Responsive image
博碩士論文 etd-0122118-184503 詳細資訊
Title page for etd-0122118-184503
論文名稱
Title
前鎮河底泥中重金屬流佈調查及利用還原劑與環境友善性之螯合劑結合電動力整治受重金屬污染底泥之研究
Occurrence of Heavy Metals in Sediment of Cianjhen River and Its Remediation by Reducing Agent and Eco-friendly Chelating Agent Coupled with Electrokinetic Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
212
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2018-02-22
關鍵字
Keywords
還原劑、重金屬、河川底泥、電動力法、環境友善性之螯合劑、連續萃取
River sediment, Electrokinetic remediation, Tessier sequential extraction, Eco-friendly chelating agent, Reducing agent, Heavy metals
統計
Statistics
本論文已被瀏覽 5653 次,被下載 5
The thesis/dissertation has been browsed 5653 times, has been downloaded 5 times.
中文摘要
本研究旨在調查高雄市轄區前鎮河 (含鳳山溪) 底泥中的6種重金屬之殘留濃度,並利用還原劑及螯合劑結合電動力整治受重金屬污染底泥之整治技術。於前鎮河 (含鳳山溪) 底泥中重金屬之殘留濃度調查工作方面,針對選定之7個採樣點位進行6梯次底泥樣品採集,綜合調查結果顯示,前鎮河重金屬平均濃度範圍為:0.8-368.0 mg/kg,其中,Cd檢出濃度皆為ND,在7個採樣點位中,以前鎮河流域之前鎮橋下之底泥平均濃度最高 (Cr: 220.1 mg/kg、Cu: 160.8 mg/kg、Ni: 87.5 mg/kg、Pb: 58.7 mg/kg及Zn: 368.0 mg/kg) ,且Cu及Ni平均濃度高於我國「底泥品質指標之分類管理及用途辦法」上限值,另外,Cr、Pb及Zn平均濃度亦高於下限值,藉由富集因子探討結果可知,前鎮河 (含鳳山溪) 之重金屬有富集現象,明顯遭受人為污染。另外,本研究利用實驗室規模之整治技術整治受到重金屬污染之河川底泥,試驗期間將焦亞硫酸鈉 (還原劑)、檸檬酸及GLDA (環境友善之螯合劑)二階段添加於陰、陽極槽液,並施加定電壓 (1或2 V/cm) 進行為期6及12日之6組電動力試驗。試驗結果顯示:(1) 電動力空白試驗結果發現,單純施加電場 (1 V/cm) 有助於底泥中重金屬之去除 (去除率為15.7-26.6%);(2) 於整治試驗反應時間第3日將槽液置換為第二階段之藥劑 (GLDA) 可使累積電滲透流量明顯提升,亦可有效延長電動力反應效率 (Cr、Cu、Ni、Pb及Zn之去除率分別為28.8%、19.4%、22.1%、25.8%及28.3%);(3) 提高電場強度 (2 V/cm),有效提升電滲透流及離子遷移之作用 (Cr、Cu、Ni、Pb及Zn之去除率分別可提升至65.8%、9.4%、23.6%、30.9%及15.8%);(4) 利用前鎮橋河川水為基質,提高試驗底泥中重金屬Cr、Cu、Ni、Pb及Zn之去除效果且符合現地整治之需求,其去除率分別為可達71.0%、19.7%、23.8%、24.1%及30.8%;(5) 根據Tessier連續萃取試驗顯示,單純施加電場 (1 V/cm)有助於改變底泥顆粒與金屬間的鍵結,使較穩定之鍵結形態轉變成相對容易移動之型態,第一階段之藥劑 (檸檬酸搭配焦亞硫酸鈉) 可有效將鐵錳氧化態溶解釋出,藉由提高電場 (2 V/cm) 及以河川水為基質明顯提升電動力之傳輸效果,整體鍵結型態較不穩定之金屬 (可交換態及碳酸鹽態) 皆明顯減少;(6) 與其他環境基質為底泥或海洋沉積物之相關文獻比較,本研究所需時間較短即可達到相當之去除效果,具技術可行性及環境友善性。
Abstract
The objectives of this study are two-fold: (1) to investigate the residual concentrations of heavy metals in sediment samples collected from the Cianjhen River; and (2) to establish a remediation technology by a reducing agent and eco-friendly chelating agent coupled with electrokinetic process for the removal of heavy metals in sediment of the Cianjhen River. To meet the first objective, six batches of sediment sampling were conducted at seven sampling sites along the Cianjhen River. The sediment samples were analyzed for heavy metals. The average concentration ranges of target heavy metals in sediment of the Cianjhen River were 0.8-368.0 mg/kg except that Cd was not detected. Among seven sampling sites, the highest average concentration was found to be at the sampling site under Cianjhen Bridge (i.e., Cr: 220.1 mg/kg; Cu: 160.8 mg/kg; Ni: 87.5 mg/kg; Pb: 58.7 mg/kg; and Zn: 368.0 mg/kg). As compared with the “Regulation for Systematic Management of Quality Indices of Sediments and Their Use Restrictions” promulgated by Taiwan EPA, the average concentrations of Cu and Ni exceeded the respective regulatory upper levels. Results of an enrichment factor study for the test sediment revealed that an enrichment of heavy metals resulting from anthropogenic pollution. To meet the second objective, six tests with a remedition time of 6 and 12 days were carried out using sodium metabisulfite (a reducing agent), citric acid and GLDA (N, N-bis(carboxymethyl) glutamic acid tetrasodium; an eco-friendly chelating agent) were used in the anode and cathode reservoirs, respectively by two stages under an