Responsive image
博碩士論文 etd-0122110-012836 詳細資訊
Title page for etd-0122110-012836
論文名稱
Title
探討突變外殼蛋白位在第23-31位置的精氨酸對於龍膽石斑神經壞死病毒似病毒顆粒之熱穩定性的影響
Mutation effects of arginine at the positions of the 23rd-31st residues in capsid protein on the thermal stability of virus-like particles of Dragon Grouper Nervous Necrosis Virus
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
199
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-12-09
繳交日期
Date of Submission
2010-01-22
關鍵字
Keywords
似病毒顆粒、圓二色光譜、龍膽石斑神經壞死病毒
DGNNV, circular dichroism, virus-like particles
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
Nodaviridae科分為alphanodaviruses和betanodaviruses兩種病毒。他們分別感染昆蟲及魚類。在我們的研究中,以大腸桿菌表現DGNNV的病毒外殼蛋。我們突變外殼蛋白N端的精氨酸,以研究29-31號位置的精氨酸所扮演的角色。當截去25個在N端的外殼蛋白氨基酸時,只要將任兩個在29-31號位置的精氨酸突變為丙氨酸,會使得似病毒顆粒無法形成。另一方面,在23-25號位置延長3個精氨酸並不會增強RNA包裹進入似病毒顆粒中的量。此外,如同野生型似病毒顆粒,N端截短突變的似病毒顆粒都具RNase A抵抗性,但其產量就明顯少於野生型似病毒顆粒。在單點丙氨酸突變株中,R29A的似病毒顆粒明顯的高於其它兩個突變株 (R30A和R31A)。使用圓二色光譜觀察DGNNV似病毒顆粒的熱變性過程及熱穩定性,我們發現突變23-31號位置的精氨酸並不會影響似病毒顆粒的Tm值 (約60℃)。這些發現建議突變似病毒顆粒23-31號位置的精氨酸,不會影響其對RNase A的耐受性和熱穩定性,但會使產量降低。另外,第30和31號位置的精氨酸比第29號位置的精氨酸在似病毒顆粒形成方面來的重要。
Abstract
Dragon grouper nervous necrosis virus (DGNNV), a betanodavirus, is the causative agent of viral nervous necrosis (VNN) in dragon grouper (Epinephelus lanceolatus). In our study, capsid protein of DGNNV was expressed in Escherichia coli. We mutated arginines at N-termini capsid protein to investigate the role of arginines at 29-31th position. When capsid protein lost 25 amino acids at N-termini VLPs form, mutation in any two arginines at 29-31 position to alanine could the prohibit VLPs formation. Another extending three arginines at 23-25 position wouldn’t increase the RNA encapsulation into VLPs. Furthermore, N-termini mutated VLPs were all RNase resistance like wt-VLPs, but the yield was distinctly less than wt-VLPs. In the single point alanine mutations, the VLPs yield of R29A was apparently higher than others (R30A and R31A). Using circular dichroism to observe the thermal denature process and thermal stability of DGNNV VLPs, we found the Tm about 60℃ of VLPs wouldn’t alter even if arginines at 23-31 position were mutated. The findings suggested the VLPs of mutated arginines at 23-31 position wouldn’t affect RNase resistance and thermal stability, but the yield were lower. Another, the arginines at the 30 and 31 position is more important than at 29 position for formation of VLPs.
目次 Table of Contents
中文摘要............................................................................................ I
Abstract…………………………………………………………....... II
目錄.................................................................................................... III
表目錄................................................................................................ VI
圖目錄................................................................................................ VII
壹、前言............................................................................................ 1
一、Nodavirus............................................................................................... 1
二、Alphanodaviruses life cycle................................................................... 3
三、Alphanodaviruses基因體..................................................................... 6
四、Betanodavirus的分類及感染的宿主................................................... 9
五、Betanodavirus的外觀........................................................................... 11
六、病毒性神經壞死症 (viral nervous necrosis, VNN) 的臨床症狀....... 11
七、RNA在病毒顆粒中的功能.................................................................. 12
八、病毒包?傕NA的選擇性..................................................................... 14
九、病毒組裝的模型.................................................................................. 16
十、不同物理、化學條件下對betanodavirus感染力的影響.................. 18
十一、圓二色性 (circular dichroism) 的原理和應用.............................. 20
十二、似病毒顆粒 (virus-like particles) 的應用...................................... 22
貮、材料與方法................................................................................ 24
一、質體的萃取........................................................................................... 24
二、DNA電泳............................................................................................. 24
三、DNA膠體純化..................................................................................... 25
四、勝任細胞 (competent cell) 的製作..................................................... 26
五、細胞轉型............................................................................................... 26
六、大腸桿菌表現病毒外殼蛋白............................................................... 27
七、病毒外殼蛋白純化............................................................................... 27
八、連續式分分層儀................................................................................... 28
九、蛋白質濃度定量................................................................................... 28
十、蛋白質電泳........................................................................................... 29
十一、圓二色光譜....................................................................................... 30
十二、選殖株設計....................................................................................... 31
參、結果............................................................................................ 37
一、Nodaviruses病毒外殼蛋白N端序列的比對..................................... 37
二、N端正電荷氨基酸的點突變選殖株................................................... 37
三、選殖株生產VLPs之能力分析............................................................. 40
四、選殖株VLPs組成分析........................................................................ 41
五、RNase A處理的選殖株VLPs組成分析............................................. 44
六、似病毒顆粒的相對產量....................................................................... 45
七、似病毒顆粒在長時間加熱下的熱穩定性和二級結構的變化............ 45
八、連續加熱速率的設定........................................................................... 48
九、似病毒顆粒在連續瞬時增溫下的熱穩定性....................................... 48
十、似病毒顆粒在不同波長下的Tm值.................................................... 54
肆、討論............................................................................................ 55
一、外殼蛋白N端影響似病毒顆粒形成的部位..................................... 55
二、比較全長型和N端截短的似病毒顆粒在長時間加熱下的熱穩定性和二級結構變化上的差異...................................................................61
三、突變的似病毒顆粒之熱穩定性.....................................................63
伍、參考文獻.................................................................................... 66
陸、圖表........................................................................................... 76
附錄A................................................................................................ 126
附錄B................................................................................................ 156
附錄C................................................................................................ 157
附錄D................................................................................................ 158
附錄E................................................................................................. 160
附錄F................................................................................................. 161
附錄G................................................................................................. 162
附錄H................................................................................................. 166
附錄I.................................................................................................. 180
附錄J.................................................................................................. 187
附錄K................................................................................................. 188
參考文獻 References
呂明偉。2003。龍膽石斑神經壞死病毒外殼蛋白與其似病毒顆粒之研究。國立中山大學海洋資源所,博士論文。

