Responsive image
博碩士論文 etd-0122117-173617 詳細資訊
Title page for etd-0122117-173617
論文名稱
Title
氫鍵作用力調控自組裝超分子奈米結構
Hydrogen Bonding Interaction Mediated Self-Assembly Supramolecular Nanostructures
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
200
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-19
繳交日期
Date of Submission
2017-02-22
關鍵字
Keywords
奈米複合材料、氫鍵作用力、高分子混摻、多面體聚矽氧烷、聚胜肽
Nanocomposites, Hydrogen Bonding, Polymer Blends, Polypeptides, POSS
統計
Statistics
本論文已被瀏覽 5682 次,被下載 315
The thesis/dissertation has been browsed 5682 times, has been downloaded 315 times.
中文摘要
本論文探討氫鍵作用力對高分子混摻,聚胜肽二級結構的自組裝,有機-無機奈米複合材以及中孔洞材料的影響,並加以應用在重金屬及染劑的吸附上:
1. 利用氫鍵作用力使兩種硬桿式聚胜肽,聚穀胺酸和聚酪胺酸,形成一相容系統,並提升二級結構中螺旋的構型。
2. 接著,利用帶有呲啶基的嵌段共聚物混摻聚酪胺酸調控其自組裝的變化,並進一步交聯酪胺酸提升其熱性質,其材料對汞具有高效率的吸附能力。
3. 本論文亦探討不同官能基的無機奈米粒子(多面體聚矽氧烷)與嵌段共聚物間的自組裝型態變化,將帶有苯環及苯酚的多面體聚矽氧烷和嵌段共聚物進行混摻。在苯環-多面體聚矽氧烷系統中,由於奈米粒子和聚苯環間弱作用力,使得奈米粒子在高濃度比例下產生聚集而導致宏觀相分離。另一方面,在苯酚-多面體聚矽氧烷系統中,苯酚會和呲啶基產生強氫鍵作用力,使其產生相轉,由層板轉向六角柱狀最後形成體心立方堆積。
4. 接著,藉由聚苯乙烯和聚4-乙烯呲啶、2-乙烯呲啶、聚甲基丙烯酸甲酯等嵌段共聚物調控和苯酚-多面體聚矽氧烷間氫鍵作用力的強弱,結果顯示,氫鍵作用力的大小在高分子混摻的自組裝中扮演著重要的角色。
5. 最後,結合生物性高分子(聚酪胺酸)以及無機矽前驅物(四乙氧基矽烷),以嵌段共聚物作為模板,利用溶劑萃取的方式,製作出生物相容性有機-無機複合材料,並應用於染劑的吸附上。
Abstract
This thesis discusses the influence of hydrogen bonding interaction in polymer blends, the self-assembly and secondary structure behaviors of polypeptides, organic-inorganic POSS nanocomposites, and mesoporous materials, which could be applied in heavy metal and dye adsorption, which was summarized as follows:
1. Two rigid-rod polypeptides including PMLG and PTyr formed a miscible blend system through intermolecular hydrogen bonding interaction and it is also stabilized the α-helix conformation.
2. In addition, blending PTyr with PS-b-P4VP could mediate the self-assembly structure and we found that the thermal properties could be significantly improved after thermal curing with HMTA, which shows better mercury absorption with high efficiency than other polymeric systems.
3. Different functional groups of inorganic POSS NPs blending with various types of diblock copolymers were also investigated in this study. When blending OS-POSS and OP-POSS with PS-b-P4VP, the self-assembly behaviors could mediated by different functional group of POSS NPs. Due to the weak intermolecular interaction in OS-POSS/PS-b-P4VP, it shows the macrophase separation at higher OS-POSS concentration, which shows the dry behavior, but it displays the order-order morphological transition from lamellae, to cylinder, and finally to BCC spherical structure with the increase of OP-POSS concentration in PS-b-P4VP/OP-POSS with wet-brush behavior.
4. Controlling different strength of hydrogen bonding interactions by choosing PS-based diblock copolymers including PS-b-P4VP, PS-b-P2VP, and PS-b-PMMA blending with OP-POSS. The results displayed that the hydrogen bonding interaction is the key role affecting the types of self-assembled structures.
5. Finally, combination of organic biopolymers (PTyr) and inorganic tertraethylorthosilicate (TEOS), using block copolymer of PEO-b-PCL as template to prepare a biocompatible organic-inorganic composite material by using solvent extraction and that could be applied in dye adsorption.
