Responsive image
博碩士論文 etd-0122118-104913 詳細資訊
Title page for etd-0122118-104913
論文名稱
Title
利用濕法冶金技術回收處理廢鋅錳碳電池中之鋅與錳
Recovery of Zn and Mn from spent zinc-manganese-carbon batteries using hydrometallurical processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2018-02-22
關鍵字
Keywords
濕法冶金、酸浸漬、有價金屬回收、廢鋅錳電池、同步電析
Hydrometallurgy, Spent zinc-manganese-carbon batteries, Recovery of valuable metals, Acid leaching, Simultaneous electrowinning
統計
Statistics
本論文已被瀏覽 5636 次,被下載 1
The thesis/dissertation has been browsed 5636 times, has been downloaded 1 times.
中文摘要
本研究係採用濕法冶金技術,希冀可回收處理廢鋅錳碳電池中之有價金屬。試驗所需樣品係採集自國內某廢電池回收廠之一次電池經過粉碎、篩分及焙燒等預處理後之含錳鋅黑色物質粉末,採集後先以行政院環境保護署公告方法「廢棄物及底泥中金屬檢測方法-酸消化法 (NIEA M353.02C」進行成分分析,瞭解樣品之元素組成,浸出液包含鋅 (73%)、錳 (23%)、鐵 (2%)、鉀 (1%) 及鈉 (1%)。接著,以硫酸、鹽酸及硝酸酸進行酸浸漬/酸溶試驗,評估比較此三種酸以不同固液比、濃度及反應溫度等對於鋅及錳之萃取效率,由試驗結果得知,於80 ºC、固液比 50 g/L條件下,利用3 M鹽酸進行酸浸漬40分鐘,可獲得鋅 (100%) 及錳 (94%) 之最佳萃取效率。酸浸漬/酸溶試驗後以電析/電沉積方式同時於陰極板及陽極板沉積回收高純度金屬鋅 (99.86%) 及二氧化錳,結果顯示,於pH 4 、60 ºC及電流密度 20 mA/cm2之條件下,鋅及錳之最佳回收率分別可達94 %及46 %,電流效率為40 %。綜合上述試驗成果結果顯示,此技術具放大規模驗證之潛力。
Abstract
A lab-scale study was conducted for evaluating the recovery of valuable metals from spent zinc-manganese-carbon batteries using hydrometallurgical processes including acid leaching and electrowinning. In this study samples of spent zinc-manganese-carbon batteries collected from a local spent batteries recycling plant were subjected to various pre-treatments including crushing, sieving, and roasting. The black powders thus obtained were first subjected to acid digestion using a standard method to determine the major elemental compositions as follows: Zn, 73%; Mn. 23%, K, 2%, and Na, 1%. Then, such Zn-Mn containing black substance was subjected to acid leaching using various acids (i.e., sulfuric acid, hydrochloric acid, and nitric acid) under different concentrations, solid-liquid ratios, and temperatures. The optimal conditions for acid leaching were determined as follows: 3 M HCl, solid /liquid ratio 50 g/L, and 80 °C. Under the optimal operating conditions, 100% of zinc and 94% of manganese were leached in 40 min. The next step aimed at the recovery of Zn and MnO2 from the acid leached solution by simultaneous electrowinning. Test results of electrowinning showed that high purity zinc (99.86%) and manganese dioxide appeared on the cathode and anode, respectively. The relevant optimal operating conditions were determined as follows: pH 4, 60 °C, current density of 20 mA/cm2, and 180 min. Under such optimal operating conditions, 94% Zn and 46% Mn accompanied by 40% currency efficiency were obtained. A further assessment also revealed the economic feasibility of the recycling scheme developed in this work. Based on the results obtained, it appears that the devised recycling scheme for the recovery of valuable metals from spent zinc-manganese-carbon batteries has a potential to be scaled up for commercial application.