Arimoto, M., Sato, J., Maruyama, K., Mimura, G., and Furusuwa, I. (1996). Effect of chemical and physical treatments on the inactivation of striped jack nervous necrosis virus (SJNNV). Aquaculture 143(1), 15-22.

Bailey, L. (1975). The Multiplication of Nodamura Virus in Insect and Mammalian Cell Cultures. J. Gen. Virol. 26, 15-20.

Bailey, L., and Scott, H.A. (1973). The Pathogenicity of Nodamura Virus for Insects. Nature 241, 545.

Baker, T.S., Olson, N.H., and Fuller, S.D. (1999). Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63(4), 862-922.

Ball, L.A. (1992). Cellular Expression of a Functional Nodavirus RNA Replicon from Vaccinia Virus Vectors. J. Virol. 66(4), 2335-45.

Ball, L.A. (1994). Replication of the genomic RNA of a positive-strand RNA animal virus from negative-sense transcripts. Proc. Natl. Acad. Sci. U. S. A. 91(26), 12443-7.

Berova, N., Nakanishi, K., and Woody, R. (2000). Circular dichroism of peptides and proteins. in Circular dichroism: principles and applications. pp, 601-607

Bloch, B., Gravningen, K., and Larsen, J.L. (1991). Encephalomyelitis among turbot associated with a picornavirus-like agent. Dis. Aquat. Org. 10, 65-70.