目次 Table of Contents
論文審定書………………………………………………………………………………i
論文公開授權書…………………………………………………………………………ii
致謝………………………………………………………………………………………iii
摘要.................................................................................................................................... iv
Abstract .............................................................................................................................. v
Contents ........................................................................................................................... vii
Scheme Captions .............................................................................................................. xi
Table Captions ................................................................................................................. xii
Figure Captions .............................................................................................................. xiii
Chapter 1: Introductions .................................................................................................. 1
1-1: Polypeptides ............................................................................................................. 1
1-2: Polyhedral Oligometric Silsesquioxanes (POSS) .................................................... 2
1-3: Polymer Blends and Hydrogen Bonding ................................................................. 3
1-4: References .............................................................................................................. 10
Chapter 2: Miscible Polypeptide Blends of Polytyrosine and Poly(γ-Methyl L-Glutamate)with Rigid-Rod Conformations .................................................................. 13
2-1: Background ............................................................................................................ 13
2-2: Experimental Section ............................................................................................. 15
2-2-1: Materials ......................................................................................................... 15
2-2-2: Synthesis of Poly(γ-methyl L-glutamate) (PMLG) and Polytyrosine (PTyr) .. 15
2-2-3: Blend Preparations .......................................................................................... 16
2-2-4: Characterization .............................................................................................. 16
viii
2-3: Results and Discussion .......................................................................................... 17
2-3-1: Thermal analyses ............................................................................................ 17
2-3-2: FTIR spectroscopic analyses .......................................................................... 18
2-3-3: WAXD analyses .............................................................................................. 20
2-3-4: Solid state NMR spectroscopic analyses ........................................................ 21
2-4: Conclusions ............................................................................................................ 24
2-5: References .............................................................................................................. 44
Chapter 3: Nanoarchitectures of Self-Assembled Poly(Styrene-b-4-Vinyl Pyridine) Diblock Copolymer Blended with Polypeptide for Effective Adsorption of Mercury(II) Ions ............................................................................................................. 47
3-1: Background ............................................................................................................ 47
3-2: Experimental Section ............................................................................................. 50
3-2-1: Materials ......................................................................................................... 50
3-2-2: PS-b-P4VP/PTyr blends and crosslinking reaction ........................................ 50
3-2-3: Mercury adsorption ......................................................................................... 50
3-2-4: Characterization .............................................................................................. 50
3-3: Results and Discussion .......................................................................................... 51
3-3-1: Miscibility properties of PS-b-P4VP/PTyr blend systems .............................. 52
3-3-2: Self-assembling behaviors of PS-b-P4VP/PTyr blend systems ...................... 54
3-3-3: Thermal properties and self-assembly behaviors after crosslinking ............... 55
3-3-4: Mercury adsorption ......................................................................................... 57
3-4: Conclusions ............................................................................................................ 58
3-5: References .............................................................................................................. 76
ix
Chapter 4: Functional Groups on POSS Nanoparticles Influence the Self-AssembledStructures of Diblock Copolymer Composites ........................................... 79
4-1: Background ............................................................................................................ 79
4-2: Experimental Section ............................................................................................. 82
4-2-1: Materials ......................................................................................................... 82
4-2-2: BCP/NP Blends ............................................................................................... 82
4-2-3: Characterization .............................................................................................. 82
4-3: Results and Discussion .......................................................................................... 84
4-3-1: Thermal analyses ............................................................................................ 84
4-3-2: FTIR analyses ................................................................................................. 87
4-3-3: Self-assembly behaviors ................................................................................. 88
4-4: Conclusions ............................................................................................................ 93
4-5: References ............................................................................................................ 108
Chapter 5: Hydrogen Bonding Strength of Diblock Copolymers Affects the Self-Assembled Structures with Octa-Functionalized Phenol POSS Nanoparticles ...... 112
5-1: Background .......................................................................................................... 112
5-2: Experimental Section ........................................................................................... 115
5-2-1: Materials ....................................................................................................... 115
5-2-2: BCP/NP Blends............................................................................................. 116
5-2-3: Characterization ............................................................................................ 116
5-3: Results and Discussion ........................................................................................ 117
5-3-1: Thermal analyses .......................................................................................... 117
5-3-2: Infrared spectroscopic analyses .................................................................... 120
x
5-3-3: SAXS and TEM analyses ............................................................................. 122
5-4: Conclusions .......................................................................................................... 131
5-5: References ............................................................................................................ 145
Chapter 6: Direct Assembly of Mesoporous Silica Functionalized with Polypeptides for Efficient Dye Adsorption ........................................................................................ 150
6-1: Background .......................................................................................................... 150
6-2: Experimental Section ........................................................................................... 152
6-2-1: Materials ....................................................................................................... 152
6-2-2: Synthesis of Mesoporous Silica .................................................................... 152
6-2-3: Characterization ............................................................................................ 153
6-3: Results and Discussion ........................................................................................ 154
6-3-1: Miscibility, specific interaction and self-assembly structure of PEO-b-PCL/PTyr ................................................................................................................. 154
6-3-2: Characterization of PEO-b-PCL/PTyr/Silica Blends after sol-gel process ... 157
6-3-3: Removal of the PEO-b-PCL diblock copolymer from PEO-b-PCL/PTyr/Silica by calcination or solvent extraction ......................................................................... 157
6-3-4: Methylene blue hydrate adsorption ............................................................... 159
6-4: Conclusions .......................................................................................................... 160
6-5: References ............................................................................................................ 172
Chapter 7: Conclusions ................................................................................................ 176
Resume ........................................................................................................................... 176
參考文獻 References
1-4: References
1. A. M. Beatty, Cryst. Eng. Comm., 2001, 51, 1-17.
2. H. A. Klok and S. Lecommandoux, Adv. Polym. Sci., 2006, 202, 75-111.
3. C. Zhou, B. Leng, J. Yao, J. Qian, X. Chen, P. Zhou, D. P. Knight and Z. Z. Shao, Biomacromolecules, 2006, 7, 2415-2419.
4. S. W. Kuo and H. T. Tsai, Polymer, 2010, 51, 5605-5704.
5. Y. C. Lin, P. I. Wang and S. W. Kuo, Soft Matt. , 2012, 8, 9676-9684.
6. P. Papadopoulous, G. Floudas, H. A. Kolk, I. Schnell and T. Pakula, Biomacromolecules, 2004, 5, 81-95.
7. S. E. Blondelle, B. Forood, R. A. Houghten and E. Perez-Paya, Biochemistry, 1997, 36, 8393-8342.
8. A. Gitsas, G. Floudas, M. Mondeshki, H. W. Spiess, T. Aliferis, H. Iatrou and N. Hadjichristidis, Macromolecules, 2008, 41, 8072-8078.