目次 Table of Contents
學位論文審定書 i
謝誌 ii
摘 要 iii
Abstract iv
目 錄 vi
頁次 vi
圖 目 錄 x
表 目 錄 xiv
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 3
1.3 研究架構 4
第二章 文獻回顧 6
2.1 鋅錳碳電池基本特性 6
2.1.1 乾電池 (Dry cell) 種類與性質 6
2.2 廢乾電池回收管理情況 11
2.3 電池回收處理技術 14
2.3.1火法冶金 14
2.3.2 濕法冶金 15
第三章 材料與方法 21
3.1 實驗材料 21
3.1.1 廢鋅錳碳電池樣品來源 21
3.1.2 材料與試劑 21
3.2 實驗設備 23
3.3 實驗方法 24
3.3.1 廢乾電池樣品基本特性分析 24
3.3.2 酸浸漬/酸溶試驗 (Acid leaching test) 24
3.3.3 金屬電析精煉 26
第四章 結果與討論 30
4.1含錳鋅黑色樣品金屬含量分析 30
4.2 含錳鋅黑色物質酸溶/酸浸漬試驗 34
4.2.1 酸性介質對酸浸漬效果之影響 34
4.2.2 固液比 (S/L ratio) 對酸浸漬效果之影響 35
4.2.3 酸濃度對酸浸漬效果之影響 37
4.2.4 溫度對於酸浸漬效果之影響 38
4.2.5 反應時間對酸浸漬/酸溶之影響 39
4.3 沉澱移除含錳鋅黑色物質溶出液之Fe及Al 45
4.4 同步電析/電沉積精煉金屬Zn及Mn氧化物 47
4.4.1 不同陰/陽極板對於 Zn 及 Mn 之同步電析效果
之影響 – (不鏽鋼板陰極/鈦板陽極) 47
4.4.2 不同陰/陽極板對於 Zn 及 Mn 之同步電析效果
之影響 – (不鏽鋼板陰極/不溶性鈦板陽極) 55
4.4技術可行性評估 62
4.5經濟效益評估 64
4.6 綜合評估 66
第五章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 69
附錄 79
附錄一 廢棄物及底泥中金屬檢測方法-酸消化法
(NIEA M353.02C) 79
附錄二 乾電池汞、鎘、鉛含量檢測方法
(NIEA R315.02B) 80
附錄三 事業廢棄物水分測定方法-間接測定法
(NIEA R203.02C) 81
附錄四 廢棄物及底泥中金屬檢測方法-微波輔助酸消化法
(NIEA M301.00B) 82
碩士在學期間發表之學術論文 83
參考文獻 References
Abid, C. S., A. M. Affoune, A. Caballero, M. Cruz-Yusta, and J. Morales., “Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study,” Waste Management, Vol. 68, pp. 518-526 (2017).
Ahmed, F., “The battery-recycling loop a European perspective,” Journal of Power Sources, Vol. 59, pp. 107-111 (1996).
Al-Hinai, A. T., M. H. Al-Hinai, and J. Dutta, “Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media,” Materials Research Bulletin, Vol. 49, pp. 645 – 650 (2014).
Avraamides, J., G. Senanayake, and R. Cleeg, “Sulfur dioxide leaching of spent zinc–carbon battery scrap,” Journal of Power Sources, Vol. 159, pp. 1488-1493 (2006).
Biswas, R. K., A. K. Karmakar, S. L. Kumar, and M. N. Hossain, “Recovery of manganese and zinc from waste Zn–C cell powder: Characterization and leaching,” Waste Management, Vol. 46, pp. 529-535 (2015).
Biswas, R. K., A. K. Karmakar, and S. L. Kumar, “Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose,” Waste Management, Vol. 51, pp. 174-181 (2016).
Buzatu, T., G. Popescu, I. Birloaga, and S. Sa˘ceanu, “Study concerning the recovery of zinc and manganese from spent batteries by hydrometallurgical processes,” Waste Management, Vol. 33, pp. 699-705 (2013).
Buzatu, M., S. Sa˘ceanu, V. G. Ghica, G. lacob, and T. Buzatu, “Simultaneous recovery of Zn and MnO2 from used batteries, as raw materials, by electrolysis,” Waste Management, Vol. 33, pp. 1764-1769 (2013).