Chen, L.J., Su, Y.C., and Hong, J.R. (2009). Betanodavirus non-structural protein B1: A novel anti-necrotic death factor that modulates cell death in early replication cycle in fish cells. Virology 385(2), 444-54.

Cheng, R.H., Reddy, V.S., Olson, N.H., Fisher, A.J., Baker, T.S., and Johnson, J.E. (1994). Functional implications of quasi-equivalence in a T = 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure 2(4), 271-82.

Chi, S.C., Lo, B.J., and Lin, S.C. (2001). Characterization of grouper nervous necrosis virus (GNNV). J. Fish Dis. 24, 3-13.

Chi, S.C., Lo, C.F., Kou, G.H., Chang, P.S., Peng, S.E., and Chen, S.N. (1997). Mass mortalities associated with viral nervous necrosis (VNN) disease in two species of hatchery-reared grouper, Epinephelus fuscogutatus and Epinephelus akaara (Temminck & Schlegel). J. Fish. Dis. 20. 185-193.

Dasgupta, R., and Sgro, J.Y. (1989). Nucleotide sequences of three nodavirus RNA2’s: the messengers for their coat protein precursors. Nucleic Acids Res. 17, 7525-7526.

Dasgupta, R., Ghosh, A., Dasmahapatra, B., Guarino, L.A., and Kaesberg, P. (1984). Primary and secondary structure of black beetle virus RNA2, tbe genomic messenger for BBV coat protein precursor. Nucleic Acids Res. 12(18), 7215-7223.

Dasmahapatra, B., Dasgupta, R., Ghosh, A., and Kaesberg, P. (1985). Structure of the black beetle virus genome and its functional implications. J. Mol. Biol. 182(2), 183-9.

Dasmahapatra, B., Dasgupta, R., Saunders, K., Selling, B., Gallagher, T., and Kaesberg, P. (1986). Infectious RNA derived by transcription from cloned cDNA copies of the genomic RNA of an insect virus. Proc. Natl. Acad. Sci. U. S. A. 83(1), 63-6.

Delsert, C., Morin, N., and Comps, M. (1997). A fish encephalitis virus that differs from other nodaviruses by its capsid protein processing. Arch. Virol. 142(12), 2359-71.

Devereux, J., Haeberli, P., and Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12(1 Pt 1), 387-95.

Felden, B., Florentz, C., McPherson, A., and Giegé, R. (1994). A histidine accepting tRNA-like fold at the 3'-end of satellite tobacco mosaic virus RNA. Nucleic Acids Res. 22(15), 2882-6.

Fenner, B.J., Goh, W., and Kwang, J. (2006). Sequestration and protection of double-stranded RNA by the betanodavirus b2 protein. J. Virol. 80(14), 6822-33.

Fenner, B.J., Thiagarajan, R., Chua, H.K., and Kwang, J. (2006). Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J. Virol. 80(1), 85-94.

Fisher, A.J., and Johnson, J.E. (1993). Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361(6408), 176-9.

Frerichs, G.N., Tweedie, A., Starkey, W.G., and Richards, R.H. (2000). Temperature, pH and electrolyte sensitivity, and heat, UV and disinfectant inactivation of sea bass (Dicentrarchus labrax) neuropathy nodavirus. Aquaculture 185, 13-24.

Friesen, P., Scotti, P., Longworth, J., and Rueckert, R. (1980). Black Beetle Virus: Propagation in Drosophila Line 1 Cells and an Infection-Resistant Subline Carrying Endogenous Black Beetle Virus-Related Particles. J. Virol. 35(3), 741–747.

Friesen, P.D., and Rueckert, R.R. (1981). Synthesis of Black Beetle Virus Proteins in Cultured Drosophila Cells: Differential Expression of RNAs 1 and 2. J. Virol. 37(3), 876–886.

Friesen, P.D., and Rueckert, R.R. (1981). Synthesis of Black Beetle Virus Proteins in Cultured Drosophila Cells: Differential Expression of RNAs 1 and 2. J. Virol. 37(3), 876–886.

