Responsive image
博碩士論文 etd-0122113-161733 詳細資訊
Title page for etd-0122113-161733
論文名稱
Title
團狀共聚物作模板合成可調控中孔洞材料:形態,相行為及應用
Morphology, Phase behavior and Application of Tunable Mesoporous Materials Templated by Block copolymers.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
272
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-04
繳交日期
Date of Submission
2013-01-22
關鍵字
Keywords
中孔洞二氧化矽、嵌段共聚物、酚醛樹脂、揮發誘導自組裝
Evaporation Induced Self-assembly (EISA), block copolymer, mesoporous silica, phenolic resin
統計
Statistics
本論文已被瀏覽 5739 次,被下載 202
The thesis/dissertation has been browsed 5739 times, has been downloaded 202 times.
中文摘要
本論文,我們利用了數種獨特的兩性嵌段共聚物如 PE-PEO、 PEO-PCL、
PEO-PLLA、PE-PEO-PLLA 及 PE-PEO-PCL 等作為模板,並透過揮發導致自組裝
方法去合成一系列的中孔洞二氧化矽、中孔洞酚醛樹脂及中孔洞碳材等中孔洞材
料。 首先,我們使用 PE-PEO 作為樣板,去研究 TOES 與模板以及鹽酸及模板重
量比在揮發導致自組裝過程中的影響,並以熱力學及動力學的觀念去解析之。另
外,我們延伸這個研究方法至其他的嵌段共聚物模板系統,特別是 ABC 三嵌段共
聚物作為單一模板這個系統,可得到多層次結構的中孔洞材料。此外,我們使用
開環聚合方法去合成一系列的嵌段共聚物模板,此合成方法使嵌段共聚物模板的
可變性更為增加,藉此可調控所合成的中孔洞材料孔徑或形貌的不同。另外混摻
技巧也可應用在合成中孔洞材料的揮發導致自組裝過程中,更可輕易的調控中孔
洞材料的樣貌或孔徑等性質,最後我們將中孔洞材料薄膜應用在易揮發有機化合
物的蒸氣偵測上,由於中孔洞材料高比表面積的特性,因此在偵測的表現上有很
好的效果。
Abstract
In the study, we have utilized several unique amphiphilic block copolymers as
templates, such as PE-PEO, PEO-PCL, PEO-PLLA, PE-PEO-PLLA and PE-PEO-PCL,
to successfully fabricate a series of mesoporous materials, for example, mesoporous
silicas, mesoporous phenolic resins and mesoporous carbons by a convenient EISA
method. Firstly, we took PE-PEO as model block copolymer to study the
TEOS-to-template or HCl-to-template weight ratio effect during the EISA process, view
from the thermal dynamic point and kinetic reason, respectively. In addition, we
expended the research method to the other block copolymer systems, especially for the
unusual ABC type triblock copolymers, we obtained the hierarchical mesostructure by
single template. Furthermore, the lab-made amphiphilc block copolymer that
synthesized from ring-opening polymerization (ROP) could increase the possibility of
the mesoporous materials field by tuning the segment length through synthesis
technique. Moreover, blending technique could also be used in the templating process
during EISA, the clear method could easily control the morphology and pore size of the
mesoporous materials. Eventually we take our mesoporous thin film as the volatile
organic compounds (VOCs) sensors and obtain great results due to the large surface
area of the mesoporous materials.
目次 Table of Contents
Content
摘要 ................................................................................................................................ i
Abstract .......................................................................................................................... ii
Content ......................................................................................................................... iii
Table Captions .............................................................................................................. ix
Figure Captions ............................................................................................................ xi
Chapter 1 introduction ................................................................................................... 1
1-1 Mesoporous materials ........................................................................................ 1
1-2 Evaporation-induced self-assembly (EISA) ....................................................... 3
1-3 Block copolymers ............................................................................................... 5
1-4 Motivation ........................................................................................................... 8
1-5 References ........................................................................................................ 10
Chapter 2 Phase Behavior of Mesoporous Silicas Templated by the Amphiphilic
Diblock Copolymer Poly(ethylene-b-ethylene oxide) ................................................. 13
2-1 Background: .................................................................................................. 13
2-2 Experimental: ................................................................................................ 16
2-2-1Materials ........................................................................................ 16
2-2-2 Synthesis of the mesoporous silica ................................................ 16
2-2-2 Characterization ........................................................................... 17
2-3 Results and disscussion .................................................................................... 19
2-3-1 Mesoporous silica samples synthesized at various
TEOS–to–PE-b-PEO ratios .................................................................... 19
2-3-2 Mesoporous silica samples synthesized at different
HCl–to–PE-b-PEO weight fractions ...................................................... 25

2-4 Summary .......................................................................................................... 31
Chapter 3 Tunable Mesoporous Lamellar Silicas Prepared Using Poly(ethylene
oxide-b-l-lactide) and Poly(ethylene-b-ethylene oxide-b-l-lactide) Block Copolymers as
Templates ..................................................................................................................... 36
3-1 Background: .................................................................................................. 36
3-2 Experimental: ................................................................................................ 38
3-2-1Materials ........................................................................................ 38
3-2-2 PEO-PLLA and PE-PEO-PLLA Block Copolymers ..................... 38
3-2-3 Mesoporous silicas synthesized using PEO-PLLA diblock
copolymers and PE-PEO-PLLA triblock terpolymers as templates ....... 39
3-2-4 Characterization ........................................................................... 39
3-3 Results and disscussion .................................................................................... 41
3-3-1 Characterization of mesoporous silicas prepared using PEO-PLLA
diblock copolymers as templates ............................................................ 41
3-3-1 Characterization of mesoporous silicas prepared using
PE-PEO-PLLA triblock copolymers as templates .................................. 53
3-4 Summary .......................................................................................................... 63
3-5 References ........................................................................................................ 64
Chapter 4 Phase Behavior of Hierarchical Mesoporous Silicas Prepared Using ABC
Triblock Copolymers as Single Templates .................................................................. 66
4-1 Background: .................................................................................................. 66
4-2 Experimental: ................................................................................................ 69
4-2-1 Materials ....................................................................................... 69
4-2-2 PE-PEO-PCL copolymers of various molecular weights ............. 69
4-2-3 Mesoporous silicas templated by PE-PEO-PCL copolymers ....... 69

4-2-4 Characterization ........................................................................... 70
4-3 Results and disscussion .................................................................................... 72
4-3-1 Characterization of PE-PEO-PCL copolymers ............................ 72
4-3-2 Mesoporous silicas prepared using E 13 EO 42 CL 31 as template;
tetragonal cylinder in FCC hierarchical nanostructure ......................... 75
4-3-3 Mesoporous silicas prepared using E 13 EO 42 CL 9 as template;
simple cubic in BCC hierarchical nanostructure ................................... 78
4-3-4 Mesoporous silicas templated by various PE-PEO-PCL
copolymers at different TEOS–to– PE-PEO-PCL weight ratios ............ 83
4-3-5 Mesoporous silicas templated by E 13 EO 42 CL 31 copolymers at
various HCl (aq) contents .......................................................................... 92
4-3-6 Mesoporous silicas templated by different PE-PEO-PCL
copolymers at a constant TEOS-to-template weight ratio ..................... 95
4-4 Summary .......................................................................................................... 99
4-5 References ...................................................................................................... 100
Chapter 5 Templating Amphiphilic Poly(ethylene oxide-b-ε-caprolactone) Diblock
Copolymers Provide Ordered Mesoporous Silicas with Large Tunable Pores ......... 102
5-1 Background: ................................................................................................ 102
5-2 Experimental: .............................................................................................. 104
5-2-1 Materials ..................................................................................... 104
5-2-1 Synthesis of mesoporous silicas templated by PEO-b-PCL
copolymers of various molecular weights ............................................ 105
5-2-3 Synthesis of mesoporous silicas templated by PEO-b-PCL
copolymers blended with homopolymer additives ................................ 105
5-2-4 Characterization ......................................................................... 106

5-3 Results and disscussion .................................................................................. 108
5-3-1 Body-centered cubic mesoporous silica templated by amphiphilic
block copolymer EO 114 CL 20 .................................................................. 108
5-3-2 Mesoporous silicas templated by PEO-b-PCL copolymers with
PCL blocks of different molecular weights ............................................ 111
5-3-3 Mesoporous silicas prepared using PCL homopolymers as pore
expander from EISA ............................................................................... 115
5-3-4 Mesoporous silicas prepared using PEO-POSS and PEO as
modifiers for EISA ................................................................................ 121
5-4 Summary ........................................................................................................ 125
5-5 References ...................................................................................................... 126
Chapter 6 From Microphase Separation to Self-Organized Mesoporous Phenolic Resin
through Competitive Hydrogen Bonding with Double-Crystalline Diblock Copolymers
of Poly(ethylene oxide-b-ε-caprolactone) ................................................................. 127
6-1 Background: ................................................................................................ 127
6-2 Experimental: .............................................................................................. 129
6-2-1 Materials. .................................................................................... 129
6-2-1 Synthesis of mesoporous phenolic resins and carbon ................. 130
6-2-1 Characterizations. ....................................................................... 131
6-3 Results and disscussion .................................................................................. 133
6-3-1 Phenolic Resin/Block Copolymer Analyses ................................ 133
6-3-2 Mesoporous Phenolic Resin Analyses ......................................... 144
6-3-3 SAXS, TEM and BET Analyses of Mesoporous Phenolic Resin .. 147
6-3-4Morphology of mesoporous carbon ............................................. 159
6-4 Summary ........................................................................................................ 162

