人運用對稱步態是較適合於朝Y軸行走,而異相步態朝X軸行走其效果較佳。並從構型比例分析中得知,機器人用異相步態之穩定極限在各步驟之差異較小,且改變任何值對其穩定極限的影響亦較小,由此可知,異相步態是屬於較穩定之步態。
Abstract
none
目次 Table of Contents
謝誌Ⅰ
目錄Ⅱ
圖目錄.....Ⅴ
表目錄.....Ⅷ
摘要Ⅸ
第一章 緒論.1
1.1 文獻回顧....1
1.2 研究方向....4
1.3 螃蟹基本構造4
1.4 蟹類步足數與移動方向......5
1.5 基本架構....6
第二章 機器人沿X 軸行走...8
2.1 開端.8
2.2 對稱步態...9
2.2.1 步態次序.9
2.2.2 穩定極限12
2.2.2.1 範例.14
2.2.3 誤差極限15
2.2.3.1 範例.17
2.3 機器人比例分析....17
2.4 本章小結...21
第三章 機器人沿Y 軸行走..22
3.1 開端22
III
3.1.1 發現問題22
3.1.2 先前研究回顧...22
3.2 對稱步態...23
3.2.1 步態次序23
3.2.2 穩定極限25
3.2.2.1 範例.27
3.2.3 誤差極限28
3.2.3.1 範例.30
3.3 機器人比例分析…..30
3.4 機器人朝X 和Y 軸作動之比較..... 34
3.5 本章小結...35
第四章 機器人沿斜線行走..37
4.1 螃蟹步之文獻回顧..37
4.2 開端38
4.3 對稱步態...39
4.3.1 擺動範圍與步態次序....39
4.3.2 穩定極限41
4.3.2.1 範例.45
4.3.3 誤差極限46
4.3.3.1 範例.49
4.4 機器人之移動角度..49
4.5 本章小結...51
第五章 異相步態之運用....52
5.1 開端52
5.1.1 發現問題52
5.1.2 先前研究回顧...53
IV
5.2 異相步態...53
5.2.1 步態次序53
5.2.2 穩定極限55
5.2.2.1 範例.58
5.2.3 誤差極限59
5.2.3.1 範例.62
5.3 機器人比例分析....63
5.3.1 機器人朝X 軸移動......63
5.3.2 機器人朝Y 軸移動......65
5.3.3 機器人斜行......67
5.4 機器人擺動腿數之對照.....69
5.4.1 穩定極限70
5.4.1.1 範例.72
5.4.2 誤差極限73
5.4.2.1 範例.75
5.5 本章小結...75
第六章 結論與建議.77
參考文獻79
參考文獻 References
參考文獻
[1] R. B. McGhee, and A. A. Frank, “On the Stability Properties of Quadruped
Creeping Gaits,” Jourmal of Mathematical Biosciences, 1968, pp. 331-351.
[2] A. Bessonov and A. Umnov, “The analysis of gaits in six-legged vehicle
according to their static stability,” in Proc. Symp. Theory Practice Robots,
Udine, Italy, 1973, pp. 1–9.
[3] E. I. Kugushev and V. S. Jaroshevskij, “Problems of selecting a gait for an
integrated locomotion robot,” in Proc. 4th Int. Conf. Artificial Intelligence,
Tbilisi, U.S.S.R, Sept. 1975., pp. 789–793.
[4] R. B. McGhee and G. I. Iswandhi, “Adaptive locomotion of a multilegged robot
over rough terrain,” IEEE Trans. Syst., Man, Cybern., vol. SMC-9, Apr. 1979.
[5] F. Ozguner, S. I. Tsai, and R. B. McGhee, “An approach to the use of
terrain-preview information in rough-terrain locomotion by a hexapod walking
machine,” Int. J. Robot. Res., vol. 3, Summer 1984, pp. 134–146.
[6] S. Hirose, “A study of design and control of a quadruped walking vehicle,” Int. J.
Robot. Res., vol. 3, Summer 1984, pp. 113–133.
[7] P. K. Pal, and K. Jayarajan, “Generation of Free Gait-A Graph Search Approach,”
IEEE Transactions on Robotics and Automation, Vol. 7, No. 3, 1991, pp 299-305.
[8] P. V. Nagy, S. Desa, and W. L. Whittaker, “Energy based stability measures for
reliable locomotion of statically stable walkers: Theory and application,” Int. J.
Robot. Res., vol. 13, no. 3, 1994, pp. 272–287.
[9] J. M. Yang, and J. H. Kim, “Fault Tolerant Locomotion of the Hexapod Robot,”
IEEE International Conference on Systems, Man, and Cybernetics, 1996, pp
1589-1594.
[10] J.M. Yang, and J.H. Kim, “Fault-tolerant locomotion of the Hexapod robot,”
IEEE Trans. Syst. Man Cybern. B 28 (1998) 109–116.
[11] J.M. Yang, and J.H. Kim, “Optimal fault tolerant gait sequence of the hexapod
robot with overlapping reachable areas and crab walking,” IEEE Trans. Syst.
Man Cybern. A 29 (1999) 224–235.
[12] J.M. Yang, and J.H. Kim, “A fault tolerant gait for a hexapod robot over uneven
terrain,” IEEE Trans. Syst., Man, Cybern., B, vol. 30, Feb. 2000, pp. 172–180.
[13] S. K. K. Chu, and G. K. H. Pang, “Comparsion between different model of
hexapod robot in fault tolerant gait,” IEEE Trans. Syst., Man, Cybern., A, Vol.