9. H. Xu, S. W. Kuo, J. S. Lee, F. C. Chang, Macromolecules, 2002, 35, 8788-8793.
10. G. Z. Li, L. C. Wang, H. L. Ni, C. U. Pittman, J. Inorg. Organometal Polym., 2001, 11, 123-154.
11. S. H. Phillips, T. S. Haddad, S. J. Tomczak, Current Opin. Solid State Mater Sci., 2004, 8, 21-29.
12. M. Joshi and B. S. Butola, J. Macromol. Sci. Polym. Rev., 2004, C44, 389-410.
13. J. E. Mark, Acc. Chem. Res., 2004, 37, 946-953.
14. K. Pielichowaski, J. Niuguna, B. Janowski and J. Pielichowski, Adv. Polym. Sci., 2006, 201, 225-296.
15. P. D. Lickiss and F. Rataboul, Adv. Organment. Chem., 2008, 57, 1-116.
16. S. W. Kuo, H. F. Lee, W. J. Huang, K. U. Jeong and F. C. Chang, Macromolecules, 2009, 42, 1619-1626.
17. P. T. Mather, H. G. Jeon, A. Romo-Uribe. T. S. Haddad and J. D. Lichtenhan, Macromolecules, 1999, 32, 1194-1203.
18. C. Zhang and R. M. Laine, J. Am. Chem. Soc., 2000, 122, 6979-6988.
19. L. Zheng, R. J. Farris and E. B. Coughlin, Macromolecules, 2001, 34, 8034-8039.
20. G. Z. Li, L. Wang, H. Toghiani, T. L. Daulton, K. Koyama and U. Pittman, Macromolecules, 2001, 34, 8686-8693.
21. K. M. Kim and Y. Chujo, J. Polym. Sci. Polym. Chem., 2001, 39, 4035-4043.
22. C. H. Lu, S. W. Kuo, C. F. Huang and F. C. Chang, J. Phys. Chem. C, 2009, 113, 3517-3524.
23. S. W. Kuo, Y. C. Wu, C. H. Lu and F. C. Chang, J. Polym. Sci. Polym. Phys., 2009, 17, 811-819.
24. K. M. Kim, D. K. Keum and Y. Chujo, Macromolecules, 2003, 36, 867-875.
25. A. Sellinger and R. M. Laine, Macromolecules, 1996, 29, 2327-2330.
26. H. Xu, S. W. Kuo, J. S. Lee and F. C. Chang, Polymer, 2002, 43, 5117-5124.
27. R. H. Baney, M. Itoh, A. Sakakibara and T. Suzuki, Chem. Rev., 1995, 95, 1409-1430.
28. Pan, C. Polyhedral oligomeric silsesquioxane (POSS). In: Mark J, editor. Physical properties of polymers handbook, vol. 6. New York: Springer, 2007, p. 577–84.
29. M. M. Coleman, G. J. Pehlert, X. Yang, J. B. Stallman and P. C. Painter, Polymer, 1996, 37, 4753-4761.
30. J. Wang, M. K. Cheung and Y. Mi, Polymer, 2001, 42, 2077-2083.
31. X. Li, S. H. Goh, Y. H. Lai and A. T. S. Wee, Polymer, 2000, 41, 6563-6571.
32. C. Sawateri and T. Kondo, Macromolecules, 1999, 32, 1949-1955.
33. J. K. Kim, J. Jang, D. H. Lee and D. Y. Ryu, Macromolecules, 2004, 37, 8599-8605.
34. T. Murata, Y. Morita, Y. Yakiyama, K. Fukui, H. Yarnochi, G. Saito and K. J. Nakasuji, J. Am. Chem. Soc., 2007, 129, 10837-10846.
35. J. D. Smith, C. D. Cappa, K. R. Wilson, B. M. Messer, R. C. Cohen and R. J. Saykally, Science, 2004, 306, 851-853.

2-5: References
1. J. Colmenero and A. Arba, Soft Matter, 2007, 3, 1474-1485.
2. S. H. Goh “Polymer Blends Handbook” L. A. Ultracki, and C. A. Wilkie Ed. Springer, Netherlands 2014, Chapter 21, 875-918.
3. E. M. Masnada, G. Julien and D. R. Long, J. Polym. Sci. Part B: Polym. Phys., 2014, 52, 419-443.
4. P. Shi, R. Schach, E. Munch, H. Montes and F. Lequeux, Macromolecules, 2013, 46, 3611-3620.
5. P. Xiavier, K. Sharma, K. K. Elayaraja, K. S. Vasu, A. K. Sood and S. Bose, RSC. Adv., 2014, 4, 12376-12387.
6. M. M. Coleman and P. C. Painter, Prog. Polym. Sci., 1995, 20, 1-59.
7. M. Jiang, L. Mei, M. Xiang and H. Zhou, Adv. Polym. Sci., 1999, 146, 121-196.
8. Y. He, B. Zhu and Y. Inoue, Prog. Polym. Sci., 2004, 29, 1021-1051.
9. S. W. Kuo, J. Polym. Res., 2008, 15, 459-486.
10. Y. Xu, W. Yu and C. Zhou, RSC Adv., 2014, 4, 55435-55444.
11. S. W. Kuo, C. F. Huang, P. H. Tung, W. J. Hunag, J. M. Hunag and F. C. Chang, Polymer, 2005, 46, 9348-9361.
12. K. Jin and J. M. Torkelson, Polymer, 2015, 65, 233-242.
13. S. W. Kuo, W. J. Huang, C. F. Huang, S. C. Chan and F. C. Chang, Macromolecules, 2004, 37, 4164-4173.
14. C. T. Pan, C. K. Yen, H. C. Wu, L. W. Lin, Y. S. Lu, J. C. C. Huang and S. W. Kuo, J. Mater. Chem. A, 2015, 3, 6835-6843.