6-5 References ...................................................................................................... 163
Chapter 7 Transformations and Enhanced Long-Range Ordering of Mesoporous
Phenolic Resin Templated by Poly(ethylene oxide-b-ε-caprolactone) Block Copolymers
Blended With Star Poly(ethylene oxide)–Functionalized Silsesquioxane (POSS) ... 166
7-1 Background: ................................................................................................ 166
7-2 Experimental: .............................................................................................. 169
7-2-1 Materials ..................................................................................... 169
7-2-2 Synthesis of mesoporous phenolic resins .................................... 170
7-2-3 Characterization ......................................................................... 170
7-3 Results and disscussion .................................................................................. 172
7-3-1 Synthesis of mesoporous phenolic resins templated by PEO-b-PCL
copolymer ............................................................................................. 172
7-3-2 DSC and FTIR spectroscopic analyses of
phenolic/PEO-b-PCL/PEO-POSS ternary blends ................................ 174
7-3-3 Synthesis of mesoporous phenolic resins templated by
PEO-b-PCL/PEO-POSS blends ........................................................... 178
7-3-4 Synthesis and morphology of mesoporous carbon ...................... 194
7-4 Summary ........................................................................................................ 198
7-5 References ...................................................................................................... 199
Chapter 8 Mesoporous Nanostructures Templated by Amphiphilic
Crystalline–Crystalline Diblock Copolymers of Poly(ethylene oxide-b-ε-caprolactone)
and applying to Sense Volatile Organic Compound .................................................. 202
8-1 Background: ................................................................................................ 202
8-2 Experimental: .............................................................................................. 206
8-2-1 Materials ..................................................................................... 206

8-2-2 Synthesis of PEO-b-PCL Block Copolymer ................................ 206
8-2-3 Synthesis of the Mesoporous Silicas ........................................... 207
8-2-4 Synthesis of mesoporous phenolic resins .................................... 207
8-2-5 Characterization ......................................................................... 208
8-2-6 Preparation of VOCs sensor ....................................................... 210
8-2-7 Sensing Experiment for VOCs..................................................... 210
8-3 Results and disscussion .................................................................................. 212
8-3-1 Synthesis of PEO-b-PCL ............................................................. 212
8-3-2 Phase behavior of mesoporous silicas ........................................ 215
8-3-3 Phase behavior of mesoporous phenolic resins .......................... 223
8-3-4 Mesoporous thin films for VOCs sensing .................................... 233
8-4 Summary ........................................................................................................ 237
8-5 References ...................................................................................................... 238
Chapter 9 Conclusions ............................................................................................... 241
Resume ...................................................................................................................... 244




Table Captions
Table 1-1. Classification of pore size……………………………………………………2
Table 1-2. Famous mesoporous materials and their mesostructure……………………..2
Table 2-1. Textual properties of the mesoporous silicas. ………………………………30
Table 3-1: Characterization of PEO-PLLA & PE- PEO-PLLA block copolymers used in
this study………………………………………………………………………………51
Table 3-2. Textual properties of various mesoporous silica samples………………….52
Table 4-1: Characterization data of PE-PEO-PCL triblock copolymers used in this
study……………………………………………………………………………………75
Table 4-2. Textural properties of the hierarchical mesoporous silica (“simple cubic in
BCC”, sample E1T40) …………………………………………………………………83
Table 4-3. Textural properties of mesoporous silica samples templated by PE-PEO-PCL
at various TEOS–to–PE-PEO-PCL ratios………………………………………………93
Table 4-4: Textural properties of mesoporous silica samples templated by PE-PEO-PCL
at various TEOS–to–PE-PEO-PCL–to–HCl (aq) weight fractions. …………………..…97
Table 4-5: Textural properties of mesoporous silica samples templated by PE-PEO-PCL
with various PCL molecular weights at the same TEOS–to–PE-PEO-PCL ratio…….100
Table 5-1: Characterization of PEO-b-PCL diblock copolymers used in this
study…………………………………………………………………………….……..108
Table 5-2. Textural properties of mesoporous silicas templated by different block
copolymers and homopolymers…………………………………………………...…..118
Table 6-1: Characterization of PCL-b-PEO-b-PCL triblock copolymer and PEO-b-PCL
diblock copolymers used in this study……………………………………………...…140
Table 6-2: Thermal properties of Phenolic/EC blends…………………………...…...144

Table 6-3: Summary of the self-association and inter-association equilibrium constants
and thermodynamic parameter of phenolic/EC blends at room temperature…………150
Table 6-4. Textual properties of the mesoporousphenolic resins and carbon products.164
Table 7-1: Characterization of PEO-b-PCL diblock copolymers used in this study….175
Table 7-2. Textural properties of the mesoporous phenolic resin structures……….…193
Table 7-3. Textual properties of the mesoporous carbon……………………………...203
Table 8-1. Textual properties of the mesoporous silicas, phenolic resins and carbon
products……………………………………………………………………………….228
Table 8-2: Curve-fitting result of phenolic/PEO-b-PCL blend at room temperature…236



Figure Captions
Figure 1-1. The well-known structure of mesoporous materials. ……………………….2
Figure 1-2. Evaporation induced self-assembly (EISA) ………………………………...4
Figure 1-3. Factors affected morphologies of mesomaterials and their relationship
during EISA. …………………………………………………………………………….4
Figure 1-4. Phase diagram of block copolymer microphase separation. ………………..7
Figure 2-1. SAXS patterns of mesoporous silica samples prepared at various
TEOS–to–PE-b-PEO weight ratios…………………………………………………….22
Figure 2-2. TEM images of mesoporous silica samples prepared at TEOS–to–PE-b-PEO
weight ratios of (a) 3.4:1, (b) 5.6:1, (c) 10:1, and (d) 11:1…………………………….23
Figure 2-3. TEM images of microtomed mesoporous silica samples prepared at a
TEOS–to–PE-b-PEO weight ratio of 5.6:1. (a) Top view; (b) side view of hexagonal
cylinders. ………………………………………………………………………………24
Figure 2-4. (A) N 2 adsorption/desorption isotherms and (B) pore size distribution curves
of mesoporous silica samples prepared at various TEOS–to–PE-b-PEO weight
ratios……………………………………………………………………………………24
Figure 2-5. SAXS patterns of mesoporous silica samples templated by PE-b-PEO at
various HCl–to–PE-b-PEO weight fractions…………………………………………..27
Figure 2-6. TEM images of mesoporous silica samples templated by PE-b-PEO at
HCl–to–PE-b-PEO weight ratios of (a) 0.80, (b) 0.16, (c) 0.12, and (d) 0.06…………28
Figure 2-7. TEM images of microtomed mesoporous silica samples templated by
PE-b-PEO at a HCl–to–PE-b-PEO weight ratio of 0.12. (a) Hexagonal cylindrical
mesopores; (b) spherical mesopores with b.c.c. packing………………………………29
Figure 2-8. (A) N 2 adsorption/desorption isotherms and (B) pore size distribution curves

of mesoporous silica samples templated by PE-b-PEO at various HCl–to–PE-b-PEO
weight ratios……………………………………………………………………………29
Figure 3-1. GPC traces of (a) the homopolymer PEO 114 (black line) and (b, c) the
diblock copolymers (b) EO 114 LLA 26 (red dashed line) and (c) EO 114 LLA 130 (blue dashed
line)…………………………………………………………………………………….44
Figure 3-2.
1
H NMR spectra of the PEO-PLLA copolymers (in CDCl 3 ) (a) EO 114 LLA 26
and (b) EO 114 LLA 130 ……………………………………………………………………45
Figure 3-3. SAXS patterns of the mesoporous silicas templated by EO 114 LLA 26 at
various TEOS–to–EO 114 LLA 26 weight ratios…………………………………………..46
Figure 3-4. TEM images of mesoporous silicas templated by EO 114 LLA 26 , prepared at
TEOS-to-EO 114 LLA 26 weight ratios of (a) 1:1, (b) 2:1, (c) 3:1, (d) 5:1, (e) 10:1 and (f)
15:1……………………………………………………………………………………..47
Figure 3-5. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by EO 114 LLA 26 at various TEOS–to–EO 114 LLA 26
weight ratios……………………………………………………………………………48
Figure 3-6. SAXS patterns of mesoporous silicas templated by EO 114 LLA 26 at various
TEOS–to–EO 114 LLA 130 weight ratios………………………………………………….49
Figure 3-7. TEM images of mesoporous silicas templated by EO 114 LLA 26 at
TEOS–to–EO 114 LLA 130 weight ratios of (a) 1:1, (b) 3:1, (c) 5:1, (d) 10:1, and (e) 15:1.
Figure 3-8. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by EO 114 LLA 130 at various TEOS–to–EO 114 LLA 130
weight ratios……………………………………………………………………………50
Figure 3-9. GPC traces of (a) the diblock copolymer E 13 EO 42 (black line) and (b, c) the
triblock terpolymers (b) E 13 EO 42 LLA 26 (red dashed line) and (c) E 13 EO 42 LLA 35 (blue
dashed line)……………………………………………………….……………………56