Buzatu, M., S. Sa˘ceanu, M. I. Petrescu., G. V. Ghica, and T. Buzatu, “Recovery of zinc and manganese from spent batteries by reductive leaching in acidic media,” Journal of Power Sources, Vol. 247, pp. 612-617 (2014).
Bernardes, A. M., D. C. R. Espinosa, and J. A. S. Tenório, “Recycling of batteries: A review of current processes and technologies,” Journal of Power Sources, Vol. 130, pp. 291-298 (2004).
Chen, X., Y. Chen, T. Zhou, D. Liu, H. Hu, and S. Fan, “Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries,” Waste Management, Vol. 38, pp. 349-356 (2015).
David, R. L., “Handbook of Chemistry and Physics,” 73rd ed., CRCPress, Inc (1993).
De Michelis, I., F. Ferella, E. Karakaya, F. Beolcheni and F. Veglio, “Recovery of zinc and manganese from alkaline and zinc-carbon batteries,” Journal of Power Sources, Vol. 172, pp. 975-983 (2007).
Deep, A., K. Kumar, P. Kumar, P. Kumar, A. L Sharma, B. Gupta, and L. M Bharadwaj, “Recovery of Pure ZnO Nanoparticles from Spent Zn-MnO2 Alkaline Batteries,” Environmental Science & Technology, Vol. 45, pp. 10551-10556 (2011).
De Oliveira, D. C., D. C. R. Espinosa, and J. A. S. Tenório, “Study of Hg removal and Zn recovery from spent dry batteries,” Proceeding of the TMS Annual Meeting 2001, Louisana, U.S.A., February 11-15 (2001).
De Souza, C.C.B.M. and J.A.S. Ten´orio, “Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing,” Journal of Power Sources, Vol. 136, pp. 191-196 (2004).
Espinosa, D. C. R., A. M. Bernardes, and J. A. S. Tenório, “An overview on the current processes for the recycling of batteries,” Journal of Power Sources, Vol. 135, pp. 311-319 (2004).
El-Nadi, Y.A., J.A.Daoud, and H.F.Aly, “Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries,” Journal of Hazardous Materials, Vol. 143, pp. 328-334 (2007).
Faris, N. , R. Ram, J. Tardio, S. Bhargava, S. McMaster, and M. I. Pownceby, ‘‘Application of ferrous pyrometallurgy to the beneficiation of rare earth bearing iron ores: A review,’’ Minerals Engineering, Volume. 110, pp. 20-30 (2017).
Fattahi, A., F. Rashchi, and E. Abkhoshk, “Reductive leaching of zinc, cobalt andmanganese from zinc plant residue,” Hydrometallurgy, Vol. 161, pp. 185-192 (2016).
Ferella, F., I. De Michelis, and F. Veglio, “Process for the recycling of alkaline and zinc-carbon spent batteries,” Journal of Power Sources, Vol. 183, pp. 805-811 (2008).
Freitas, R. M., T. A. G. Perilli, and A. C. Q. Ladeira, “Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate,” Journal of Chemistry, Vol. 287257, pp. 8 (2013).
Frohlich, S. and D. Sewing, “The Batenus Process for Recycling Mixes Battery Waste,” Journal of Power Sources. Vol. 57, pp. 27-30 (1995).
Li, Y. and G. Xi, “The dissolution mechanism of cathodic active materials of spent Zn–Mn batteries in HCl,” Journal of Hazardous Materials, Vol. 127, pp. 244-248 (2005).
Lan, S., X. Wang, Q. Xiang, H. Yin, W. Tan, G. Qiu, FanLiu, J. Zhang, and X. Feng, “Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr) oxides,” Geochimica et Cosmochimica Acta, Vol. 211, pp. 79-96 (2017).
Meshram, P., B. D. Pandey, and T. R. Mankhand, “Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects,” Waste Management, Vol. 45, pp. 306-313 (2015a).
Masamoto, S., T. Junichiro, G. Hisashi, and O. Masaharu, “Recovery of cadmium from small sealed Ni/Cd batteries,” Proceeding of the TMS Annual Meeting 1993, TMS, Warrendale, pp. 815-818 (1993).