15. P. Papadopoulous, G. Floudas, H. A. Klok, I. Schnell and T. Pakula, Biomacromolecules, 2004, 5, 81-91.
16. H. A. Klok and S. Lecommandoux, Adv. Mater., 2001, 13, 1217-1229.
17. L. Zhao, N. Li, K. Wang, C. Shi, L. Zhang and Y. Luan, Biomaterials, 2014, 35, 1284-1301.
18. B. Tian, X. Tao, T. Ren, Y. Weng, X. Lin, Y. Zhang and X. Tang, J. Mater. Chem., 2012, 22, 17404-17414.
19. S. W. Kuo, H. F. Lee, W. J. Huang, K. U. Jeong and F. C. Chang, Macromolecules, 2009, 42, 1619-1626.
20. Y. Cheng, C. He, J. Ding, C. Xiao, X. Zhuang and X. Chen, Biomaterials, 2013, 34, 10338-10347.
21. Y. C. Lin and S. W. Kuo, Polym. Chem., 2012, 3, 882-891.
22. M. P. Bhatt, P. Sista, J. Hao, N. Hundt, M. C. Biewer and M. C. Stefan, Langmuir, 2012, 28, 12762-12770.
23. F. Zhou, T. Ye, L. Shi, C. Xie, S. Chang, X. Fan and Z. Shen, Macromolecules, 2013, 46, 8253-8263.
24. S. W. Kuo and C. J. Chen, Macromolecules, 2011, 44, 7315-7326.
25. S. W. Kuo and C. J. Chen, Macromolecules, 2012, 45, 2442-2452.
26. P. C. Painter, W. L. Tang, J. F. Graf, B. Thomson and M. M. Coleman, Macromolecules, 1991, 24, 3929-3936.
27. Y. S. Lu, Y. C. Lin and S. W. Kuo, Macromolecules, 2012, 45, 6547-6556.
28. K. Y. Shih, Y. C. Lin, T. S. Hsiao, S. L. Deng, S. W. Kuo and J. L. Hong, Polymer Chem., 2014, 5, 5765-5774.
29. M. G. Mohamed, F. H. Lu, J. L. Hong and S. W. Kuo, Polymer Chem., 2015, 6, 6340-6350.
30. T. K. Kwei, J. Polym. Sci.: Polym. Lett. Ed., 1984, 22, 307-313.
31. S. W. Kuo, P. H. Tung and F. C. Chang, Macromolecules, 2006, 39, 9388-9395.
32. S. W. Kuo and F. C. Chang, Macromolecules, 2001, 34, 5224-5228.
33. S. W. Kuo, C. F. Huang and F. C. Chang, J. Polym. Sci. Part B: Polym. Phys., 2001, 39, 1348-1359.
34. S. W. Kuo, S. C. Chan and F. C. Chang, Macromolecules, 2003, 36, 6653-6661.
35. C. L. Lin, W. C. Chen, C. S. Liao, Y. C. Su, C. F. Huang, S. W. Kuo and F. C. Chang, Macromolecules, 2005, 38, 6435-6444.
36. A. Gitsas, G. Floudas, M. Mondeshki, H. W. Spiess, T. Aliferis, H. Iatrou and N. Hadjichristidis, Macromolecules, 2008, 41, 8072-8080.

3-5: References
1. P. B. Malafaya, G. A. Silva and R. L. Reis, Adv. Drug Delivery Rev., 2007, 59, 207-233.
2. T. J. Deming, Adv. Mater., 1997, 9, 299-311.
3. Y. F. Huang, S. C. Lu, Y. C. Huang and J. S. Jan, Small, 2014, 10, 1939-1944.
4. Y. Li, B. P. Bastakoti, M. Imura, S. M. Hwang, Z. Sun, J. H. Kin, S. X. Dou and Y. Yamauchi, Chem. Eur. J., 2014, 20, 6027-6032.
5. Y. Li, B. P. Bastakoti and Y. Yamauchi, Chem. Eur. J., 2015, 21, 8038-8042.
6. D. E. Meyer and A. Chilkoti, Biomacromolecules, 2002, 3, 357-367.
7. S. Zhang, Nature Biotechnology, 2003, 21, 1171-1178.
8. H. A. Klok and S. Lecommandoux, Adv. Mater., 2001, 13, 1217-1229.
9. P. Papadopoulous, G. Floudas, H. A. Klok, I. Schnell and T. Pakula, Biomacromalecules, 2004, 5, 81-91.
10. C. T. Pan, C. K. Yen, H. C. Wu, L. Lin, Y. S. Lu, J. C. C. Huang and S. W. Kuo, J. Mater. Chem. A, 2015, 3, 6835-6843.
11. S. W. Kuo and C. J. Chen, Macromolecules, 2011, 44, 7315-7326.
12. S. W. Kuo and C. J. Chen, Macromolecules, 2012, 45, 2442-2452.
13. Y. S. Lu, Y. C. Lin and S. W. Kuo, Macromolecules, 2012, 45, 6547-6556.
14. Y. S. Lu and S. W. Kuo, RSC Adv., 2015, 5, 88539-88547.
15. H. Liu and H. H. P. Fang, Biotechnol. Bioeng., 2002, 80, 806-811.
16. B. S. Inbaraj, J. S. Wang, J. F. Lu, F. Y. Siao and B. H. Chen, Bioresour. Technol., 2009, 100, 200-207.
17. J. Sun, C. Deng, X. Chen, H. Yu, H. Tian and J. Sun, X. Jing, Biomacromolecules,2007, 8, 1013-1017.
18. A. Rahikkala, S. Junnila, V. Vartiainen, J. Ruokolainen, O. Ikkala, E. Kauppinen and J. Raula, Biomacromolecules, 2014, 15, 2607-2615.
19. C. Liang, K. Hong, G. A. Guiochon, J. W. Mays and S. Dai, Angew. Chem. Int. Ed., 2004, 43, 5785-5789.
20. R. Saito, Macromolecules, 2001, 34, 4299-4301.
21. Y. S. Lu, C. Y. Yu, Y. C. Lin and S. W. Kuo, Soft Matter., 2016, 12, 2288-2300.
22. Y. S. Lu and S. W. Kuo, RSC Adv., 2014, 4, 34849-34859.
23. C. J. Clarke, A. Eisenberg, J. L. Scala, M. H. Rafailovich, J. Sokolov, Z. Li, S. Qu, D. Nguyen, S. A. Schwarz, Y. Strzhemechny and B. B. Sauer, Macromolecules, 1997, 30, 4184-4188.
24. W. v. Zoelen, G. A. v. Ekenstein, O. Ikkala and G. t. Brinke, Macromolecules, 2006, 39, 6574-6579.
25. G. O. R. A. v. Ekenstein, R. Meyboom, G. t. Brinke and O. Ikkala, Macromolecules, 2000, 33, 3752-3756.
26. R. S. Vieira and M. M. Beppu, Water Res., 2006, 40, 1726-1734.
27. J. M. Pacyna and J. Munch, Water, Air, Soil Pollut., 1991, 56, 51-61.
28. R. K. Zalups, Pharmacol. Rev., 2000, 52, 113-144.
29. H. Bessbousse, T. Rhlalou, J. F. Verchère and L. Lebrun, J. Membr. Sci., 2008, 325, 997-1006.
30. H. Bessbousse, T. Rhlalou, J. F. Verchère and L. Lebrun, J. Phys. Chem. B, 2009, 113, 8588-8598.
31. J. Wang, M. K. Cheung and Y. Mi, Polymer, 2001, 42, 3087-3093.
32. Y. E. Khoury, R. Hielscher, M. Voicescu, J. Gross and P. Hellwig, Vibr. Spectrosc., 2011, 55, 258-266.

4-5: References
1. L. Zhu, S. Z. D. Cheng, P. Huang, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lozt, B. S. Hsiao and F. Yeh, Adv. Mater., 2002, 14, 31-34.