Figure 3-10.
1
H NMR spectra of the PE-PEO-PLLA copolymers (in CDCl 3 ) (a)
E 13 EO 42 LLA 26 and (b) E 13 EO 42 LLA 35 …………………………………………………57
Figure 3-11. SAXS patterns of mesoporous silicas templated by E 13 EO 42 LLA 26 at
various TEOS–to–E 13 EO 42 LLA 26 weight ratios………………………………………..58
Figure 3-12. TEM images of mesoporous silicas templated by E 13 EO 42 LLA 26 , prepared
at TEOS-to-EO 114 LLA 26 weight ratios of (a) 1:1, (b) 2:1, (c) 3:1, (d) 3.5:1, (e) 4:1 and (f)
5:1………………………………………………………………………………………59
Figure 3-13. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by E 13 EO 42 LLA 26 at various TEOS–to–E 13 EO 42 LLA 26
weight ratios……………………………………………………………………………60
Figure 3-14. SAXS patterns of mesoporous silicas templated by E 13 EO 42 LLA 35 at
various TEOS–to–E 13 EO 42 LLA 35 weight ratios………………………………………..61
Figure 3-15. TEM images of mesoporous silicas templated by E 13 EO 42 LLA 35 with
different TEOS-to-E 13 EO 42 LLA 35 weight ratio. ………………………………………62
Figure 3-16. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by E 13 EO 42 LLA 35 at various TEOS–to–E 13 EO 42 LLA 35
weight ratios……………………………………………………………………………62
Figure 4-1. GPC traces of the diblock copolymer E 13 EO 42 (black line) and the triblock
copolymers E 13 EO 42 CL 9 (red dashed line), E 13 EO 42 CL 18 (blue dashed line),
E 13 EO 42 CL 31 (magenta dashed line), and E 13 EO 42 CL 44 (green dashed line)…………...74
Figure 4-2.
1
H NMR spectra of the copolymers PE-PEO and PE-PEO-PCL in CDCl 3 ..75
Figure 4-3. SAXS pattern (a) and microtomed TEM images of mesoporous silicas
templated by PE 13 -b-PEO 42 -b-PCL 31 viewed from [001] (b), [10] (c), and [11] (d)
directions. Insets are corresponding FFT diffractograms. (e) N 2 adsorption-desorption
isotherms and (f) pore size distribution curves of mesoporous silicas templated by

PE 13 -b-PEO 42 -b-PCL 31 …………………………………………………………………78
Figure 4-4. (a) SAXS pattern, (b) 3D model of “simple cubic in BCC” hierarchical
structure and viewed from the (c) [100], (d) [110], and (e) [111] planes of the “simple
cubic in BCC” mesoporous silica templated by E 13 EO 42 CL 9 at a TEOS-to- E 13 EO 42 CL 9
ratio of 4:1……………………………………………………………………………...81
Figure 4-5. TEM images (4a-c), corresponding FFT (4d-f) and the foreseeable diagrams
(4g-i) of the “simple cubic in BCC” mesoporous silica viewed from the [100] (4a, 4d
and 4g), [110] (4b, 4e and 4h), and [111] (4c, 4f and 4i) planes, respectively…………82
Figure 4-6. (a) N 2 adsorption/desorption isotherm, and (b) pore size distribution curve
of the “simple cubic in BCC” mesoporous silica templated by E 13 EO 42 CL 9 at a
TEOS-to- E 13 EO 42 CL 9 ratio of 4:1……………………………………………………..83
Figure 4-7. (a) TEM images, (b) SAXS patterns, (c) N 2 adsorption/desorption isotherms,
and (d) pore size distribution curves of mesoporous silicas templated by E 13 EO 42 CL 9 at
TEOS-to-E 13 EO 42 CL 9 weight fractions of 2.5:1, 3.0:1, 3.5:1, 4:1, and 4.5:1………….89
Figure 4-8. (a) TEM images, (b) SAXS patterns, (c) N 2 adsorption/desorption isotherms,
and (d) pore size distribution curves of mesoporous silicas templated by E 13 EO 42 CL 18 at
TEOS-to-E 13 EO 42 CL 18 weight fractions of 2.5:1, 3.0:1, 3.5:1, 4:1, and 4.5:1…………90
Figure 4-9. (a) TEM images, (b) SAXS patterns, (c) N 2 adsorption/desorption isotherms,
and (d) pore size distribution curves of mesoporous silicas templated by E 13 EO 42 CL 31 at
TEOS-to-E 13 EO 42 CL 31 weight fractions of 2.5:1, 3.0:1, 3.5:1, 4:1, and 4.5:1…………91
Figure 4-10. (a) TEM images, (b) SAXS patterns, (c) N 2 adsorption/desorption
isotherms, and (d) pore size distribution curves of mesoporous silicas templated by
E 13 EO 42 CL 44 at TEOS-to-E 13 EO 42 CL 44 weight fractions of 2.5:1, 3.0:1, 3.5:1, 4:1, and
4.5:1……………………………………………………………………………………92
Figure 4-11. (a) TEM images, (b) SAXS patterns, (c) N 2 adsorption/desorption

isotherms, and (d) pore size distribution curves of mesoporous silicas templated by
E 13 EO 42 CL 31 at TEOS-to-E 13 EO 42 CL 31 -to-HCl (aq) weight fractions of 3.5:1:0.5,
3.5:1:1.0, 3.5:1:1.5, and 3.5:1:2.0……………………………………………………..96
Figure 4-12. (a) TEM images, (b) SAXS patterns, (c) N 2 adsorption/desorption
isotherms, and (d) pore size distribution curves of mesoporous silicas templated by
various PE-PEO-PCL copolymers at a TEOS-to-EO 114 CL 20 weight fraction of 3.5:1…99
Figure 5-1. (a) SAXS pattern, (b–d) TEM images viewed from [100], [110], and [111],
respectively (insets: corresponding FFT), (e) N 2 adsorption/desorption isotherm, and (f)
pore size distribution curve of bcc mesoporous silica templated by EO 114 CL 20 with a
TEOS/EO 114 CL 20 ratio of 2:1…………………………………………………………114
Figure 5-2. (a) SAXS patterns and (b–e) TEM images of mesoporous silicas templated
by EO 114 CL n at weight fractions of (b) TEOS/EO 114 CL 20 = 2:1, (c) TEOS/EO 114 CL 42 =
3:1, (d) TEOS/EO 114 CL 84 = 5:1, and (e) TEOS/EO 114 CL 130 = 11:1…………………...117
Figure 5-3. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by EO 114 CL n at TEOS/EO 114 CL n weight fractions of
2:1 (n = 20), 3:1 (n = 42), 5:1 (n = 84), and 11:1 (n = 130)…………………………...117
Figure 5-4. (a) SAXS patterns and (b–e) TEM images of mesoporous silicas templated
by EO 114 CL 20 at TEOS/EO 114 CL 20 /PCL 20 weight fractions of (b) 2:1:0, (c) 2:1:0.1, (d)
2:1:0.3, and (e) 2:1:0.5………………………………………………………………..123
Figure 5-5. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by EO 114 CL 20 at TEOS/EO 114 CL 20 /PCL 20 weight
fractions of 2:1:0, 2:1:0.1, 2:1:0.3, and 2:1:0.5……………………………………….123
Figure 5-6. (a) SAXS patterns and (b–e) TEM images of mesoporous silicas templated
by EO 114 CL 20 at TEOS/EO 114 CL 20 /PCL 408 weight fractions of (b) 2:1:0, (c) 2:1:0.1, (d)
2:1:0.3, and (e) 2:1:0.5………………………………………………………………..124
xvi

Figure 5-7. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by EO 114 CL 20 at TEOS/EO 114 CL 20 /PCL 408 weight
fractions of 2:1:0, 2:1:0.1, 2:1:0.3, and 2:1:0.5……………………………………….124
Figure 5-8. (a) SAXS patterns and (b–e) TEM images of mesoporous silicas templated
by EO 114 CL 84 at TEOS/EO 114 CL 84 /PCL 20 weight fractions of (b) 3:1:0, (c) 3:1:0.5, (d)
3:1:0.7, and (e) 3:1:0.9………………………………………………………………..125
Figure 5-9. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by EO 114 CL 84 at TEOS/EO 114 CL 84 /PCL 20 weight
fractions of 3:1:0, 3:1:0.5, 3:1:0.7, and 3:1:0.9………………………………………125
Figure 5-10. (a) SAXS patterns and (b–e) TEM images of mesoporous silicas templated
by EO 114 CL 84 at TEOS/EO 114 CL 84 /PEO 13 -POSS weight fractions of 3:1:0, 3:1:0.3,
3:1:0.5, and 3:1:0.7……………………………………………………………………129
Figure 5-11. (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous silicas templated by EO 114 CL 84 at TEOS/EO 114 CL 84 /PEO 13 -POSS weight
fractions of 3:1:0, 3:1:0.3, 3:1:0.5, and 3:1:0.7……………………………………….129
Figure 5-12. (a) SAXS patterns and (b–e) TEM images of mesoporous silicas templated
by EO 114 CL 84 at TEOS/EO 114 CL 84 /PEO 22 weight fractions of 3:1:0, 3:1:0.3, 3:1:0.5, and
3:1:0.7…………………………………………………………………………………130
Figure 6-1: DSC thermograms of phenolic/EC blends, having different compositions for
(a) phenolic/EC1, (b) phenolic/EC2, (c) phenolic/EC3, and (d) phenolic/EC………..143
Figure 6-2: FT-IR spectra recorded at room temperature displaying the (a) hydroxyl
stretching, (b) carbonyl, and (c) ether region…………………………………………149
Figure 6-3: FT-IR spectra recorded at room temperature displaying the carbonyl region
of phenolic/EC blends fixing phenolic contents (50 and 60 wt%) for (a) pure EC1, (b)
phenolic/EC1, (c) phenolic/EC2, (d) phenolic/EC3, and (e) phenolic/EC4………….150