Nakayama, A., Y. Sano, X. Bai, and K. Tado, “A boundary layer analysis for determination of the limiting current density in an electrodialysis desalination,” Desalination, Vol. 404, pp. 41-49 (2017).
Pagnanelli, F., E. Moscardini, P. Altimari, T. A. Atia, and L. Toro, “Cobalt products from real waste fractions of end of life lithium ion batteries,” Waste Management, Vol. 51, pp. 214-221 (2016).
Peng, C.H., B.S. Bai, and Y.F. Chen, “Study on the preparation of Mn-Zn soft magnetic ferrite powders from waste Zn-Mn dry batteries,” Waste Management, Vol. 28, pp. 326-332 (2008).
Sun L. and K. Qiu, “Organic oxalate as leachant and precipitant for the recovery of valuable metal from spent lithium-ion batteries,” Waste Management, Vol. 32, pp. 1575-1582 (2012).
Sayilgan, E., T. Kukre, G. Civelekoglua, F. Ferella, A. Akcilc, F. Veglio, and M. Kitis, ‘‘A review of technologies for the recovery of metals from spent alkaline and zinc - carbon batteries,’’ Hydrometallurgy, vol.97, pp. 158-166 (2009).
Sayilgan, E., T. Kukrer, F. Ferella, A. Akcil, F. Veglio, and M. Kitis, “Reductive leaching of manganese and zinc from spent alkaline and zinc – carbon batteries in acidic media,” Hydrometallurgy, Vol. 97, pp. 73-79 (2009).
Sayilgan, E., T. Kukrer, N. O. Yigit, G. Civelekoglu, and M. Kitis, “Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants,” Journal of Hazardous Materials, Vol. 173, pp. 137-143 (2010).
Sakultung, S., K. Pruksathorn, and M. Hunsom, “Simultaneous recovery of valuable metals from spent mobile phone battery by an acid leaching process,” Korean, Journal of Chemical Engineering, Vol. 24, pp. 272-277 (2007).
Senanayake, G., S. M. Shin, A. Senaputra, A. Winn, D. Pugaev, J. Avraamides, J. S. Sohn, and D. J. Kim, “Comparative leaching of spent zinc-manganese-carbon batteries using sulfur dioxidein ammoniacal and sulfuric acid solutions.,” Hydrometallurgy, Vol. 105, pp. 36-41 (2010).
Sethurajan, M., D. Huguenot, R. Jain, P. N. L. Lens, H. A. Horn, L. H. A. Figueiredo, and E. D. van Hullebusc, “Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues,” Journal of Hazardous Materials. Vol. 324, pp. 71-82 (2017).
Sadeghi, S. M., G. Vanpeteghem, I. F. F. Neto, and H. M. V. M. Soares, “Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches,” Waste Management. Vol. 60, pp. 696-705 (2017).

Sobianowska-Turek, A., W. Szczepaniak, P. Maciejewski, and M. Gawlik-Kobylinska, “Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid,” Journal of Power Sources, Vol. 325, pp. 220-228 (2016).
Tanong, K., L. Coudert, G. Mercier, and J. F. Blais, “Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process,” Journal of Environmental Management, Vol. 181, pp. 95 -107 (2016).
Wan, H., W. Huangfu, Z. Liu, C. Du, X. Li, D. Song, and BeiCao, “Influence of sea mud state on the anodic behavior of Al-Zn-In-Mg-Ti sacrificial anode,” Ocean Engineering, Vol. 136, pp. 11 -17 (2017).
Xi, G., Y. Li, and Y. M. Lin., “Study on preparation of manganese -zinc ferrites using spent Zn – Mn Batteries,” Materials Letters, Vol. 58, pp. 1164-1167 (2004).
Xue, J., H. Zhong, S. Wang, C. Li, J. Li, and F. Wu “Kinetics of reduction leaching of manganese dioxide ore with Phytolacca americana in sulfuric acid solution,” Journal of Saudi Chemical Society, Vol. 20, pp.437-442 (2016).
Xia, F., A. Pring, and J. Brugger, “Understanding the mechanism and kinetics of pentlandite oxidation in extractive pyrometallurgy of nickel,” Minerals Engineering, Vol. 27–28, pp.11-19 (2012).