2. J. Z. Zhang, Acc. Chem. Res., 1997, 30, 423-429.
3. A. C. Balazs, T. Emrick and T. P. Russell, Science, 2006, 314, 1107-1110.
4. J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas,R. G. H. Lammertink and G. J. Vancso, Adv. Mater., 2001, 13, 1174-1178.
5. T. F. Jaramillo, S. H. Baeck, B. R. Cuenya and E. W. McFarland, J. Am. Chem. Soc., 2003, 125, 7148-7149.
6. B. Sarkar and P. Alexandridis, Langmuir, 2012, 28, 15975-15986.
7. J. J. Chiu, B. J. Kim, E. J. Kramer and D. J. Pine, J. Am. Chem. Soc., 2005, 127, 5036-5037.
8. B. J. Kim, J. Bang, C. J. Hawker and E. J. Kramer, Macromolecules, 2006, 39, 4108-4114.
9. S. C. Park, B. J. Kim, C. J. Hawker, E. J. Kramer, J. Bang and J. S. Ha, Macromolecules, 2007, 40, 8119-8124.
10. J. J. Chiu, B. J. Kim, G. R. Yi, J. Bang, E. J. Kramer and D. J. Pine, Macromolecules, 2007, 40, 3361-3365.
11. B. J. Kim, G. H. Fredrickson and E. J. Kramer, Macromolecules, 2008, 41, 436-447.
12. T. Hashimoto, H. Tanaka and H. Hasegawa, Macromolecules, 1990, 23, 4378-4386.
13. T. Tanaka, H. Hasegawa and T. Hashimoto, Macromolecules, 1991, 24, 240-251.
14. H. F. Lee, S. W. Kuo, C. F. Huang, J. S. Lu, S. C. Chan, C. F. Wang and F. C. Chang, Macromolecules, 2006, 39, 5458-5465.
15. Y. Matsushita, Macromolecules, 2007, 40, 771-776.
16. N. Hameed and Q. Guo, Macromolecules, 2008, 41, 7596-7605.
17. K. Dobrosielska, S. Wakao, A. Takano and Y. Matsushita, Macromolecules, 2008, 41, 7695-7698.
18. K. Dobrosielska, S. Wakao, J. Suzuki, K. Noda, A. Takano and Y. Matsushita, Macromolecules, 2009, 42, 7098-7102.
19. W. C. Chen, S. W. Kuo, U. S. Jeng and F. C. Chang, Macromolecules, 2008, 41, 1401-1410.
20. W. C. Chen, S. W. Kuo, C. H. Lu and F. C. Chang, Macromolecules, 2009, 42, 3580-3590.
21. I. H. Lin, S. W. Kuo and F. C. Chang, Polymer, 2009, 50, 5276-5287.
22. S. C. Chen, S. W. Kuo, U. S. Jeng, C. J. Su and F. C. Chang, Macromolecules, 2010, 43, 1083-1092.
23. S. W. Kuo, Polymer. Int., 2009, 58, 455-464.
24. V. Prysmitsyn, S. H. Han, J. K. Kim and V. Ganesan, Macromolecules, 2012, 45, 8729-8742.
25. U. S. Jeng, Y. S. Sun, H. J. Lee, C. H. Hsu, K. S. Liang, S. W. Yeh and K. H. Wei, Macromolecules, 2004, 37, 4617-4622.
26. S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng and K. S. Liang, Macromolecules, 2003, 36, 7903-7907.
27. S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng and K. S. Liang, Macromolecules, 2005, 38, 6559-6565.
28. C. H. Lu, S. W. Kuo, W. T. Chang and F. C. Chang, Macromol. Rapid Commun., 2009, 30, 2121-2127.
29. S. W. Kuo and H. Y. Yang, Macromol. Chem. Phys., 2011, 212, 2249-2259.
30. S. G. Jang, E. J. Kramer and C. J. Hawker, J. Am. Chem. Soc., 2011, 133, 16986-16996.
31. Y. Lin, V. K. Daga, E. R. Anderson, S. P. Gido and J. J. Watkins, J. Am. Chem. Soc., 2011, 133, 6513-6516.
32. V. K. Daga, E. R. Anderson, S. P. Gido and J. J. Watkins, Macromolecules, 2011, 44, 6793-6799.
33. A. Noro, K. Higuchi, Y. Sageshima and Y. Matsushita, Macromolecules, 2012, 45, 8013-8020.
34. S. G. Jang, A. Khan, C. J. Hawker and E. J. Kramer, Macromolecules, 2012, 45, 1553-1561.
35. T. Lin, R. M. Ho and J. C. Ho, Macromolecules, 2009, 42, 742-751.
36. (a) Y. R. Wu, Y. C. Wu and S. W. Kuo, Macromol. Chem. Phys., 2013, 214, 1496-1503; (b) M. Ramanathan, S. M. Killbey, Q. Ji, J. P. Hill and K. Ariga, J. Mater. Chem., 2012, 22, 10389-10405; (c) W. Ding, J. Lin, K. Yao, J. W. Mays, M. Ramanathan and K. Hong, J. Mater. Chem. B, 2013, 1, 4212-4216.
37. Y. C. Wu and S. W. Kuo, J. Mater. Chem., 2012, 22, 2982-2991.
38. S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696.
39. H. Xu, S. W. Kuo, J. S. Lee and F. C. Chang, Macromolecules, 2002, 35, 8788-8793.
40. H. C. Lin, S. W. Kuo, C. F. Huang and F. C. Chang, Macromol. Rapid Commun., 2006, 27, 537-541.
41. B. B. Jiang, W. Tao, X. Lu, Y. Liu, H. B. Jin, Y. Pang, X. Y. Sun, D. Y Yan and Y. F. Zhou, Macromol. Rapid Commun., 2012, 33, 767-772.