Figure 6-4: Experimental and prediction data for of phenolic/EC blends with
different phenolic weight percent for (█) phenolic/EC1, (●) phenolic/EC2, (▲)
phenolic/EC3, and (▼) phenolic/EC4………………………………………………..151
Figure 6-5: DSC cooling curves of phenolic/EC blends after curing HMTA for (a)
phenolic/EC1, (b) phenolic/EC2, (c) phenolic/EC3 and (d) phenolic/EC4 with a
constant cooling rate of 5 °C /min…………………………………………………….155
Figure 6-6: Profiles of Lorentz-corrected SAXS intensity of mesoporous phenolic resin
from templated by (a) EC1, (b) EC2, (c) EC3, and (d) EC4 block copolymers………159
Figure 6-7: TEM images of mesoporous phenolic from phenolic/EC1 for (a) 30/70, (b)
40/60, (c) 50/50, (d) 60/40, phenolic/EC2 for (e) 40/60, (f) 50/50, (g) 60/40, (h) 70/30,
phenolic/EC3 for (i) 50/50, (j) 60/40, phenolic/EC4 for (k) 50/50, and (l) 60/40
blends………………………………………………………………………………….160
Figure 6-8: Summary of SAXS analyses (A) and TEM images of mesoporous phenolic
resin containing fixing 50 wt% phenolic resin contents with different templated block
copolymers for (B) EC1, (C) EC2, (D) EC3, and (E) EC4. ………………………….160
Figure 6-9: Phase diagram of (A) phenolic/EC blends, the open circle represent miscible
disorder structure, the full circles represent microphase separation structure and (B)
mesoporous phenolic resin from template by EC block copolymers, the open circles
represent disorder structure and the full circles represent regular mesoporous
structure. ……………………………………………………………………………..161
Figure 6-10: N 2 adsorption-desorption isotherms of mesoporous phenolic resins
templated by different EC block copolymers with different phenolic weight percents (a)
50 wt%, and (b) 60 wt%................................................................................................162
Figure 6-11: pore size distribution curves of mesoporous phenolic resins templated by
different EC block copolymers with different phenolic weight percents (a) 50 wt%, and

(b) 60 wt%.....................................................................................................................163
Figure 6-12: SAXS pattern (a), TEM images (b), (c), and (d), N 2 adsorption-desorption
isotherms (e), and pore size distribution curves (f) of mesoporous of gyroid mesoporous
carbon pyrolyzed from mesoporous phenolic resin templated by EC2 block copolymer
at 50 wt% phenolic resin content at 800 °C…………………………………………..167
Figure 7-1: (a) SAXS analyses and (b–g) TEM images of mesoporous phenolic resin
structures containing a fixed phenolic resin content (50 wt%) and the templating block
copolymers (b, c) EC1, (d, e) EC2, and (f, g) EC3……………………………………179
Figure 7-2: DSC thermograms of phenolic/EC2/PEO-POSS ternary blends at (a)
50/50/0, (b) 50/50/6, (c) 50/50/10, (d) 50/50/18, and (e) 50/50/26 ratios…………….183
Figure 7-3: FTIR spectra of phenolic/EC3/PEO-POSS systems, recorded at room
temperature, displaying the (a) OH, (b) C=O, and (c) ether regions………………….184
Figure 7-4: Profiles of SAXS intensities of mesoporous phenolic resin structures
obtained from templating EC1/PEO-POSS blends…………………………………...192
Figure 7-5: TEM images of mesoporous phenolic structures obtained from
phenolic/EC1/PEO-POSS blends…………………………………………………….192
Figure 7-6: (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous phenolic resins templated by EC1/PEO-POSS blends………………193
Figure 7-7: Profiles of SAXS intensities of mesoporous phenolic resin structures
obtained from templating EC2/PEO-POSS blends………………………………….194
Figure 7-8: TEM images of mesoporous phenolic structures obtained from
phenolic/EC2/PEO-POSS blends……………………………………………………194
Figure 7-9: (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous phenolic resin structures templated by EC2/PEO-POSS blends…….195
Figure 7-10: Profiles of SAXS intensities of mesoporous phenolic resin structures

obtained from templating EC3/PEO-POSS blends…………………………………..196
Figure 7-11: TEM images of mesoporous phenolic structures obtained from
phenolic/EC3/PEO-POSS blends…………………………………………………….196
Figure 7-12: (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of mesoporous phenolic resin structures obtained from templating EC3/PEO-POSS
blends…………………………………………………………………………………197
Figure 7-13: Phase diagram of mesoporous phenolic resin from template by
EC/PEO-POSS blends, the open circles represent disorder structure, the full circles
represent regular mesoporous structure templated by pure EC diblock copolymer and
the hexagonal symbols represent regular mesoporous structure templated by
EC/PEO-POSS blends ……………………………………………………………….199
Figure 7-14: Scale expanded phase diagram of phenolic/EC/PEO-POSS with different
PEO+PEO-POSS weight fraction at phenolic resin content (ca. 0.35~0.5), the black and
white symbol represents lamellae, triangle symbol represents gyroid, hexagonal symbol
represents cylinder, circle symbol represents sphere mesoporous structure………….199
Figure 7-15: (a, b) TEM images of gyroid mesoporous carbon structures pyrolyzed from
the phenolic/EC3 = 50/50 system. (c, d) TEM images and (e, f) field-emission SEM
images of cylinder mesoporous carbon structures pyrolyzed from the
phenolic/EC3/PEO-POSS = 50/50/22 system at 800 °C……………………………..202
Figure 7-16: (a) N 2 adsorption/desorption isotherms and (b) pore size distribution curves
of gyroid mesoporous carbon structures pyrolyzed from the phenolic/EC3 = 50/50
system and (c) N 2 adsorption/desorption isotherms and (d) pore size distribution curves
of cylinder mesoporous carbon structures pyrolyzed from the phenolic/EC3/PEO-POSS
= 50/50/22 system at 800 °C…………………………………………………………203
Figure 8-1:
1
H NMR of PEO-b-PCL copolymer (in CDCl 3 )…………………………219

Figure 8-2: TGA analysis of PEO-b-PCL block copolymer under nitrogen………….220
Figure 8-3: TGA analysis of PEO-b-PCL block copolymer under air………………..220
Figure 8-4. DSC thermograms of the crystallization curve with different ratios of
silica/PEO-b-PCL……………………………………………………………………..225
Figure 8-5. SAXS patterns of mesoporous silicas templated by PEO-b-PCL with
different TEOS/PEO-b-PCL weight fractions………………………………………...225
Figure 8-6. TEM images of mesoporous silicas templated by PEO-b-PCL with different
TEOS/PEO-b-PCL weight fractions: (a)1/1, (b)5/1, (c)10/1, and (d)15/1……………226
Figure 8-7. FE-SEM images of mesoporous silicas templated by PEO-b-PCL with
different TEOS/PEO-b-PCL weight fractions: (a)1/1 and (b)5/1…………………….226
Figure 8-8. (A) N 2 adsorption-desorption isotherms and (B) pore size distribution curves
of mesoporous silicas templated by PEO-b-PCL with different TEOS/PEO-b-PCL
weight fractions………………………………………………………………………227
Figure 8-9. DSC thermograms of (a) second heat scan and (b) first cooling scan of
phenolic/PEO-b-PCL blends, (c) first cooling scan of phenolic/PEO-b-PCL blends after
curing…………………………………………………………………………………235
Figure 8-10. FT-IR spectra at room temperature of the phenolic/PEO-b-PCL blend
displaying the (a) hydroxyl, (b) carbonyl and (c) ether region………………………236
Figure 8-11. SAXS patterns of mesoporous phenolic resins from different weight
fractions of phenolic/PEO-b-PCL blends……………………………………………237
Figure 8-12. TEM image of mesoporous phenolic resins from different weight fractions
of phenolic/PEO-b-PCL blends: (a) 40/60, (b) 50/50, (c) 60/40, and (d) 70/30……..238
Figure 8-13 . (A) N 2 adsorption-desorption isotherms and (B) pore size distribution
curves of mesoporous resins templated by PEO-b-PCL with different
phenolic/PEO-b-PCL weight fractions………………………….…………………….238