electric potential gradient of 1 and 2 V/cm. Test results for the removal of heavy metals in the sediment samples collected at the sampling site under the Cianjhen Bridge of the Cianjhen River are given as follows: (1) Application of an electric potential gradient of 1 V/cm would yield 15.7-26.6% removal of heavy metals in the blank test; (2) The first stage injection of citric acid and sodium metabisulfite on Day 3 instead of GLDA enhanced the cumulative EO flow quantity and good removal efficiency of heavy metals (Cr, Cu, Ni, Pb and Zn are 28.8%, 19.4%, 22.1%, 25.8% and 28.3%, respectively); (3) An increase of electric potential gradient from 1 V/cm to 2 V/cm would enhance electroosmotic flow and electromigration (The removal efficiency of Cr, Cu, Ni, Pb and Zn are 65.8%, 9.4%, 23.6%, 30.9% and 15.8%, respectively); (4) Employment of Cianjhen River water as the anolyte and catholyte base would not only yield better removal of heavy metals but also fulfill the goal of in situ remediation technology (The removal efficiency of Cr, Cu, Ni, Pb and Zn are 71.0%, 19.7%, 23.8%, 24.1% and 30.8%, respectively); (5) Tessier sequential extraction results revealed that the binding forms of heavy metals with sediment changed from more difficult (Bound to Fe/Mn oxides, Bound to organics matter and Residual) to easier (Exchangeable and Bound to carbonates) extraction types after electrokinetic remediation. Besides, the first stage injection of citric acid and sodium metabisulfite released heavy metals bound to Fe-Mn oxides. Moreover, exchangeable metals and heavy metals bound to carbonates were effectively removed when a higher electric potential gradient (2 V/cm) and Cianjhen River water was used as the base of electrolyte; (6) As compared with river and marine sediment treatment results for heavy metals reported by others, the application of a reducing agent and eco-friendly chelating agent coupled with electrokinetic process used inn this study could yield a higher treatment efficiency in a shorter time and more environmentally friendly way.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xii
表目錄 xvii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3研究項目及架構 3
第二章 文獻回顧 6
2.1 重金屬 6
2.1.1 基本性質 6
2.1.2 來源及其宿命 7
2.1.3鍵結型態及移動性 10
2.1.4 污染程度判別 14
2.1.5 國內外重金屬濃度調查結果 17
2.1.6 河川底泥影響評估 21
2.2 底泥中重金屬之整治技術 23
2.2.1 電動力法 25
2.2.2 螯合劑 32
2.2.3 還原劑 39
第三章 材料與方法 41
3.1 化學藥品 41
3.1.1 重金屬之標準品 41
3.1.2其他相關藥品及材料 41
3.2. 實驗設備 44
3.3 前鎮河 (含鳳山溪) 底泥調查 46
3.3.1樣品採樣 46
3.3.2 樣品總量分析 48
3.4 電動力輔助還原劑及環境友善性之螯合劑整治技術 48
3.4.1 整治試驗用河川底泥來源及基本性質 48
3.4.2 GLDA最終劑量篩選並調整pH與EDTA比較 51
3.4.3 焦亞硫酸鈉搭配檸檬酸最終劑量篩選 52
3.4.4 二階段萃取試驗 53
3.4.5 電動力輔助還原劑及螯合劑整治底泥中重金屬 54
3.5 組合式整治技術評估 58
第四章 結果與討論 59
4.1整治試驗用河川底泥基本性質分析結果 59
4.2底泥樣品初始重金屬鍵結型態及晶相變化分析 60
4.3 前鎮河 (含鳳山溪) 底泥調查 63
4.3.1 空間分布調查 63
4.3.2 時間分布調查 67
4.3.3 重金屬之富集因子分布 68
4.3.4 本調查區6種重金屬殘留濃度與其他地區底泥 之比較 70
4.3.5 底泥影響評估 74
4.4 螯合劑及還原劑最終劑量篩選之萃取試驗 76
4.4.1 GLDA最終劑量篩選並與EDTA比較 76
4.4.2 GLDA與EDTA不同pH環境下之萃取效果 79
4.4.3 螯合劑萃取試驗之金屬鍵結型態分析 82
4.4.4檸檬酸結合焦亞硫酸鈉最終劑量篩選 85
4.4.5 二階段萃取試驗 89
4.4.6 二階段萃取試驗之金屬鍵結型態及晶相變化分析 91
4.5電動力輔助還原劑及環境友善性之螯合劑整治技術 94
4.5.1 電動力試驗 94
4.6 技術可行性評估 140
第五章 結論與建議 142
5.1 結論 142
5.1.1 污染調查方面 142
5.1.2 電動力整治技術試驗方面 143
5.2 建議 144
5.2.1 污染調查方面 144
5.2.2 電動力整治技術試驗方面 144
參考文獻 145
附錄 179
碩士在學期間發表之學術論文 191
參考文獻 References
Amin, B., A. Ismail, A. Arshed, C. K. Yap, and M. S. Kamarudin, “Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia,” Environmental Monitoring and Assessment, Vol. 148, pp. 291-305 (2009).