42. H. Ghanbari, B. G. Cousins and A. M. Seifalian, Macromol. Rapid Commun., 2011, 32, 1032-1046.
43. C. C. Cheng, Y. C. Yen and F. C. Chang, Macromol. Rapid Commun., 2011, 32, 927-932.
44. (a) L. Cui, D. Y. Chen and L. Zhu, ACS Nano, 2008, 2, 921-927; (b) X. Zhao, W. Zhang, Y. Wu, H. Liu and X. Hao, New J. Chem., 2014, 38, 3242-3249.
45. Y. C. Sheen, C. H. Lu, C. F. Huang, S. W. Kuo and F. C. Chang, Polymer, 2008, 49, 4017-4024.
46. Y. J. Yen, S. W. Kuo, C. F. Huang, J. K. Chen and F. C. Chang, J. Phys. Chem. B, 2008, 112, 10821-10829.
47. K. W. Huang, L. W. Tsai and S. W. Kuo, Polymer, 2009, 50, 4876-4887.
48. S. W. Kuo, H. C. Lin, W. J. Huang, C. F. Huang and F. C. Chang, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 673-686.
49. C. H. Lu, J. H. Wang, F. C. Chang and S. W. Kuo, Macromol. Chem. Phys., 2010, 211, 1339-1347.
50. C. L. Lin, W. C. Chen, C. S. Liao, Y. C. Su, C. F. Huang, S. W. Kuo and F. C. Chang, Macromolecules, 2005, 38, 6435-6444.
51. T. Kwei, J. Polym. Sci., Polym. Lett. Ed., 1984, 22, 307-313.
52. S. W. Kuo, P. H. Tung and F. C. Chang, Macromolecules, 2006, 39, 9388-9395.
53. S. W. Kuo, C. L. Lin and F. C. Chang, Polymer, 2002, 43, 3943-3949.
54. M. M. Coleman, J. F. Graf and P. C. Painter, Specific Interactions and the Miscibility of Polymer Blends, Technomic Publishing, Lancaster, PA, 1991.

5-5: References
1. L. Zhang, H. Li and L. Wu, Soft Matt., 2014, 10, 6791-6797.
2. J. Rodriguez-Hernandez, F. Checot, Y. Gnanou and S. Lecommandoux, Prog. Polym. Sci., 2005, 30, 691-724.
3. C. Sanchez, K. J. Shea and S. Kitagawa, Chem. Soc. Rev., 2011, 40, 471-472.
4. J. Pyun and K. Matyjaszewski, Chem. Mater., 2001, 13, 3436–3448.
5. K. Zhang, L. Gao and Y. Chen, Macromolecules, 2007, 40, 5916–5922.
6. J. G. Son, A. F. Hannon, K. W. Gotrik, A. Alexander-Katz and C. A. Ross, Adv. Mater., 2011, 23, 634-639.
7. D. Borah, M. Ozmen, S. Rasappa, M. T. Shaw, J. D. Holmes and M. A. Morris, Langmuir, 2013, 29, 2809–2820.
8. A. Nunns, J. Gwyther and I. Manners, Polymer, 2013, 54, 1269-1284.
9. T. Hirai, M. Leolukman, S. Jin, R. Goseki, Y. Ishida, M. Kakimoto, T. Hayakawa, M. Ree and P. Gopalan, Macromolecules, 2009, 42, 8835-8843.
10. T. Hirai, M. Leolukman, C. C. Liu, E. Han, Y. J. Kim, Y. Ishida, T. Hayakawa, M. Kakimoto, P. F. Nealey and P. Gopalan, Adv. Mater., 2009, 21, 4334-4338.
11. Y. C. Wu and S. W. Kuo, J. Mater. Chem., 2012, 22, 2982-2991.
12. S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696.
13. X. Yu, K. Yue, I. F. Hsieh, Y. Li, X. H. Dong, Y. Xin, H. F. Wang, A. C. Shi, G. R. Newkome, R. M. Ho, E. Q. Chen, W. B. Zhang and S. Z. D. Cheng, Proc. Natl. Acad. Sci., 2013, 110, 10078-10083.
14. W. B. Zhang, X. Yu, C. L. Wang, H. J. Sun, I. F. Hsieh, Y. Li, X. H. Dong, K. Yue, R. V. Horn and S. Z. D. Cheng, Macromolecules, 2014, 47, 1221–1239.
15. S. G. Jang, E. J. Kramer and C. J. Hawker, J. Am. Chem. Soc., 2011, 133, 16986-16996.
16. Y. Lin, V. K. Daga, E. R. Anderson, S. P. Gido and J. J. Watkins, J. Am. Chem. Soc., 2011, 133, 6513-6516.
17. V. K. Daga, E. R. Anderson, S. P. Gido and J. J. Watkins, Macromolecules, 2011, 44, 6793-6799.
18. A. Noro, K. Higuchi, Y. Sageshima and Matsushita, Y. Macromolecules, 2012, 45, 8013-8020.
19. S. G. Jang, A. Khan, C. J. Hawker and E. J. Kramer, Macromolecules, 2012, 45, 1553-1561.
20. T. Lin, R. M. Ho and J. C. Ho, Macromolecules,2009, 42, 742-751.
21. V. Ramna, R. Sharma, T. A. Hatton and B. D. Olsen, ACS Macro Lett., 2013, 2, 655-659.
22. A. C. Balazs, T. Emrick and T. P. Russell, Science, 2006, 314, 1107-1110.
23. J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lammertink and G. J. Vancso, Adv. Mater., 2001, 13, 1174-1178.
24. T. F. Jaramillo, S. H. Baeck, B. R. Cuenya and E. W. McFarland, J. Am. Chem. Soc., 2003, 125, 7148-7149.
25. B. Sarkar and P. Alexandridis, Langmuir, 2012, 28, 15975-15986.
26. J. J. Chiu, B. J. Kim, E. J. Kramer and D. J. Pine, J. Am. Chem. Soc., 2005, 127, 5036-5037.
27. B. J. Kim, J. Bang, C. J. Hawker and E. J. Kramer, Macromolecules, 2006, 39, 4108-4114.
28. S. C. Park, B. J. Kim, C. J. Hawker, E. J. Kramer, J. Bang and J. S. Ha, Macromolecules, 2007, 40, 8119-8124.
29. J. J. Chiu, B. J. Kim, G. R. Yi, J. Bang, E. J. Kramer and D. J. Pine, Macromolecules, 2007, 40, 3361-3365.
30. B. J. Kim, G. H. Fredrickson and E. J. Kramer, Macromolecules, 2008, 41, 436-447.
31. T. Hashimoto, H. Tanaka and H. Hasegawa, Macromolecules, 1990, 23, 4378-4386.
32. T. Tanaka, H. Hasegawa and T. Hashimoto, Macromolecules, 1991, 24, 240-251.
33. U. S. Jeng, Y. S. Sun, H. J. Lee, C. H. Hsu, K. S. Liang, S. W. Yeh and K. H. Wei, Macromolecules,2004, 37, 4617-4622.