Figure 8-14. Performance curve of the gas sensor……………………………………241
Figure 8-15. (a) Sensitivity of mesoporous silica chips toward various VOCs, each at a
concentration of 16 ppm. (b) Temporal sensitivities of mesoporous and nonporous silica
sensors toward formaldehyde vapor (16 ppm)………………………………………..241
Figure 8-16. (a) Sensitivity of mesoporous phenolic resin chips toward various VOCs,
each at a concentration of 16 ppm. (b) Response of the mesoporous phenolic sensor to
repeated dosing with benzene vapor at 100 ppm. (c) Temporal sensitivities of
mesoporous and nonporous phenolic sensors…………………………………………242
參考文獻 References
1-5 References
1. Li, J. S.; Miao, X. Y.; Hao, Y. X.; Zhao, J. Y.; Sun, X. Y.; Wang, L. J., J. Colloid
Interface Sci. 2008, 318, 309.
2. Liu, G. M.; Zheng, S. R.; Yin, D. Q.; Xu, Z. Y.; Fan, J.; Jiang, F., J. Colloid
Interface Sci. 2006, 302, 47.
3. Zhao, H. M.; Lin, D.; Yang, G.; Chun, Y.; Xu, Q. H., Acta Physico-Chimica Sinica
2012, 28, 985.
4. Jiang, K. J.; Manseki, K.; Yu, Y. H.; Masaki, N.; Suzuki, K.; Song, Y. L.;
Yanagida, S., Adv. Funct. Mater. 2009, 19, 2481.
5. Cejka, J., Applied Catalysis a-General 2003, 254, 327.
6. Karthikeyan, G.; Pandurangan, A., J. Mol. Catal. A: Chem. 2009, 311 , 36.
7. Peng, L.; Philippaerts, A.; Ke, X. X.; Van Noyen, J.; De Clippel, F.; Van Tendeloo,
G.; Jacobs, P. A.; Sels, B. F., Catal. Today 2010, 150 , 140.
8. Shylesh, S.; Samuel, P. P.; Sisodiya, S.; Singh, A. P., Catalysis Surveys from Asia
2008, 12, 266.
9. Blin, J. L.; Stebe, M. J.; Roques-Carmes, T., Colloids Surf., A 2012, 407, 177-185.
10. Ismail, A. A.; Kandiel, T. A.; Bahnemann, D. W., J. Mol. Catal. A: Chem. 2010,
216, 183.
11. Chen, Y.; Chen, H. R.; Ma, M.; Chen, F.; Guo, L. M.; Zhang, L. X.; Shi, J. L., J.
Mater. Chem. 2011, 21, 5290.
12. Heikkila, T.; Salonen, J.; Tuura, J.; Hamdy, M. S.; Mul, G.; Kumar, N.; Salmi, T.;
Murzin, D. Y.; Laitinen, L.; Kaukonen, A. M.; Hirvonen, J.; Lehto, V. P., Int. J.
Pharm. 2007, 331, 133.
13. Zhao, Q. F.; Wang, T. Y.; Wang, J.; Zheng, L.; Jiang, T. Y.; Cheng, G.; Wang, S.
L., Appl. Surf. Sci. 2011, 257, 10126.
14. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt,
K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J.
B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114, 10834.
15. Huo, Q. S.; Margolese, D. I.; Stucky, G. D., Chem. Mater. 1996, 8, 1147.
16. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R., Chem. Mater. 2000, 12, 1961.
17. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B.
F.; Stucky, G. D., Science 1998, 279, 548.
18. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D., J. Am. Chem.
Soc. 1998, 120 , 6024.
19. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem. Int. Ed. 1999, 38, 56.
20. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.;
Shim, H. J.; Ryoo, R., Nature 2000, 408, 449.
21. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki,
O.; Joo, S. H.; Ryoo, R., J. Phys. Chem. B 2002, 106,1256.
22. Kim, T. W.; Kleitz, F.; Paul, B.; Ryoo, R., J. Am. Chem. Soc. 2005, 127, 7601.
23. Ba, J. H.; Polleux, J.; Antonietti, M.; Niederberger, M., Adv. Mater. 2005, 17,
2509.
24. Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang,
Y.; Liu, C.; Wu, X. J.; Zhao, D. Y., J. Am. Chem. Soc. 2007, 129, 1690.
25. Grosso, D.; Boissiere, C.; Smarsly, B.; Brezesinski, T.; Pinna, N.; Albouy, P. A.;
Amenitsch, H.; Antonietti, M.; Sanchez, C., Nature Materials 2004, 3, 787.
26. Soler-Illia, G.; Louis, A.; Sanchez, C., Chem. Mater. 2002, 14, 750.
27. Wan, Y.; Shi, Y. F.; Zhao, D. Y., Chem. Commun. 2007, 897.
28. Soler-Illia, G.; Crepaldi, E. L.; Grosso, D.; Sanchez, C., Curr. Opin. Colloid
Interface Sci. 2003, 8, 109.
29. Deng, Y. H.; Liu, J.; Liu, C.; Gu, D.; Sun, Z. K.; Wei, J.; Zhang, J. Y.; Zhang, L. J.;
Tu, B.; Zhao, D. Y., Chem. Mater. 2008, 20, 7281.
30. Liu, C.; Deng, Y. H.; Liu, J.; Wu, H. H.; Zhao, D. Y., Microporous Mesoporous
Mater. 2008, 116, 633.
31. Masten, M. W.; Bate, F. S. Macromolecules 1996, 29, 1091.
2-5 References
1. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K.
D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.;
Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
2. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature
1992, 359, 710.
3. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B.
F.; Stucky, G. D. Science 1998, 279, 548.
4. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem.
Soc. 1998, 120, 6024.
5. Rother., G.; Krukowski., E. G.; Wallacher., D.; Grimm., N.; Bodnar., R. J.; Cole., D.
R. J. Phys. Chem. C 2012, 116, 917.
6. Taguchi, A.; Schuth, F. Microporous Mesoporous Mater. 2005, 77, 1.
7. Vallet-Regi, M.; Balas, F.; Arcos, D. Angew. Chem. Int. Ed. 2007, 46, 7548.
8. Hu, J.; Wang, J. J.; Zhou, L. H.; Xie, S. H.; Liu, H. L. Acta Physico-Chimica Sinica
2006, 22, 679.
9. Hwang, Y. K.; Patil, K. R.; Jhung, S. H.; Chang, J. S.; Ko, Y. J.; Park, S. E.
Microporous Mesoporous Mater. 2005, 78, 245.
10. Jana, S. K.; Nishida, R.; Shindo, K.; Kugita, T.; Namba, S. Microporous
Mesoporous Mater. 2004, 68, 133.
11. Xiao, Q.; Zhong, Y. J.; Zhu, W. D.; Chen, T. H.; Wang, L. Microporous
Mesoporous Mater. 2008, 116, 339.
12. Yu, C. Z.; Fan, J.; Tian, B. Z.; Zhao, D. Y. Chem. Mater. 2004, 16, 889.
13. Chao, M. C.; Chang, C. H.; Lin, H. P.; Tang, C. Y.; Lin, C. Y. J. Mater. Sci. 2009,
44, 6453.
14. Chen, L.; Wang, Y. M.; He, M. Y. J. Porous Mater. 2011, 18, 211.
15. Chen, Q. R.; Sakamoto, Y.; Terasaki, O.; Che, S. A. Microporous Mesoporous
Mater. 2007, 105, 24.
16. Zhang, F. Q.; Meng, Y.; Gu, D.; Yan, Y.; Chen, Z. X.; Tu, B.; Zhao, D. Y. Chem.
Mater. 2006, 18, 5279.
17. Wan, Y.; Zhao, D. Y. Chem. Rev. 2007, 107, 2821.
18. Wan, Y.; Shi, Y. F.; Zhao, D. Y. Chem. Commun. 2007, 897.
19. Soler-Illia, G.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Colloid
Interface Sci. 2003, 8, 109.
20. Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
21. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J. Science 1995, 269, 1242.
22. Attard, G. S.; Glyde, J. C.; Goltner, C. G. Nature 1995, 378, 366.
23. Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J. R.; Wang,
J. H. Science 1997, 278, 838.