Friesen, P.D., and Rueckert, R.R. (1984). Early and late functions in a bipartite RNA virus: evidence for translational control by competition between viral mRNAs. J. Virol. 49(1), 116-24.

Furusawa, R., Okinaka, Y., and Nakai, T. (2006). Betanodavirus infection in the freshwater model fish medaka (Oryzias latipes). J. Gen. Virol. 87(8), 2333-9.

Gallagher, T.M., and Rueckert, R.R. (1988). Assembly-dependent maturation cleavage in provirions of a small icosahedral insect ribovirus. J. Virol. 62(9), 3399-3406.

Glazebrook, J.S., Heasman, M.P., and de Beer, S.W. (1990). Picornalike viral particles associated with mass mortalities in larval barramundi, Lates calcarifer Bloch. J. Fish Dis. 13, 245-249.

Gomez, D.K., Lim, D.J., Baeck, G.W., Youn, H.J., Shin, N.S., Youn, H.Y., Hwang, C.Y., Park, J.H., and Park, S.C. (2006). Detection of betanodaviruses in apparently healthy aquarium fishes and invertebrates. J. Vet. Sci. 7(4), 369-374.

Grotmol, S., Bergh, O., and Totland, G.K. (1999). Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organs and a possible route of infection. Dis. Aquat. Organ. 36(2), 95-106.

Grotmol, S., Totland, G.K., and Kryvi, H. (1997). Detection of a nodavirus-like agent in heart tissue from reared Atlantic salmon Salmo salar suffering from cardiac myopathy syndrome (CMS). Dis. Aquat. Org. 29, 79-84.

Grotmol, S., Totland, G.K., Torud, K., and Hjeltnes, B.K. (1997). Vacuolating encephalopathyand retinopathy associated with a nodavirus-like agent: a probable cause of massmortality of cultured larval and juvenile Atlantic halibut Hippoglossus hippoglossus. Dis. Aquat. Org. 29, 85-97.

Guarino, L.A., Ghosh, A., Dasmahapatra, B., Dasgupta, R., and Kaesberg, P. (1984). Sequence of the black beetle virus subgenomic RNA and its location in the viral genome. Virology 139(1), 199-203.

Hegde, A., The, H.C., Lam, T.J., and Sin, Y.M. (2003). Nodavirus infection in freshwater ornamental fish, guppy, Poicelia reticulata- comparative characterization and pathogenicity studies. Arch. Virol. 148(3), 575-86.

Hosur, M.V., Schmidt, T., Tucker, R.C., Johnson, J.E., Gallagher, T.M., Selling, B.H., and Rueckert, R.R. Structure of an insect virus at 3.0 A resolution. Proteins 2(3), 167-76.

Iwamoto, T., Mori, K., Arimoto, M., and Nakai, T. (1999). High permissivity of the fish cell line SSN-1 for piscine nodaviruses. Dis. Aquat. Organ. 39(1), 37-47.

Jennings, G.T., and Bachmann, M.F. (2008). The coming of age of virus-like particle vaccines. Biol. Chem. 389, 521-536

Jennings, G.T., and Bachmann, M.F. (2008). The coming of age of virus-like particle vaccines. Biol. Chem.389(5), 521-36.

Johnson, J.E. (1996). Functional implications of protein-protein interactions in icosahedral viruses. Proc. Natl. Acad. Sci. U S A. 93(1), 27–33.

Johnson, K.N., Tang, L., Johnson, J.E., and Ball, L.A. (2004). Heterologous RNA encapsidated in Pariacoto virus-like particles forms a dodecahedral cage similar to genomic RNA in wild-type virions. J. Virol. 78(20), 11371-8.

Kaesberg, P., Dasgupta, R., Sgro, J.Y., Wery, J.P., Selling, B.H., Hosur, M.V., and Johnson, J.E. (1990). Structural homology among four nodaviruses as deduced by sequencing and X-ray crystallography. J. Mol. Biol. 214(2), 423-435

Larson, S.B., and McPherson, A. (2001). Satellite tobacco mosaic virus RNA: structure and implications for assembly. Curr. Opin. Struct. Biol. 11(1), 59-65.