34. S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng and K. S. Liang, Macromolecules, 2003, 36, 7903-7907.
35. S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng and K. S. Liang, Macromolecules, 2005, 38, 6559-6565.
36. C. H. Lu, S. W. Kuo, W. T. Chang and F. C. Chang, Macromol. Rapid Commun., 2009, 30, 2121-2127.
37. S. W. Kuo and H. Y. Yang, Macromol. Chem. Phys., 2011, 212, 2249-2259.
38. Y. R. Wu, Y. C. Wu and S. W. Kuo, Macromol. Chem. Phys., 2013, 214, 1496-1503.
39. M. Ramanathan, S. M. Killbey, Q. Ji, J. P. Hill and K. Ariga, J. Mater. Chem., 2012, 22, 10389-10405.
40. W. Ding, J. Lin, K. Yao, J. W. Mays, M. Ramanathan and K. Hong, J. Mater. Chem. B, 2013, 1, 4212-4216.
41. Y. S. Lu and S. W. Kuo, RSC Adv., 2014, 4, 34849-34859.
42. S. C. Chen, S. W. Kuo, U. S. Jeng, C. J. Su and F. C. Chang, Macromolecules, 2010, 43, 1083-1092.
43. M. M. Coleman, J. F. Graf and P. C. Painter, “Specific Interactions and the Miscibility of Polymer Blends. Technomic Publishing”, Lancaster, PA, 1991.
44. C. L. Lin, W. C. Chen, C. S. Liao, Y. C. Su, C. F. Huang, S. W. Kuo and F. C. Chang, Macromolecules, 2005, 38, 6435-6444.
45. S. W. Kuo, P. H. Tung and F. C. Chang, Macromolecules, 2006, 39, 9388-9395.
46. Y. C. Sheen, C. H. Lu, C. F. Huang, S. W. Kuo and F. C. Chang, Polymer, 2008, 49, 4017-4024.
47. Y. J. Yen, S. W. Kuo, C. F. Huang, J. K. Chen and F. C. Chang, J. Phys. Chem. B, 2008, 112, 10821-10829.
48. K. W. Huang, L. W. Tsai and S. W. Kuo, Polymer, 2009, 50, 4876-4887.
49. S. W. Kuo, H. C. Lin, W. J. Huang, C. F. Huang and F. C. Chang, J. Polym. Sci.: Polym. Phys., 2006, 44, 673-686.
50. S. W. Kuo, C. L. Lin and F. C. Chang, Polymer, 2002, 43, 3943-3949.
51. C. Tsitsilianis and G. Staikos, Macromolecules, 1992, 25, 910-916.
52. T. K. Kwei, J. Polym. Sci., Polym. Lett. Ed., 1984, 22, 307-313.
53. S. W. Kuo, C. H. Wu and F. C. Chang, Macromolecules, 2004, 37, 192-200.
54. S. W. Kuo, J. Polym. Res., 2008, 15, 459-486.
55. C. F. Huang, S. W. Kuo, H. C. Lin, J. K. Chen, Y. K. Chen, H. Y. Xu and F. C. Chang, Polymer, 2004, 45, 5913-5921.
56. C. F. Huang, S. W. Kuo, F. J. Lin, W. J. Huang, C. F. Wang, W. Y. Chen and F. C. Chang, Macromolecules, 2006, 39, 300-308.
57. J. Holoubek, F. Lednicky and J. Baldrian, Eur. Polym. J., 2006, 42, 2236-2246.
58. A. V. G. Ruzette, A. M. Mayes, M. Pollard, T. P. Russell and B. Hammouda, Macromolecules, 2003, 36, 3351-3356.
59. J. Y. Wang, W. Chen, C. Roy, J. D. Sievert and T. P. Ressell, Macromolecules, 2008, 41, 963-969.
60. J. Y. Wang, W. Chen and T. P. Russell, Macromolecules, 2008, 41, 4904-4907.

6-5: References
1. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B.McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992,114, 10834-10843.
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
3. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji and J. P. Hill, Bull. Chem. Soc. Japan, 2012, 85, 1-32.
4. H. Yamada, C. Urata, Y. Aoyama, O. Osada, Y. Yamauchi and K. Kuroda, Chem. Mater., 2012, 24, 1462-1471.
5. Q. J. He and J. L. Shi, J. Mater. Chem., 2011, 21, 5845-5855.
6. A. Vinu, K. Z. Hossian, P. Srinivasu, M. Miyahara, S. Anandan, N. Gokulakrishnan, T. Mori, K. Ariga and V. V. Balasubramanian, J. Mater. Chem., 2007, 17, 1819-1825.
7. H. A. Meng, M. Liong, T. A. Xia, Z. X. Li, Z. X. Ji, J. I. Zink and A. E. Nel, ACS Nano, 2010, 4, 4539-4550.
8. N. Ehlert, M. Badar, A. Christel, S. J. Lohmeier, T. Luessenhop, M. Stieve, T. Lenarz, P. P. Mueller and P. Behrens, J. Mater. Chem., 2011, 21, 752-760.
9. Y. Li, B. P. Bastakoti, M. Imura, S. M. Hwang, Z. Sun, J. H. Kin, S. X. Dou and Y. Yamauchi, Chem. Eur. J., 2014, 20, 6027-6032.