24. Goltner, C. G.; Henke, S.; Weissenberger, M. C.; Antonietti, M. Angew. Chem. Int.
Ed. 1998, 37, 613.
25. Hurd, A. J.; Steinberg, L. Granular Matter 2001, 3, 19.
26. Brinker, C. J. MRS Bull. 2004, 29, 631.
27. Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Adv. Mater. 1999, 11, 579.
28. Grosso, D.; Cagnol, F.; Soler-Illia, G.; Crepaldi, E. L.; Amenitsch, H.;
Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Adv. Funct. Mater. 2004, 14, 309.
29. Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P. Y.; Gier, T. E.;
Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D. Chem. Mater.
1994, 6, 1176.
30. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
31. Hamley, I. W. Angew. Chem. Int. Ed. 2003, 42, 1692.
32. Hamley, I. W. Nanotechnology 2003, 14, R39.
33. Li, J. G.; Lin, Y. D.; Kuo, S. W. Macromolecules 2011, 44, 9295.
34. Wei, J.; Deng, Y. H.; Zhang, J. Y.; Sun, Z. K.; Tu, B.; Zhao, D. Y. SOLID STATE
SCI 2011, 13, 784.
35. Ortel, E.; Reier, T.; Strasser, P.; Kraehnert, R. Chem. Mater. 2011, 23, 3201.
36. Huang, Y.; Cai, H. Q.; Yu, T.; Zhang, F. Q.; Zhang, F.; Meng, Y.; Gu, D.; Wan, Y.;
Sun, X. L.; Tu, B.; Zhao, D. Y. Angew. Chem. Int. Ed. 2007, 46, 1089.
37. Ho, R. M.; Wang, T. C.; Lin, C. C.; Yu, T. L. Macromolecules 2007, 40, 2814.
38. Tirumala, V. R.; Pai, R. A.; Agarwal, S.; Testa, J. J.; Bhatnagar, G.; Romang, A. H.;
Chandler, C.; Gorman, B. P.; Jones, R. L.; Lin, E. K.; Watkins, J. J. Chem. Mater.
2007, 19, 5868.
39. Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang, Y.;
Liu, C.; Wu, X. J.; Zhao, D. Y. J. Am. Chem. Soc. 2007, 129, 1690.
40. Choma, J.; Kloske, M.; Zawislak, A.; Jaroniec, M. Ochrona Srodowiska 2007, 29,
3.
41. Deng, Y.; Liu, C.; Gu, D.; Yu, T.; Tu, B.; Zhao, D. J. Mater. Chem. 2008, 18, 91.
42. Li., J.-G.; Kuo., S.-W. RSC Adv. 2011, 1, 1822.
43. Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y. U.; Terasaki, O.; Park, S. E.;
Stucky, G. D. J. Phys. Chem. B 2002, 106, 2552.
44. Kipkemboi, P.; Fogden, A.; Alfredsson, V.; Flodstrom, K. Langmuir 2001, 17,
5398.
45. Liu, C.; Deng, Y. H.; Liu, J.; Wu, H. H.; Zhao, D. Y. Microporous Mesoporous
Mater. 2008, 116, 633.
46. Sun, L.; Liu, Y. X.; Zhu, L.; Hsiao, B. S.; Avila-Orta, C. A. Polymer 2004, 45, 8181.
3-5 References
1. Fujiwara, T.; Miyamoto, M.; Kimura, Y.; Iwata, T.; Doi, Y. Macromolecules 2001, 34,
4043-4050.
2. Park, S. Y.; Han, B. R.; Na, K. M.; Han, D. K.; Kim, S. C. Macromolecules 2003, 36,
4115-4124.
3. Chang, J. H.; Kim, K. J.; Shin, Y. K. Bulletin of the Korean Chemical Society 2004, 25,
351-356.
4. Agrawal, S. K.; Sanabria-DeLong, N.; Jemian, P. R.; Tew, G. N.; Bhatia, S. R. Langmuir
2007, 23, 5039-5044.
5. Huang, S. Y.; Jiang, S. C.; An, L. J.; Chen, X. S. J. Polym. Sci., Part B: Polym. Phys. 2008,
46, 1400-1411.
6. Lee, J. W.; Jeong, E. D.; Cho, E. J.; Gardella, J. A.; Hicks, W.; Hard, R.; Bright, F. V. Appl.
Surf. Sci. 2008, 255, 2360-2364.
7. Crossland, E. J. W.; Cunha, P.; Scroggins, S.; Moratti, S.; Yurchenko, O.; Steiner, U.;
Hillmyer, M.; Ludwigs, S. Acs Nano 2010, 4, 962-966.
8. Huang, S. Y.; Li, H. F.; Jiang, S. C.; Chen, X. S.; An, L. J. Polym. Bull. 2011, 67, 885-902.
9. Meyer, F.; Raquez, J. M.; Verge, P.; de Arenaza, I. M.; Coto, B.; Van Der Voort, P.; Meaurio,
E.; Dervaux, B.; Sarasua, J. R.; Du Prez, F.; Dubois, P. Biomacromolecules 2011, 12,
4086-4094.
10. Nakafuku, C. Polym. J. 1996, 28, 568-575.
11. Nijenhuis, A. J.; Colstee, E.; Grijpma, D. W.; Pennings, A. J. Polymer 1996, 37, 5849-5857.
12. Lee, S. Y.; Chin, I. J.; Jung, J. S. Eur. Polym. J.1999, 35, 2147-2153.
13. Kim, K. S.; Chin, I. J.; Yoon, J. S.; Choi, H. J.; Lee, D. C.; Lee, K. H. J. Appl. Polym. Sci.
2001, 82, 3618-3626.
14. Maglio, G.; Migliozzi, A.; Palumbo, R. Polymer 2003, 44, 369-375.
15. Chang, J. H.; Shim, C. H.; Kim, K. J.; Bae, B. S. Journal of Industrial and Engineering Chemistry 2005, 11, 471-474.
16. Wahab, M. A.; He, C. B. Journal of Nanoscience and Nanotechnology 2011, 11, 8481-8487.
17. Yang, P. D.; Deng, T.; Zhao, D. Y.; Feng, P. Y.; Pine, D.; Chmelka, B. F.; Whitesides, G. M.;
Stucky, G. D. Science 1998, 282, 2244-2246.
18. Soler-illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev. 2002, 102, 4093-4138.
19. Smatt, J. H.; Schunk, S.; Linden, M. Chem. Mater.2003, 15, 2354-2361.
20. Kuang, D. B.; Brezesinski, T.; Smarsly, B. J. Am. Chem. Soc. 2004, 126, 10534-10535.
21. Yuan, Z. Y.; Su, B. L. J. Mater. Chem 2006, 16, 663-677.
4-5 References
1. Kuang, D. B.; Brezesinski, T.; Smarsly, B., J. Am. Chem. Soc. 2004, 126, 10534.
2. Sen, T.; Tiddy, G. J. T.; Casci, J. L.; Anderson, M. W., Chem. Mater. 2004, 16, 2044.
3. Oh, C. G.; Baek, Y. Y.; Ihm, S. K., Adv. Mater. 2005, 17, 270.
4. Xiao, F. S.; Wang, L. F.; Yin, C. Y.; Lin, K. F.; Di, Y.; Li, J. X.; Xu, R. R.; Su, D. S.; Schlogl,
R.; Yokoi, T.; Tatsumi, T., Angew. Chem. Int. Ed. 2006, 45, 3090.
5. Kim, M. I.; Kim, J.; Lee, J.; Jia, H.; Bin Na, H.; Youn, J. K.; Kwak, J. H.; Dohnalkova, A.;
Grate, J. W.; Wang, P.; Hyeon, T.; Park, H. G.; Chang, H. N., Biotechnol. Bioeng. 2007, 96, 210.
6. Sel, O.; Sallard, S.; Brezesinski, T.; Rathousky, J.; Dunphy, D. R.; Collord, A.; Smarsly, B. M.,
Adv. Funct. Mater. 2007, 17, 3241.
7. Yu, J. G.; Su, Y. R.; Cheng, B., Adv. Funct. Mater. 2007, 17, 1984.
8. Tao, S. Y.; Yin, J. X.; Li, G. T., J. Mater. Chem. 2008, 18, 4872.
9. Malfatti, L.; Bellino, M. G.; Innocenzi, P.; Soler-Illia, G., Chem. Mater. 2009, 21, 2763.
10. Gu, F. N.; Wei, F.; Yang, J. Y.; Lin, N.; Lin, W. G.; Wang, Y.; Zhu, J. H., Chem. Mater. 2010,
22, 2442.
11. Guillemot, F.; Brunet-Bruneau, A.; Bourgeat-Lami, E.; Gacoin, T.; Barthel, E.; Boilot, J. P.,
Chem. Mater. 2010, 22, 2822.
12. Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q., Angew. Chem. Int. Ed. 2010, 49, 4981.
13. Na, K.; Choi, M.; Park, W.; Sakamoto, Y.; Terasaki, O.; Ryoo, R., J. Am. Chem. Soc. 2010, 132,
4169.
14. Zhao, B.; Collinson, M. M., Chem. Mater. 2010, 22, 4312.
15. Innocenzi, P.; Malfatti, L.; Soler-Illia, G., Chem. Mater. 2011, 23, 2501.
16. Li, N.; Wang, J. G.; Zhou, H. J.; Sun, P. C.; Chen, T. H., Chem. Mater. 2011, 23, 4241.
17. Mandlmeier, B.; Szeifert, J. M.; Fattakhova-Rohlfing, D.; Amenitsch, H.; Bein, T., J. Am.