Larson, S.B., Day, J., Greenwood, A., and McPherson, A. (1998). Refined structure of satellite tobacco mosaic virus at 1.8 Å resolution. J. Mol. Biol. 277(1), 37-59.

Larson, S.B., Koszelak, S., Day, J., Greenwood, A., Dodds J.A., and McPherson, A. (1993). Double-helical RNA in satellite tobacco mosaic virus. Nature 361(6408), 179-182.

Larson, S.B., Koszelak, S., Day, J., Greenwood, A., Dodds, J.A., and McPherson, A. (1993). Double-helical RNA in satellite tobacco mosaic virus. Nature 361(6408), 179-82.

Larson, S.B., Koszelak, S., Day, J., Greenwood, A., Dodds, J.A., and McPherson, A. (1993). Three-dimensional structure of satellite tobacco mosaic virus at 2.9 Å resolution. J. Mol. Biol. 231(2), 375-91.

Lee, C.C., Ko, T.P., Chou, C.C., Yoshimura, M., Doong, S.R., Wang, M.Y., and Wang, A.H. (2006). Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6 Å resolution: implications in virion assembly and immunogenicity. J. Sruct. Biol. 155(1), 74-86.

Lin, C.S., Lu, M.W., Tang, L., Liu, W., Chao, C.B., Lin, C.J., Krishna, N.K., Johnson, J.E., and Schneemann, A. (2001). Characterization of virus-like particles assembled in a recombinant baculovirus system expressing the capsid protein of a fish nodavirus. Virology 290(1), 50-8.

Lovett, P.S. (1996). Translation attenuation regulation of chloramphenicol resistance in bacteria-a review. Gene 179(1), 157-62.

Lu, M.W., and Lin, C.S. (2003). Involvement of the terminus of grouper betanodavirus capsid protein in virus-like particle assembly. Arch. Virol. 148(2), 345-55.

Lu, M.W., Chao, Y.M., Guo, T.C., Santi, N., Evensen, O., Kasani, S.K., Hong, J.R., and Wu, J.L. (2008). The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol. Immunol. 45(4), 1146-52.

Marshall, D., and Schneemann, A. (2001). Specific packaging of nodaviral RNA2 requires the N-terminus of the capsid protein. Virology 285(1), 165-75.

Mirkov, T.E., Mathews, D.M., Du Plessis, D.H., and Dodds, J.A. (1989). Nucleotide sequence and translation of satellite tobacco mosaic virus RNA. Virology. 170(1), 139-46.

Mori, K., Nakai, T., Muroga, K., Arimoto, M., Mushiake, K., and Furusawa, I. (1992). Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187(1), 368-71.

Munday, B.L., Kwang, J., and Moody, N. (2002). Betanodavirus infections of teleost fish: a review. J. Fish. Dis. 25, 127-142.

Nagai, T., and Nishizawa, T. (1999). Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. J. Gen. Virol. 80(11), 3019-22.
Newman, J.F.E., and Brown, F. (1973). Evidence for a Divided Genome in Nodamura Virus, an Arthropod-borne Picornavirus. J. Gen. Virol. 21, 371-384.

Newman, J.F.E., and Brown, F. (1976). Absence of Poly (A) from the Infective RNA of Nodamura Virus. J. Gen. Virol. 30, 137-140.

Newman, J.F.E., and Brown, F. (1978). Further Physicochemical Characterization of Nodamura Virus. Evidence that the Divided Genome Occurs in a Single Component. J. Gen. Virol. 38, 83-95.

Nishizawa, T., Furuhashi, M., Nagai, T., Nakai, T., and Muroga, K. (1997). Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl. Environ. Microbiol. 63(4), 1633-6.

Nishizawa, T., Mori, K., and Nakai, T. (1994). Polymerase chain reaction (PCR) amplification of RNA of striped jack nervous necrosis virus (SJNNV). Dis. Aquat. Org. 18, 103-107.