Agius, S. J. and L. Porebski, “Towards the assessment and management of contaminated dredged materials,” Integrated Environmental Assessment and Management, Vol. 4, pp. 255–260 (2008).
Ahmed O. A., Z. Derrichea, M. Kamechea, A. Bahmanib, H. Soulic, P. Dubujetc, and J. M. Fleureaud, “Electro-remediation of lead contaminated kaolinite: an electro-kinetic treatment,” Chemical Engineering and Processing: Process Intensification, Vol. 100, pp. 37-48 (2016).
Akele, M. L., P. Kelderman, C. W. Koning, and K. Irvine, “Trace metal distributions in the sediments of the Little Akaki River, Addis Ababa, Ethiopia,” Environmental Monitoring and Assessment, Vol. 188, pp. 389-389 (2016)
Akoto, O., F. Bismark Eshun, G. Darko, and E. Adei, “Concentrations and health risk assessments of heavy metals in fish from the fosu lagoon,” International Journal of Environmental Research, Vol. 8, pp. 403-410 (2014).
Alves, R. I. S., C. F. Sampaio, M. Nadal, M. Schuhmacher, J. L. Domingo, and S. I. Segura-Muñoz, “Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks,” Environmental Research, Vol. 133, pp. 149-155 (2014).
Atgın, R. S., O. El-Agha, A. Zararsız, A. Kocataş, H. Parlak, and G. Tuncel, “Investigation of the sediment pollution in Izmir Bay: trace elements,” Spectrochimica Acta Part B 55, Vol. 55, pp. 1151-1164 (2000).
Ammami, M. T., F. Portet-Koltalo, A. Benamar, C. Duclairoir-Poc, H. Wang, and F. Le Derf, “Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments,” Chemosphere, Vol. 125, pp. 1-8 (2015).
Adriaens, P., M. Y. Li, and A. M. Michalak, “Scaling methods of sediment bioremediation processes and applications,” Engineering in Life Sciences, Vol. 6, pp. 217-227 (2006).
Abumaizar, R. J. and E. H. Smith, “Heavy metal contaminants removal by soil washing,” Journal of Hazardous Materials, Vol. 70, pp. 71-86 (1999).
Al-Hamdan, A. Z. and K. R. Reddy, “Transient behavior of heavy metals in soils during electrokinetic remediation,” Chemosphere, Vol. 71, pp. 860-871 (2008).
Annamalai, S., S. Selvaraj, H. Selvaraj, M. Santhanam, and M. Pazos, “Electrokinetic remediation: challenging and optimization of electrolyte for sulfate removal in textile effluent-contaminated farming soil,” The Royal Society of Chemistry Advances, Vol. 5, pp. 81052-81058 (2015)
Alshawabkeh, A. N., A. T. Yeung, and M. R. Bricka, “Practical aspects of in-Situ electrokinetic extraction,” Journal of Environmental Engineering, Vol. 125, pp. 27-35 (1999).
Acevedo-Figueroa, D., B. D. Jime´nez, and C. J. Rodrı´guez-Sierra, “Trace metals in sediments of two estuarine lagoons from Puerto Rico,” Environmental Pollution, Vol. 141, pp. 336-342 (2006).
ASTM Standard D2974, “Standard test methods for moisture, ash, and organic matter of peat and other organic soils”, Annual Book of ASTM Standards, 04.08, ASTM International, West Conshohocken, PA, (USA), (2007).