Xue, Z., Z. Hua, N. Yao, and S. Chen, “Separation and recovery of nickel and cadmium from spent Cd-Ni storage batteries and their process wastes,” Separation Science and Technology, Vol. 27, pp. 213-221 (1992).
Yazicim, E. Y. and H. Deveci “Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4-CuSO4-NaCl solution,” Hydrometallurgy, Vol. 139, pp. 30-38 (2013).
Zhu, J., Y. Wu, J. Zuo, D. F. Khanc, and C. Jiang., “Effect of iridium(IV) ions on the electrowinning of zinc from acidic electrolytes.” Hydrometallurgy, Vol. 174, pp. 248-252 (2017).
Zeng, X., J. Li, and B. Shen, “Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid,” Journal of Hazardous Materials, Vol. 295, pp. 112-118 (2015).
Zhang, P., T. Yokoyama, O. Itabashi, T. M. Suzuki, and K. Inoue, “Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries,” Hydrometallurgy, Vol. 47, pp. 259-271 (1998).
孔祥平,“廢舊鋅錳乾電池中錳的回收條件”,青島農業大學化學與藥學所,(2009)
行政院環保署,< 廢棄物清理法 >,第0970021929號,2008年3月27日,頁3,《廢乾電池回收貯存清除處理方法及設施標準》,< http://esh.pccu.edu.tw/ezfiles/61/1061/img/1136/208337293.pdf >。
行政院環境保護署,「廢乾電池及廢照明光源回收處理體系調查分析暨執行成效評估專案工作計畫」,台北 (2017)。
行政院環境保護署網站 http://www.epa.gov.tw。
行政院環境保護署環保統計查詢網https://stat.epa.gov.tw/。
行政院環保署,“赴韓國勘查廢乾電池輸出境外處理情形與廢照明光源回收體系及技術”,台北 (2003)。
吳旻繁,“廢乾電池中含錳鋅物質資源回收之研究”,大葉大學環境工程學系研究所碩士論文,彰化縣 (2013)。
吳澤欣,“資源回收管理制度評析”,國立台北科技大學環境工程與管理研究所碩士論文,台北市 (2004)。
李坤陸,“我國與世界主要國家資源回收制度之比較研究”,國立台北科技大學環境工程與管理研究所碩士論文,台北市 (2002)。
李勛創、鄔霞、張志強及劉永梅,「溶劑萃取回收廢棄鋰電池中鈷金屬的研究」,廣東化工,第39卷,第2期,第12-13頁 (2012)。
林民禾,「以電沉積法由廢鋰離子電池中回收有價金屬」,碩士學位論文,國立勤益科技大學化工與材料工程系,台中市 (2013)。
林育全,“從鋰離子二次電池中回收有價金屬之鋅方法”,大同大學化學工程學系研究所碩士論文,台北市 (2004)。
張弘昌,“高溫熔融處理廢鋅錳乾電池之研究”,國立屏東科技大學環境工程與科學系所碩士論文,屏東縣 (2007)。
曾俞鈞,“廢電池不同前處理程序還原六價鉻之可行性探討”,淡江大學水資源及環境工程學系研究所碩士論文,新北市 (2009)。
曾華梁、吳仲達、陳鈞武、呂佩仁及秦月文,「電鍍工藝手冊」第2版,機械工業出版社,北京 (1997)。
黃俊誠、陳藹然,2009 /7 /4,“鋅碳電池 (Zinc-carbon Battery) 與鹼性電池 (Alkaline Battery)”,科學Online高瞻自然科學教學資源平台, < http://highscope.ch.ntu.edu.tw/wordpress/?p=5102> 。
楊秀玲,“台灣地區廢乾電池管理評析與績效提升之研究”,國立台北科技大學環境工程與管理研究所碩士論文,台北市 (2011)。
蔡宗育,“廢電池之金屬回收研究”,國立雲林科技大學環境與安全工程系碩士論文,雲林縣 (2009)。
吳威、姜林、陳家軍及彭勝,「液固比對土壤洗滌去除多環芳烴效果的影響」,環境科學,第3期,第965-970頁 (2012)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code