Nishizawa, T., Mori, K., and Nakai, T. (1994). Polymerase chain reaction (PCR) amplification of RNA of striped jack nervous necrosis virus (SJNNV). Dis. aquat. Org. 18, 103-107.

Nishizawa, T., Mori, K., Furuhashi, M., Nakai, T., Furusawa, I., and Muroga, K. (1995). Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J. Gen. Virol. 76(7), 1563-9.

Scherer, W.F, Verna, J.E., and Richter, G.W. (1968). Nodamura Virus, an Ether- and Chloroform-Resistant Arbovirus from Japan*. Am. J. Trop. Med. Hyg. 17(1), 120-128.

Schneemann, A. (2006). The Structural and Functional Role of RNA in Icosahedral Virus Assembly. Annu. Rev. Microbiol. 60, 51-67.

Schneemann, A., and Marshall, D. (1998). Specific encapsidation of nodavirus RNAs is mediated through the C terminus of capsid precursor protein alpha. J. Virol. 72(11), 8738-46.

Schneemann, A., Reddy, V., and Johnson, J.E. (1998). The structure and function of nodavirus particles: a paradigm for understanding chemical biology. Adv. Virus Res. 50, 381-446.

Schwarcz, W.D., Barroso, S.P., Gomes, A.M., Johnson, J.E., Schneemann, A., Oliveira, A.C., and Silva, J.L. (2004). Virus stability and protein-nucleic acid interaction as studied by high-pressure effects on nodaviruses. Cell. Mol. Biol. (Noisy-le-grand) 50(4), 419-27.

Tang, L., Johnson, K.N., Ball, L.A., Lin, T., Yeager, M., and Johnson, J.E. (2001). The structure of Pariacoto virus reveals a dodecahedral cage of duplex RNA. Nat. Struct. Biol. 8(1), 77-83.


Tesh, R.B. (1980). Infectivity and Pathogenicity of Nodamura Virus for Mosquitoes. J. Gen. Virol. 48, 177-182.

Thiéry, R., Cozien, J., Cabon, J., Lamour, F., Baud, M., and Schneemann, A. (2006). Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles. J Virol. 80(20), 10201-7.

Thiéry, R., Cozien, J., de Boisséson, C., Kerbart Boscher, S., and Névarez, L. (2004). Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. J. Gen. Virol. 85(10), 3079-87.

Tihova, M., Dryden, K.A., Le, T.V., Harvey, S.C., Johnson, J.E., Yeager, M., and Schneemann, A. (2004). Nodavirus coat protein imposes dodecahedral RNA structure independent of nucleotide sequence and length. J. Virol. 78(6), 2897-905.

Venter, P.A., and Schneemann, A. (2008). Recent insights into the biology and biomedical applications of Flock House virus. Cell. Mol. Life Sci. 65(17), 2675-87.

Vermeer, A.W., and Norde, W. (2000). The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys. J. 78(1), 394-404.

Woodson, S.A. (2000). Compact but disordered states of RNA. Nat. Struct. Biol. 7(5), 349-52.

Wu, Y.M., Hsu, C.H., Wang, C.H., Liu, W., Chang, W.H., and Lin, C.S. (2008). Role of the DxxDxD motif in the assembly and stability of betanodavirus particles. Arch. Virol. 153(9), 1633-42.

Yoshikoshi, K., and Inoue, K. (1990). Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegel). J. Fish Dis. 13(1), 69-77.

Zhong, W., and Rueckert, R.R. (1993). Flock house virus: down-regulation of subgenomic RNA3 synthesis does not involve coat protein and is targeted to synthesis of its positive strand. J Virol. 67(5), 2716-22.

Zhong, W., Dasgupta, R., and Rueckert, R. (1992). Evidence that the packaging signal for nodaviral RNA2 is a bulged stem-loop. Proc. Natl. Acad. Sci. U. S. A. 89(23), 11146-11150.

Zuker, M., and Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133-48.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.136.154.103
論文開放下載的時間是 校外不公開

Your IP address is 3.136.154.103
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code