Begum, Z. A., I. M. M. Rahman, H. Sawai, S. Mizutani, T. Maki, and H. Hasegawa, “Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated european reference soils,” Water, Air, & Soil Pollution, Vol. 224, pp. 1381-1402 (2013).
Begum, Z. A., I. M. M. Rahman, Y. Tate, H. Sawa, T. Maki, and H. Hasegawa, “Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants,” Chemosphere, Vol. 87, pp. 1161-1170 (2012).
Birch, G. F., A. Melwani, J. H. Lee, and C. Apostolatos, “The discrepancy in concentration of metals (Cu, Pb and Zn) in oyster tissue (Saccostrea glomerata) and ambient bottom sediment (Sydney estuary, Australia),” Marine Pollution Bulletin, Vol. 80, pp. 263-274 (2014).
Borén, T., K. Ludvig, K. Andersson, and J. Seetz, “Eco-effect analysis-applied on chelating agents,” SOFW Journal, Vol. 10, pp. 2-10, (2009).
Brewer, G. J., “Copper toxicity in the general population,” Clinical Neurophysiology, Vol. 121, pp. 459-460 (2010).

Bastami, K. D., H. Bagheri, V. Kheirabadi, G. Ghorbanzadeh Zaferani, M. B. Teymori, A. Hamzehpoor, F. Soltani, S. Haghparast, S. R. Moussavi Harami, N. Farzaneh Ghorghani, and S. Ganji, “Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea,” Marine Pollution Bulletin, Vol. 81, pp. 262-267 (2014).
Bastami, K. D., M. R. Neyestani, F. Shemirani, and F. Soltani, “Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea,” Marine Pollution Bulletin, Vol. 92, pp. 237-243 (2015).
Bortone, G. E., Arevalo, I. Deibel, H. D. Detzner, L. de Propris, F. Elskens, A. Giordano, P. Hakstege, K. Hamer, J. Harmsen, A. Hauge, L. Palumbo, and J. Van Veen, “Synthesis of the sednet work package 4 outcomes,” Journal of Soils and Sediments, Vol. 4 pp. 225-232 (2004).
Buchman, M. F., “NOAA screening quick reference tables,” NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoriation Division, National Oceanic and Atmospheric Administration, USA (2008).
Bahemmat, M., M. Farahbakhsh, and M. Kianirad, “Humic substances-enhanced electroremediation of heavy metals contaminated soil” Journal of Hazardous Materials, Vol. 312, pp. 307-318 (2016).
Baileyab, S. E., T. J. Olinb, R. M. Brickab, and D. D. Adriana, “A review of potentially low-cost sorbents for heavy metals,” Water Research, Vol. 33, pp. 2469-2479 (1999).
Beolchini, F., L. Rocchetti, and A. Dell’Anno, “Degradation kinetics of butyltin compounds during the bioremediation of contaminated harbour sediments,” Chemistry and Ecology, Vol. 30, pp. 393-402 (2014).
Bucheli-Witschel, M. and T. Egli, “Environmental fate and microbial degradation of aminopolycarboxylic acids,” FEMS Microbiology Reviews, Vol. 25, pp. 69-106 (2001).
Cao, S., X. Duan, X. Zhao, J. Ma, T. Dong, N. Huang, C. Sun, B. He, and F. Wei, “Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China,” Science of the Total Environment, Vol. 472, pp. 1000-1009 (2014).
Cang, L., G. P. Fan, D. M. Zhou, and Q. Y. Wang, “Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control,” Chemosphere, Vol. 90, pp. 2326-2331 (2013).
Chen, S. Y. and J. G. Lin, “Effect of substrate concentration on bioleaching of metal-contaminated sediment,” Journal of Hazardous Materials, Vol. B82, pp. 77-89 (2001).
Chen, C. F., Y. R. Ju, C W. Chen, and C. D. Dong, “Vertical profile, contamination assessment, and source apportionment of heavy metals in sediment cores of Kaohsiung Harbor, Taiwan,” Chemosphere, Vol. 165, pp. 67-79 (2016).
Chen, H., C. Zheng, T. Cong, and Y. Zhu, “Heavy metal pollution in soils in China: status and countermeasures,” Environmental Science & Technology, Vol. 28, pp. 130-134 (1999).
Cherfi, A., S. Abdoun, and O. Gaci, “Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria,” Food and Chemical Toxicology, Vol. pp. 48-53 (2014).
Chapman P. M. and F. Wang, “Assessing sediment contamination in estuaries,” Environmental Toxicology and Chemistry, Vol. 20 pp. 3-22 (2001).
Cameselle, C., “Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil,” Electrochimica Acta, Vol. 181, pp. 31–38 (2015).