Chem. Soc. 2011, 133, 17274.
18. Moller, K.; Bein, T., Science 2011, 333, 297.
19. Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, B. F.; Ryoo, R.,
Science 2011, 333, 328.
20. Cho, K.; Na, K.; Kim, J.; Terasaki, O.; Ryoo, R., Chem. Mater. 2012, 24, 2733.
21. Li, J. G.; Lin, R. B.; Kuo, S. W., Macromol. Rapid Commun. 2012, 33, 678.
22. Wei, J.; Yue, Q.; Sun, Z. K.; Deng, Y. H.; Zhao, D. Y., Angew. Chem. Int. Ed. 2012, 51, 6149.
23. Zhang, X. H.; Li, Y. A.; Cao, C. B., J. Mater. Chem. 2012, 22, 13918.
24. Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S., Macromolecules 2003, 36, 2873.
25. Sugiyama, M.; Shefelbine, T. A.; Vigild, M. E.; Bates, F. S., J. Phys. Chem. B 2001, 105,
12448.
26. Matsushita, Y., Macromolecules 2007, 40, 771.
27. Hu, J. W.; Liu, G. J.; Nijkang, G., J. Am. Chem. Soc. 2008, 130, 3236.
28. Zhang, J. Y.; Deng, Y. H.; Wei, J.; Sun, Z. K.; Gu, D.; Bongard, H.; Liu, C.; Wu, H. H.; Tu, B.;
Schuth, F.; Zhao, D. Y., Chem. Mater. 2009, 21, 3996.
29. Li, J. G.; Kuo, S. W., RSC Adv. 2011, 1, 1822.
30. Li, J. G.; Chen, W. C.; Kuo, S. W., Microporous Mesoporous Mater. 2012, 163, 34.
5-5 References
1. C. E. Tattershall, N. P. Jerome and P. M. Budd, J. Mater. Chem., 2001, 11, 2979.
2. C. E. Tattershall, S. J. Aslam and P. M. Budd, J. Mater. Chem., 2002, 12, 2286.
3. J. G. Li and S. W. Kuo, RSC Adv., 2011, 1, 1822.
4. K. H.Dai, E. J. Kramer, Macromolecules, 1992, 25, 220.
5. S. Koizumi, H.Hasegawa, T. Hashimoto, Macromolecules, 1994, 27, 6532.
6. J. G. Li, C. Y. Chung, S. W. Kuo, J. Mater. Chem., 2012, 22, 18583.
7. C. F. Huang, S. W. Kuo, H. C. Lin, J. K. Chen, Y. K. Chen, H. Y. Xu and F. C. Chang, Polymer,
2004, 45, 5913.
8. J. Shen and S. X. Zheng, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 942.
6-5 References
1. Kosonen, H.; Ruokolainen, J.; Nyholm, P.; Ikkala, O. Polymer 2001, 42, 9481.
2. Kosonen, H.; Ruokolainen, J.; Nyholm, P.; Ikkala, O. Macromolecules 2001, 34,
3046.
3. Hillmyer, M. A.; Lipic, P. M.; Hajduk, D. A.; Almdal, K.; Bates, F. S. J. Am. Chem.
Soc. 1997, 119, 2749.
4. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. J. Am. Chem. Soc. 1998, 120, 8963.
5. Gong, W.; Zeng, K.; Wang, L.; Zheng, S. Polymer 2008, 49, 3318.
6. Yi, F.; Zheng, S.; Liu, T. J. Phys. Chem. B 2009, 113, 11831.
7. Zhuang, X.; Wan, Y.; Feng, C. M.; Shen, Y.; Zhao, D. Y. Chem. Mater. 2009, 21,
706.
8. Yu, C. Z.; Fan, J.; Tian, B. Z.; Zhao, D. Y. Chem. Mater. 2004, 16, 889.
9. Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang, Y.;
Liu, C.; Wu, X. J.; Zhao, D. Y. J. Am. Chem. Soc. 2007, 129, 1690.
10. Kosonen, H.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Nyholm, P.; Ikkala, O.
Macromol. Chem. Phys. 2002, 203, 388.
11. Zhang, F.; Meng, Y.; Gu, D.; Yan, Y.; Chen, Z.; Tu, B.; Zhao, D. Chem. Mater.
2006, 18, 5297.
12. Huang, Y.; Cai, H.; Yu, T.; Zhang, F.; Zhang, F.; Meng, Y.; Gu, D.; Wan, Y.; Sun, X.;
Tu, B.; Zhao, D. Angew. Chem. Int. Ed. 2007, 46, 1089.
13. Valkama, S.; Nykanen, A.; Kosonen, H.; Ramani, R.; Tuomisto, F.; Engelhardt, P.;
ten Brinke, G.; Ikkala, O.; Ruokolainen, J. Adv. Funct. Mater. 2007, 17, 183.
14. Hu, D.; Xu, Z.; Zeng, K.; Zheng, S. Macromolecules 2010, 43, 2960.
15. Kuo, S. W.; Lin, C. L.; Chang, F. C. Macromolecules 2002, 35, 278.
16. Patterson, D. Polym. Eng. Sci. 1982, 22, 64.
17. Zhang, H.; Bhagwagar, D. E.; Graf, J. F.; Paitner, P. C.; Coleman, M. M. Polymer
1994, 35, 5379.
18. Jo, W. H.; Kwon, Y. K.; Kwon, I. H.; Macromolecules 1991, 24, 4708.
19. Kuo, S. W.; Chan, S. C.; Wu, H. D.; Chang, F. C. Macromolecules 2005, 38, 4729.
20. Lin, H. C.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Macromol. Rapid Commun.
2006, 27, 537.
21. Huang, M. W.; Kuo, S. W.; Wu, H. D.; Chang, F. C.; Fang, S. Y. Polymer 2002, 43,
2479.
22. Huang, C. F.; Kuo, S. W.; Lin, F. J.; Huang, W. J.; Wang, C. F.; Chen, W. Y.; Chang,
F. C. Macromolecules 2006, 39, 300.
23. Chiu, C. Y.; Hsu, W. H.; Yen, Y. J.; Kuo, S. W.; Chang, F. C. Macromolecules, 2005,
38, 6640.
24. Kuo, S. W.; Huang, C. F.; Chang, F. C. J. Polym. Sci.: Polym. Phys. 2001, 39,
1348.
25. Kuo, S. W.; Chan, S. C.; Chang, F. C. J. Polym. Sci.: Polym. Phys. 2004, 42, 117.
26. Kuo, S. W.; Huang, W. J.; Huang, C. F.; Chan, S. C.; Chang, F. C. Macromolecules
2004, 37, 4164.
27. Kuo, S. W.; Liu, W. P.; Chang, F. C. Macromol. Chem. Phys. 2005, 206, 2307.
28. Huang, K. W.; Tsai, L. W.; Kuo, S. W. Polymer 2009, 50, 4876.
29. Moskala, E. J.; Varnell, D. F.; Coleman, M. M. Polymer 1985, 26. 228.
30. Coleman, M.M.; Graf, J.F.; Painter, P.C. Specific Interactions and the Miscibility of
Polymer Blends; Technomic Publishing, Lancaster, PA, 1991.
31. Coleman, M.M.; Painter, P.C. Miscible Polymer Blend-Background and Guide for
Calculations and Design; DEStech Publications, Inc., 2006.
32. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T.Macromolecules 2001, 34, 671.
33. Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001, 34, 6936.
34. Loo, Y. L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
35. Chen, H. L.; Lin, S. Y.; Huang, Y. Y.; Chiu, F. C.; Liou, W.; Lin, J. S.
Macromolecules 2002, 35, 9434.
36. Xu, J. T.; Turners, S. C.; Fairclough, J. P. A.; Mai, S. M.; Ryan, A. J.; Chaibundit,
C.; Booth, C. Macromolecules 2002, 35, 3614.
37. Hsu, J. Y.; Hsieh, I. F.; Nandan, B.; Chiu, F. C.; Chen, J. H.; Jeng, U. S.; Chen, H.
L. Macromolecules 2007, 40, 5014.
38. Pomposo, J.A.; Calahorra, E.; Eguiazabal, I.; Cortazar, M. Macromolecules 1993,
26, 2104.
39. Lin, C. L.; Chen, W. C.; Kuo, S. W.; Chang, F. C. Polymer 2006, 47, 3436.
40. W.D. Harkins and G. Jura. J. Am. Chem. Soc. 1944, 66, 1366.
41. K. S. W. Sing, D. H. Everett, R. A. W. Haul, R. A. Pierotti, J. Rouquerol and T.
Siemieniewska. Pure Appl. Chem. 1985, 57, 603.
42. Deng, Y.; Liu, C.; Gu, D.; Yu, T.; Tu, B.; Zhao, D. J. Mater. Chem. 2008, 18, 91.
43. A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schuth, Chem. Mater. 2007, 19, 485.
7-5 References
1. Li, J. G.; Lin, Y. D.; Kuo, S. W. Macromolecules 2011, 44, 9295.
2. Kuo, S. W.; Lin, C. L.; Chang, F. C. Macromolecules 2002, 35, 278.
3. Patterson, D. Polym. Eng. Sci. 1982, 22, 64.