10. B. P. Bastakoti, K. C. W. Wu, M. Inoue, S. Yusa, K. Nakashima and Y. Yamauchi, Chem. Eur. J., 2013, 19, 4812-4817.
11. M. Muthukumar, C. K. Ober and E. L. Thomas, Science, 1997, 277, 1225-1232.
12. S. I. Stupp and P. V. Braun, Science, 1997, 277, 1242-1248.
13. S. Andreas, J. M. Brian and C. S. Rick, Adv. Mater., 2000, 12, 1403-1419.
14. K. Moller and T. Bein, Stud. Surf. Sci. Catal., 1998, 117, 53-64.
15. R. Anwander, C. Palm, J. Stelzer, O. Groeger and G. Engelhardt, Stud. Surf. Sci. Catal., 1998, 117, 135-142.
16. T. Kimura, K. Kuroda, Y. Sugahara and K. Kuroda, J. Porous Mater., 1998, 5, 127-132.
17. H. Kosonen, S. Valkama, A. Nykanen, M. Toivanen, G. ten Brinke, J. Ruokolainen, and O. Ikkala, Adv. Mater., 2006, 18, 201-205.
18. S. H. Wibowo, A. Sulistio, E. H. H. Wong, A. Blencowe and G. G. Qiao, Chem. Commun., 2014, 50, 4971-4988.
19. H. A. Klok, J. F. Langenwalter and S. Lecommandoux, Macromolecules,2000, 33, 7819-7826.
20. P. C. Painter, W. L. Tang, J. F. Graf, B. Thomson and M. M. Coleman, Macromolecules, 1991, 24, 3929-3936.
21. S. W. Kuo, H. F. Lee, W. J. Huang, K. U. Jeong and F. C. Chang, Macromolecules, 2009, 42, 1619-1626.
22. H. A. Klok and S. Lecommandoux, Adv. Polym. Sci., 2006, 202, 75-111.
23. C. Zhou, B. Leng, J. Yao, J. Qian, X. Chen, P. Zhou, D. P. Knight and Z. Z. Shao, Biomacromolecules, 2006, 7, 2415-2419.
24. S. W. Kuo and H. T. Tsai, Polymer, 2010, 51, 5605-5704.
25. Y. C. Lin, P. I. Wang and S. W. Kuo, Soft Matt., 2012, 8, 9676-9684.
26. E. P. Enriquez, K. H. Gray, V. F. Guarisco, R. W. Linton, K. D. Mar and E. T. Samulski, J. Vac. Sci. Technol., A, 1992, 10, 2775-2782.
27. A. M. Hollman and D. Bhattacharyya, Langmuir, 2002, 18, 5946-5952.
28. A. J. Williams and V. K. Gupta, Thin Solid Films, 2003, 423, 228-234.
29. M. Niwa, T. Murata, M. Kitamastu, T. Matsumoto and N. Higashi, J. Mater. Chem.,1999, 9, 343-.344
30. F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless and V. V. Fokin, J. Am. Chem. Soc., 2004, 127, 210-216.
31. J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B. Sharpless and V. V. Fokin, Angew. Chem., Int. Ed., 2009, 48, 8018-8021.
32. Y. C. Lin and S. W. Kuo, Polym. Chem., 2012, 3, 162-171.
33. H. R. Kricheldorf, Angew. Chem., Int. Ed., 2006, 45, 5752-5784.
34. J. Huang and A. Heise, Chem. Soc. Rev., 2013, 42, 7373-7390.
35. M. Higuchi, K. Ushiba and M. Kawaguchi, J. Colloid Interface Sci., 2007, 308, 356-363.
36. Y. Wang and Y. C. Chang, Adv. Mater., 2003, 15, 290-293.
37. A. Tewodros, Y. I. Chiaki, J. M. Mark and A. O. Geoffrey, J. Mater. Chem., 2000, 10, 1751-1756.
38. S. R. Suprakas, B. Mosto, S. S. Ray and M. Bousmina, Prog. Mater. Sci., 2005, 50, 962-1080.
39. S. Mann, J. Chem. Soc., Dalton Trans., 1997, 7, 3953-3961.
40. J. H. Fendler, Chem. Mater., 1996, 8, 1616-1624.
41. J. Y. Lee, P. C. Painter and M. M. Coleman, Macromolecules, 1988, 21, 954-960.
42. L. M. Robeson, Polym. Eng. Sci., 1984, 24, 587-597.
43. C. T. Pan, C. K. Yen, H. C. Wu, Y. S. Lu, J. C. C. Huang and S. W. Kuo, J. Mater. Chem. A, 2015, 3, 6835-6843.
44. J. G. Li and S. W. Kuo, RSC Adv., 2011, 1, 1822-1833.
45. J. G. Li, Y. D. Lin and S. W. Kuo, Macromolecules, 2011, 44, 9295-9309.
46. J. G. Lin, Y. H. Chang, Y. S. Lin and S. W. Kuo, RSC Adv.,2012, 2, 12973-12982.
47. W. C. Chu, J. G. Lin and S. W. Kuo, RSC Adv., 2013, 3, 6485-6498.
48. J. G. Li, W. C. Chu, U. S. Jeng and S. W. Kuo, Macromol. Chem. Phys., 2013, 214, 2115-2123.
49. Y. S. Lu, Y. C. Lin and S. W. Kuo, Macromolecules, 2012, 45, 6547-6556.
50. T. Tatsuma, S. Tachibana, T. Miwa, D. A. Tryk and A. Fujishima, J. Phys. Chem. B, 1999, 103, 8033-8035.
51. I. Moriguchi, M.Honda, T. Ohkubo,Y. Mawatari and Y. Teraoka, Catalysis Today, 2004, 90, 297-303.
52. J. Lu, P. Zhang, A. Li, F. Su, T.Wang, Y. Liu and J. Gong, Chem. Commun., 2013, 49, 5817-5819.
53. S. W. Kuo, C. L. Lin and F. C. Chang, Macromolecules, 2002, 35, 278-285.
54. C. He, J. Sun, J. Ma, X. Chen and X. Jing, Biomacromolecules, 2006,7, 3482-3489.
55. W. C. Chen, S. W. Kuo, C. H. Lu and F. C. Chang, Macromolecules, 2009, 42, 3580-359.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code