Cameselle, C. and A. Pena, “Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals,” Process Safety and Environmental Protection, Vol. 104, pp. 209-217 (2016).
Cameselle, C. and K. R. Reddy, “Development and enhancement of electro-osmotic flow for the removal of contaminants from soils,” Electrochimica Acta, Vol. 86, pp. 10-22 (2012).
Colacicco, A., G. de Gioannis, A. Muntoni, E, Pettinao, A. Polettini, and R. Pomi, “Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs,” Chemosphere, Vol. 81, pp. 46-56 (2010).
Chaiyaraksa, C. and N. Sriwiriyanuphap, “Batch washing of cadmium from soil and sludge by a mixture of Na2S2O5 and Na2EDTA,” Chemosphere, Vol. 56, pp. 1129-1135 (2004).
Chakraborty, R., A. Ghosh, and A. Adak, “Electrokinetic remediation of chromium contaminated soil,” The 50th Indian Geotechnical Conference (IGC, 2015), Pune, India, December 17-19 (2015).
Castro-Gonzáleza, M. I. and M. Méndez-Armenta, “Heavy metals: Implications associated to fish consumption,” Environmental Toxicology and Pharmacology, Vol. 26, pp. 263-271 (2008).
Daskalakis, K. D. and T. P. O'connor, “Normalization and elemental sediment contamination in the coastal United States,” Environmental Science & Technology, Vol. 29, pp. 470-477 (1995).
Dhanakumar, S., G. Solaraj, and R. Mohanraj, “Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India,” Ecotoxicology and Environmental Safety, Vol. 113 pp. 145-151 (2015).
Evans, G.W., D. R. Myron, N. F. Cornatzer, and W. E. Cornatzer, “Age-dependent alterations in hepatic subcellular copper distribution and plasma ceruloplasmin,” American Journal of Physiology, Vol. 218, pp. 298-302 (1970).
El-Desoky, G. E., M. A. Aboul-Soud, Z. A. Al-Othman, M. Habila, and J. P. Giesy, “Seasonal concentrations of lead in outdoor and indoor dust and blood of children in Riyadh, Saudi Arabia,” Environmental Geochemistry and Health, Vol. 36, pp. 583-593 (2014).
Ecolabelling Denmark, “Ecolabel criteria for industrial and institutional laundry detergents technical report,” pp. 1-30 (2012).
Fu, J., C. Zhaoa, Y. Luo, C. Liud, G. Z. Kyzase, Y. Luo, D. Zhao, S. An, and H. Zhua, “Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors” Journal of Hazardous Materials Vol. 270, pp. 102-109 (2014).
Fan, G., L. Cang, H. I. Gomes, and D. Zhou, “Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods,” Chemosphere, Vol. 144, pp. 138-147 (2016).
Freitas, E. V., C. W. Nascimento, A. Souza, and F. B. Silva, “Citric acid-assisted phytoextraction of lead: A field experiment,” Chemosphere, Vol. 92, pp. 213-217 (2013).
Falciglia, P. P., D. Malarbì, V. Greco, and F. G. A. Vagliasindi, “Surfactant and MGDA enhanced – Electrokinetic treatment for the simultaneous removal of mercury and PAHs from marine sediments,” Separation and Purification Technology, Vol. 175, pp. 330-339 (2017).
Filgueiras, A. V., I. Lavilla, and C. Bendicho, “Chemical sequential extraction for metal partitioning in environmental solid samples,” Journal of Environment Monitoring, Vol. 4, pp. 823-857 (2002).
Facchinelli, A., E. Sacchi, and L. Mallen, “Multivariate statistical and GIS-based approach to identify heavy metal sources in soils,” Environmental Pollution, Vol. 114, pp. 313-324 (2001).
Gao, M., P. L. Klerks, X. Wu, H. Chen, and L. Xie, “Metal concentrations in dediment and biota of the Huludao Coast in Liaodong Bay and sssociated human and ecological health risks,” Archives of Environmental Contamination and Toxicology, Vol. 71, pp. 87-93 (2016).
Guo, X., G. Zhang, Z. Wei, L. Zhang, Q. He, Q. Wu, and T. Wu, “Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils,” Journal of Soils and Sediments, doi: 10.1007/s11368-017-1781-6 (2017).
Gill, R. T., M. J. Harbottle, J. W. Smith, and S. F. Thormton, “Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications,” Chemosphere, Vol. 107, pp. 31-42 (2014).
Gomes, H. I., C. Dias-Ferreir, and A. B. Ribeiro, “Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies,” Chemosphere, Vol. 87, pp. 1077-1090 (2012).
Gracia, R. C. and W. R. Snodgrass, “Lead toxicity and chelation therapy,” American Journal of Health-System Pharmacy, Vol. 64, pp. 45-53 (2007).