4. Zhang, H.; Bhagwagar, D. E.; Graf, J. F.; Paitner, P. C.; Coleman, M. M. Polymer
1994, 35, 5379.
5. Jo, W. H.; Kwon, Y. K.; Kwon, I. H. Macromolecules 1991, 24, 4708.
6. Kuo, S. W.; Chan, S. C.; Wu, H. D.; Chang, F. C. Macromolecules 2005, 38, 4729.
7. Kuo, S. W. J. Polym. Res. 2008, 15, 459.
8. Wei, J.; Deng, Y.; Zhang, J.; Sun, Z.; Tu, B.; Zhao, D. Y. Solid State Sci. 2010, 13,
784.
9. Deng, Y. H.; Yu, T.; Wan, Y.; Shi, Y. F.; Meng, Y.; Gu, D.; Zhang, L. J.; Huang,
Y.; Liu, C.; Wu, X. J.; Zhao, D. Y. J. Am. Chem. Soc. 2007, 129, 1690.
10. Deng, Y.; Liu, J.; Liu, C.; Gu, D.; Sun, Z.; Wei, J.; Zhang, J.; Zhang, L.; Tu, B.;
Zhao, D. Chem. Mater. 2008, 20, 7281.
11. Huang, C. F.; Kuo, S. W.; Lin, H. C.; Chen, J. K.; Chen, Y. K.; Xu, H. Y.; Chang,
F. C. Polymer 2004, 45, 5913.
12. Shen, J.; Zheng, S. X. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 942.
13. Li, X.; Song, L.; Vogt, B. D. J. Phys. Chem. C 2008, 112, 53.
14. Kuo, S. W.; Chang, F. C. Prog. Polym. Sci. 2011, 36, 1649.
15. Qin, Y.; Ren, H.; Zhu, F.; Zhang, L.; Shang, C.; Wei, Z.; Luo, M. Eur. Polym. J.
2011, 47, 853.
16. Nischang, I.; Brggemann, O.; Teasdale, I. Angew. Chem. Int. Ed. 2011, 50, 4592.
17. Zhang, L.; Abbenhuis, H. C. L.; Yang, Q.; Wang, Y. M.; Magusin, P. C. M. M.;
Mezari, B.; van Santen, R. A.; Li, C. Angew. Chem. Int. Ed. 2007, 46, 5003.
18. Lin, H. C.; Kuo, S. W.; Huang, C. F.; Chang, F. C. Macromol. Rapid Commun.
2006, 27, 537.
19. Huang, M. W.; Kuo, S. W.; Wu, H. D.; Chang, F. C.; Fang, S. Y. Polymer 2002, 43,
2479.
20. Huang, C. F.; Kuo, S. W.; Lin, F. J.; Huang, W. J.; Wang, C. F.; Chen, W. Y.; Chang,
F. C. Macromolecules 2006, 39, 300.
21. Chiu, C. Y.; Hsu, W. H.; Yen, Y. J.; Kuo, S. W.; Chang, F. C. Macromolecules, 2005,
38, 6640.
22. Kuo, S. W.; Chan, S. C.; Chang, F. C. J. Polym. Sci.: Part B: Polym. Phys. 2004, 42,
117.
23. Kuo, S. W.; Huang, C. F.; Chang, F. C. J. Polym. Sci.: Part B: Polym. Phys. 2001,
39, 1348.
24. Kuo, S. W.; Huang, W. J.; Huang, C. F.; Chan, S. C.; Chang, F. C. Macromolecules
2004, 37, 4164.
25. Kuo, S. W.; Liu, W. P.; Chang, F. C. Macromol. Chem. Phys. 2005, 206, 2307.
26. Huang, K. W.; Tsai, L. W.; Kuo, S. W. Polymer 2009, 50, 4876.
27. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T.
Macromolecules 2001, 34, 671.
28. Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001, 34, 6936.
29. Loo, Y. L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
30. Chen, H. L.; Lin, S. Y.; Huang, Y. Y.; Chiu, F. C.; Liou, W.; Lin, J. S.
Macromolecules 2002, 35, 9434.
31. Xu, J. T.; Turners, S. C.; Fairclough, J. P. A.; Mai, S. M.; Ryan, A. J.; Chaibundit,
C.; Booth, C. Macromolecules 2002, 35, 3614.
8-5 References
1. Chen, W. C.; Kuo, S. W.; Jeng, U. S. and Chang, F. C. Macromolecules, 2008, 41,
1401.
2. Chen, W. C.; Kuo, S. W.; Lu C. H.; Jeng, U. S. and Chang, F. C. Macromolecules,
2009, 42, 3580.
3. Hameed, N.; and Guo, Q. P. Polymer, 2008, 49, 922.
4. Hameed, N.; Salim, N. V. and Guo, Q. P. J. Chem. Phys, 2009, 131, 214905.
5. Lin, I. H.; Kuo, S. W. and Chang, F. C. Polymer, 2009, 50, 5276.
6. Salim, N. V.; Hanley, T. and Guo, Q. P. Macromolecules, 2010, 43, 7695.
7. Lee, H. F.; Kuo, S. W.; Huang, C. F.; Lu, J. S.; Chan, S. C.; Wang C. F. and Chang,
F. C. Macromolecules, 2006, 39, 5458.
8. Chen, S. C.; Kuo, S. W.; Jeng U. S. and Chang, F. C. Macromolecules, 2010, 43,
1083.
9. Lu, C. H.; Kuo S. W. and Chang, F. C. Macromol. Rapid Commun, 2009, 30, 2121.
10. Chen, W. C.; Kuo, S. W. and Chang, F. C. Polymer, 2010, 51, 4176.
11. Kuo, S. W.; Lin, C. L. and Chang, F. C. Macromolecules, 2002, 35, 278.
12. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H. and Hashimoto,
T. Macromolecules, 2001, 34, 671.
13. (a) Sharma, S.; Nirkhe, C.;Pethkar, S. and Athawale, A. A. Sens. Actuators, B, 2002,
85, 131. (b) Hosono, K.; Matsubara, Murayama, I. N.; Shin, W. and Izu, N. Thin
Solid Films, 2005, 484, 396. (c) Prasad, G. K.; Radhakrishnan, T. P.; Kumar, D. S.
and Krishna, M. G. Sens. Actuators, B, 2005, 106, 626. (d) Lee, C. Y.; Hsieh, P. R.;
Lin, C. H.; Chou, P. C.; Fu L. M. and Chiang, C. M. Microsyst. Technol., 2006, 12,
893. (e) Xie, H. F.; Yang, Q. D.; Sun, X. X.; Yang, J. J. and Huang, Y. P. Sens.
Actuators, B, 2006, 113, 887. (f) Chen, T.; Liu, Q. J.; Zhou, Z. L. and Wang, Y. D. Nanotechnology, 2008, 19, 095506. (g) Kimura, M.; Sakai, R.; Sato, S.; Fukawa, T.;
Ikehara, T.; Maeda, R. and Mihara, T. Adv. Funct. Mater., 2012, 22, 469.
14. (a) Liu, C. Y.; Chen, C. F. and Leu, J. P. J. Electrochem. Soc., 2009, 156, J16. (b)
Zhu, Y. H.; Yuan, H.; Xu, J. Q.; Xu P. C. and Pan, Q. Y. Sens. Actuators, B, 2010,
144, 164. (c) Xu, P. C.; Yu, H. T. and Li, X. X. Anal. Chem., 2011, 83, 3448. (d)
Zheng, Q.; Zhu, Y. H.; Xu, J. Q.; Cheng, Z. X.; Li, H. M. and Li, X. X. J. Mater.
Chem., 2011, 22, 2263. (e) Yamada, T. H.; Zhou, S.; Uchida, H.; Tomita, M.; Ueno,
Y.; Honma, I.; Asai, K. and Katsube, T. Microporous Mesoporous Mater., 2002, 54,
269. (f) Yuliarto, B.; Zhou, H. S.; Yamada, T.; Honma, I.; Katsumura Y. and
Ichihara, M. Anal. Chem., 2004, 76, 6719. (g) Jia, L. C. and Cai, W. P. Adv. Funct.
Mater., 2010, 20, 3765. (h) Liu, H.; Du, X. W.; Xing, X. R.; Wang G. X. and Qiao,
S. Z. Chem. Commun., 2012, 48, 865.
15. (a) Chiu, C. Y.; Hsu, W. H.; Yen, Y. J.; Kuo, S. W. and Chang, F. C.
Macromolecules, 2005, 38, 6640. Lin, H. C.; Kuo, S. W.; Huang C. F. and Chang, F.
C. Macromol. Rapid Commun., 2006, 27, 537.
16. (a) Li, J. G. and Kuo, S. W. RSC Adv., 2011, 1, 1822. (b) Li, J. G.; Lin Y. D. and
Kuo, S. W. Macromolecules, 2011, 44, 9295.
17. Chen, H. L.; Wu, J. C.; Lin T. L.; and Lin, J. S. Macromolecules 2001, 34, 6936.
18. Kuo, S. W. and Chang, F. C. Macromol. Chem. Phys, 2001, 202, 3112.
19. Kuo, S. W.; Chan, S. C. and Chang, F. C. J. Polym. Sci.: Polym. Phys, 2004, 42,
117.
20. Coleman, M. M.; Graf, J. F. and Painter, P. C. Specific Interactions and the
Miscibility of Polymer Blends; Technomic Publishing, Lancaster, PA, 1991.
21. Coleman, M. M. and Painter, P. C. Miscible Polymer Blend-Background and Guide
for Calculations and Design; DEStech Publications, Inc, 2006. 22. Tiemann, M. Chem. Eur. J., 2007, 13, 8376.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code