32, No. 6, Nov. 2002.
[14] C. A.Hui, “Walking of the shore crab pachygrapsus crassipes in its two natural
environments,” Jourmal of Experiment Biology. 165, 1992, pp 213-227.
[15] J. N. Schreiner, “Adaptations by the locomotor systems of terrestrial and
amphibious crabs walking freely on land and under water,” Thesis Master,
Louisiana State University, 2004.
[16] L. I. Frantsevicha, and H. Cruse, “Leg coordination during turning on an
extremely narrowsubstrate in a bug, Mesocerus marginatus (Heteroptera,
Coreidae),” Journal of Insect Physiology 51 (2005), pp 1092–1104.
[17] T. Jeck, and H. Cruse, “Walking in Aretaon asperrimus,” Journal of Insect
Physiology 53 (2007), pp. 724–733.
[18] http://www.wetland.org.tw/trip/class/crab/crab_faq/crab_faq.htm 網頁資料。
[19] T. S. Zhao, Y. S. Zhao, and Z. Huang, “Study on Adaptability of a Sea Crab and
its Bionics Mechanism Model,” Jourmal of Mechanism and Machine Theory,
Vol.34, 1999, pp 1271-1280.
[20] L. Q. Wang, D. L. Chen, L. Sun, Q. X. Meng, and L. Zhang, “The Research on
Bionic Crab-Liked Robot Prototype,” Proceeding of IEEE Internation
Conference on Mechatronics & Automation Niagara Falls, 2005, pp 2017-2021.
[21] M. Wang, L. Sun, and Y. Wang, “Dynamic Modelling and Optimize Energy
Distribution of Amphibian Walking Robot,” Proceeding of IEEE Internation
Conference on Mechatronics and Automation Luoyang China, 2006, pp 634-638.
[22] http://www.wetland.org.tw/trip/class/crab/crabmain.htm#2網頁資料。
[23] http://www.mbi.nsysu.edu.tw/~fiddler/hermit/hermit.htm網頁資料。
[24] T. T. Lee, C. M. Liao, and T. K. Chen, “On the Stability Properties of Hexapod
Tripod Gait,” IEEE Jourmal of Robotics and Automation, Vol. 4, No. 4, , 1988,
pp.427-434.
[25] C. D Zhang, and S. M. Song, “Stability Analysis of Wave-Crab Gaits of a
Quadruped,” Jounal of Robotics and Systems, 1990, pp 243-276.
[26] P. G. D. Santos, and M. A. Jimenez, “Path Tracking with Quadruped Walking Machines using Discontinuous Gaits,” Journal of Computer & Electrical Engineering, Vol. 21, No. 6, 1995, pp 383-396.
[27] S. T. Venkataraman, “A Simple Legged Locomotion Gait Model,” Jounal of
Robotics and Autonomous Systems, Vol. 22, 1997, pp 75-85.
[28] S. Bai, K. H. Low, G. Seet, and T. Zielinska, “A New Free Gait Generation for
Quadrepeds Based On Primary/Secondary Gait,” IEEE International Conference
on Robotics & Automation Detroit, Michigan, 1999, pp 1371-1376.
[29] R. Mistry, and G. Clapworthy, “Computer-Based Animation of a Multi-Legged
Articulated Body,” Proceeding of IEEE Internation Conference on Iinformation
Visualisation, 2000, pp 315-317.
[30] C. C. Brown, and J. P. Huissoon, “Temporal Gait Control of a Quadruped
Robot,” Jounal of Robotics and Autonomous Systems, Vol. 30, 2000, pp 305-314.
[31] D. K. Pratiar, K. Deb, and A. Ghosh, “Optimal Path and Gait Generations
Simultaneously of a Six-Legged Robot using GA-fuzzy Approach,” Jounal of
Robotics and Autonomous Systems, Vol.41, 2002, pp 1-20.
[32] J. M. Porta, and E. Celaya, “Reactive Free-Gait Generation to Follow Arbitrary
Trajectories with a Hexapod Robot,” Jounal of Robotics and Autonomous
Systems, Vol. 47, 2004, pp 187-201.
[33] J. M. Yang, “Tripod Gaits for Fault Tolerance of Hexapod Walking Machines
with a Locked Joint Failure,” Jounal of Robotics and Autonomous Systems, Vol.
25, 2005, pp 180-189.
[34] M. Wang, L. Sun, and Y. Wang, “Dynamic Modelling and Optimize Energy
Distribution of Amphibian Walking Robot,” Proceeding of IEEE Internation
Conference on Mechatronics and Automation Luoyang China, 2006, pp 634-638.
[35] M. S. Erden, and K. Leblebicioglu, “Free Gait Generation with Reinforcement
Learning for a Six-Legged Robot,” Jounal of Robotics and Autonomous Systems,
Vol. 56, 2008, pp 199-212.
[36] R. Blickhan, and R. J. Full, “Locomotion Energetics of the Ghost Crab . Ⅱ.
Mechanics of the Centre of Mass During Walking and Running,” Jourmal of
Experiment Biology, 1987, pp 155-174.
[37] 施習德, 1996, 招潮蟹, 國立海洋生物博物館。
[38] 王嘉祥, 劉烘昌, 1996, 台灣海邊常見的螃蟹, 台灣省立博物館出版部。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.235.22.225
論文開放下載的時間是 校外不公開

Your IP address is 3.235.22.225
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code