Giannis, A., A. Nikolaou, D. Pentar, and E. Gidarakos, “Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils,” Environmental Pollution, Vol. 157, pp. 3379-3386 (2009).
Gidarakos, E. and A. Giannis, “Chelate agents enhanced electrokinetic remediation for removal cadmium and zinc by conditioning catholyte pH,” Water, Air, & Soil Pollution, Vol. 172, pp. 295-312 (2006).
Hu, B., R. Cui, J. Li, H. Wei, J. Zhao, F. Bai, W. Song, and X. Ding, “Occurrence and distribution of heavy metals in surface sediments of the Changhua River Estuary and adjacent shelf (Hainan Island),” Marine Pollution Bulletin, Vol. 76, pp. 400-405 (2013).
Han, Z., X. Bi, Z. Li, W. Yang, L. Wang, H. Yang, F. Li, and Z. Ma, “Occurrence, speciation and bioaccessibility of lead in Chinese rural household dust and the associated health risk to children,” Atmospheric Environment, Vol. 46, pp. 65-70 (2012).
Hill, N. A., S. L. Simpson, and E. L. Johnston, “Beyond the bed: Effects of metal contamination on recruitment to bedded sediments and overlying substrata,” Environmental Pollution, Vol. 173, pp. 182-191 (2013).
Hong, P. K., C. Li, S. K. Banerji, and Y. Wang, “Feasibility of metal recovery from soil using DTPA and its biostability,” Journal of Hazardous Materials, Vol. 94, pp. 253–272 (2002).
Hanif, N., S. A. M. A. S. Eqani, S. M. Ali, A. Cincinelli, N. Ali, I. A. Katsoyiannis, Z. I. Tanveer, and H. Bokhari, “Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan, Journal of Geochemical Exploration, Vol. 165, pp. 62-70 (2016).
Huang, K. M. and S. Lin, “Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan,” Chemosphere, Vol. 53, pp. 1113-1121 (2003).
Hosono, T., C. C. Su, F. Siringan, A. Amano, and S. Onodera, “Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay,” Marine Pollution Bulleti, Vol. 60, pp. 780-785 (2010).
Habibul, N., Y. Hua, and G. P. Shenga, “Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils,” Journal of Hazardous Materials, Vol. 318, pp. 9-14 (2016).
Hartley, N. R., D. C. W. Tsang, W. E. Olds, and P. A. Weber, “Soil washing enhanced by humic substances and biodegradable chelating agents,” Soil and Sediment Contamination, Vol. 23, pp. 599–613 (2014).
Hahladakis, J. N., W. Calmano, and E. Gidarakos, “Use and comparison of the non-ionic surfactants Poloxamer 407 and Nonidet P40 with HP-b-CD cyclodextrin, for the enhanced electroremediation of real contaminated sediments from PAHs,” Separation and Purification Technology, Vol. 113, pp. 104-113 (2013).
Hahladakis, J. N., N. Lekkas, A. Smponias, and E. Gidarakos, “Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs,” Chemosphere, Vol. 105, pp. 44-52 (2014).
Islam, M. S., M. K. Ahmed, M. Raknuzzaman, M. H. Al-Mamun, and M. K. Islam, “Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country,” Ecological Indicators, Vol. 48, pp. 282-291 (2015).
Iannelli, R., M. Masi, A. Ceccarini, M. B. Ostuni, R. Lageman, A. Muntoni, D. Spiga, A. Polettini, A. Marini, and R. Pomi, “Electrokinetic remediation of metal-polluted marine sediments: experimental investigation for plant design,” Electrochimica Acta, Vol. 181, pp. 146-159 (2015).
Jeon, E. K., S. R. Ryu, and K. Baek, “Application of solar-cells in the electrokinetic remediation of As-contaminated soil,” Electrochimica Acta, Vol. 181, pp. 160-166 (2015).
Jung, H. B., J. S. Yang, and W. Um, “Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 304, pp. 615-625 (2015).
Jean-Soro, L., F. Bordas, and J. C. Bollinger, “Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid,” Environmental Pollution, Vol. 164, pp. 175-181 (2012).
Kim, E. J., E. K. Jeon, and K. Baek, “Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA,” Chemosphere, Vol. 152, pp. 274-283 (2016).
Kim, S. O. and K. W. Kim, “Monitoring of electrokinetic removal of heavy metals in tailing-soils using sequential extraction analysis,” Journal of Hazardous Materials, Vol. 85, pp. 195-211 (2001).
Kim, S. O., K. W. Kim, and D. Stüben, “Evaluation of electrokinetic removal of heavy metals from tailing soils,” Environmental Science & Technology, Vol. 128, pp. 705-715 (2002).
Kim, K. J., D. H. Kim, J. C. Yoo, and K. Baek, “Electrokinetic extraction of heavy metals from dredged marine sediment,” Separation and Purification Technology, Vol. 79, pp. 164–169 (2011a).
Kim, W. S., G. Y. Park, D. H. Kim, H. B. Jung, S. H. Ko, and K. Baek, “In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration,” Electrochimica Acta, Vol. 86, pp. 89-95 (2012).
Kim, D. H., B. G. Ryu, S. W. Park, C. l. Seo, and K. Baek, “Electrokinetic remediation of Zn and Ni-contaminated soil,” Journal of Hazardous Materials, Vol. 165, pp. 501–505 (2009).
Kim, G. N., D. B. Shon, H. M. Park, K. W. Lee, and U. S. Chung, “Development of pilot-scale electrokinetic remediation technology for uranium removal,” Separation and Purification Technology, Vol. 80, pp. 67–72 (2011b).
Karaca O., C. Cameselle and K. R. Reddy, “Acid pond sediment and mine tailings contaminated with metals: physicochemical characterization and electrokinetic remediation,” Environmental Earth Sciences, Vol. 76, pp.408-420 (2017)
Khalid, S., M. Shahid, N. K. Niazi, B. Murartaza, I. Bibi, and C. Dumat, “A comparison of technologies for remediation of heavy metal contaminated soils,” Journal of Geochemical Exploration, doi: 10.1016/j.gexplo.2016.11.021 (2016).
Koosej, N., H. Jafariyan, A. Rahmani, A. Patimar, and H. Gholipoor, “The study of some heavy metals (lead, nickel, zinc, copper and iron) in muscle tissue of blue swimming crab portunus pelagicus in some areas of the hormozgan province, Iran,” American Journal of Life Science Researches, Vol. 4, pp. 140-144 (2016).
Kirkelund, G. M., L. M. Ottosen, and A. Villumsen, “Investigations of Cu, Pb and Zn partitioning by sequential extraction in harbour sediments after electrodialytic remediation,” Chemosphere, Vol. 79, pp. 997-1002 (2010).
Kołodyńska, D., “The effect of the novel complexing agent in removal of heavy metal ions from waters and waste waters,” Chemical Engineering Journal, Vol. 165, pp. 835-845 (2010).
Kołodyńska, D., “Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of new generation,” Desalination, Vol. 267. pp. 175-183 (2011a).
Kołodyńska, D., “Chelating Agents of a New Generation as an Alternative to Conventional Chelators for Heavy Metal Ions Removal from Different Waste Waters, in R. Y. Ning (Ed),” Expanding Issues in Desalination, Chapter 17, pp. 339-370, InTech, Rijeka (Croatia), (2011b).
Li, Y. C., G. P. Chang-Chien, P. C. Chiang, W. H. Chen, and Y. C. Lin, “Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan,” Marine Pollution Bulletin, Vol. 76, pp. 266-275 (2013).
Li, G., S. Guo, S. Li, L. Zhang, and S. Wang, “Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil,” Chemical Engineering Journal, Vol. 203, pp. 231-238 (2012).
Li, Z., Z. Ma, T. J. van der Kuij, Z. Yuan, and L. Huang, “A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment,” Science of the Total Environment, Vol. 468-469, pp. 843-853 (2014).
Li, R., K. Shu., Y. Luo, and Y. Shi, “Assessment of heavy metal pollution in estuarine surface sediments of Tangxi River in Chaohu Lake Basin,” Chinese Geographical Science, Vol. 20, pp. 9-17 (2010).
Lim, T. T., J. H. Tay, and J. Y. Wang, “Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil,” Journal of Environmental Engineering, Vol. 130, pp 59-66 (2004).
Lin, J. G., S. Y. Chen, and C. R. Su, “Assessment of sediment toxicity by metal speciation in different particle-size fractions of river sediment,” Water Science & Technology, Vol. 47, pp. 233-241 (2003).
Liu, S. H. and H. P. Wang, “In situ speciation studies of copper–humic substances in a contaminated soil during electrokinetic remediation,” Journal of environmental quality, Vol. 33, pp. 1280-1287 (2003).
Leštan, D., C. L. Luo, and X. D. Li, “The use of chelating agents in the remediation of metal-contaminated soils: A review,” Environmental Pollution, Vol. 153, pp. 3-13 (2008).
Iannelli R., M. Masi, A. Ceccarini, M.B. Ostuni, R. Lageman, A. Muntoni, D. Spiga, A. Polettini, A. Marini, and R. Pomi, “Electrokinetic remediation of metal-polluted marine sediments: experimental investigation for plant design,” Electrochimica Acta, Vol. 181, pp. 146–159 (2015).
Masi M., R. Iannelli, and G. Losito, “Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity,” Environmental Science and Pollution Research, Vol. 23, pp. 10566-10576 (2016).
Mehra, O. P. and M. L. Jackson, “Iron oxide removal from soils and clays by dithionite-citrate systems buffered with sodium bicarbonate,” Clays and Clay Minerals, Vol. 5, pp. 317-327 (1960).
Martin S. and W. Griswold, “Human health effects of heavy metals,” Environmental Science and Technology Briefs for Citizens, Center for Hazardous Substance Research, Vol. 15, pp. 1-6 (2009).
Mossop, K. F. and C. M. Davidson, “Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments,” Analytica Chimica Acta, Vol. 478, pp. 111-118 (2003).
Marchand, C., E. Lallier-Verge`s, F. Baltzer, P. Albe´ric, D. Cossa, and P. Baillif, “Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana,” Marine Chemistry, Vol. 98, pp. 1-17 (2006).
Missaoui, A., I. Said, Z. Lafhaj, and E. Hamdi, “Influence of enhancing electrolytes on the removal efficiency of heavy metals from Gabes marine sediments (Tunisia),” Marine Pollution Bulletin, Vol. 113, pp. 44-54 (2016).
Mulligan, C. N., R. N. Yong, and B. F. Gibbs, “Remediation technologies for metal-contaminated soils and groundwater: an evaluation,” Engineering Geology, Vol. 60, pp. 193-207 (2001).
Ng, Y. S., B. S. Gupta, and M. A. Hashima, “Performance evaluation of two-stage electrokinetic washing as soil remediation method for lead removal using different wash solutions,” Electrochimica Acta, Vol. 147, pp. 9-18 (2014).
Navas, A. and H. Lindhorfer, “Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain),” Environment International, Vol. 29, pp. 61-68 (2003).
Neale, C. N., R. M. Bricka, and A. C. Chao, “Evaluating acids and chelating agents for removing heavy metals from contaminated soils,” Environmental Progress, Vol. 16, pp. 274-280 (2006).
Nowack, B., “Environmental chemistry of aminopolycarboxylate chelating agents,” Environmental Science & Technology, Vol. 36, pp. 4009–4016 (2002).
Namminga, H. N. and J. Wilhm, “Effects of high discharge and an oil refinery cleanup operation bon heavy metals in water and sediments in Skeleton Creek,” Proceedings of the Oklahoma Academy of Science, Vol. 56, pp. 133-138 (1976).
N'guessan, Y. M., J. L. Probst, T. Bur, and A. Probst, “Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): Where do they come from?” Science of the Total Environment, Vol. 407, pp. 2939-2952 (2009).
Nowrouzi, M. and A. Pourkhabbaz, “Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran,” Chemical Speciation & Bioavailability, Vol. 26, pp. 99-105 (2014).
Oh, M., S. Moon, S. Oh, and J. Y. Lee, “Removal of As and heavy metals (Cd, Cu, Pb) in soil washed fine soil using enhanced electrochemistry,” Journal of Soil and Groundwater Remediation, Vol. 3, pp. 59-70 (2016).
Oves, M., M. S. Khen, A. Zaidi, and E. Ahmad, “Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview,” Toxicity of Heavy Metals to Legumes and Bioremediation, doi: 10.1007/978-3-7091-0730-0_1 (2012).
Ololade, I. A., “An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes,” Journal of Environmental Protection, Vol. 5, pp. 970-982 (2014).
Olivares-Rieumont S., D. de la Rosa, L. Lima, D.W. Graham, K. D’Alessandro, J. Borroto, F. Martínez, and J. Sánchez, “Assessment of heavy metal levels in Almendares River sediments—Havana City, Cuba,” Water Research, Vol. 39, pp. 3945-3953 (2005).
Park, S. W., J. Y. Lee, J. S. Yang, K. J. Kim, and K. Baek, “Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc,” Journal of Hazardous Materials, Vol. 169, pp. 1168-1172 (2009).
Park, J. Y. and J. H. Kim, “Switching effects of electrode polarity and introduction direction of reagents in electrokinetic-Fenton process with anionic surfactant for remediating iron-rich soil contaminated with phenanthrene,” Electrochimica Acta, Vol. 56, pp. 8094-8100 (2011).
Pardo, R., E. Barrado, L. Prez, and M. Vega, “Determination and speciation of heavy metals in sediments of the Pisuerga river,” Water Research, Vol. 24, pp. 373-379 (1990).
Peng, J. F., Y. H. Song, P. Yuan, X. Y. Cui, and G. L. Qiu, “The remediation of heavy metals contaminated sediment,” Journal of Hazardous Materials, Vol. 16, pp. 1633–640 (2009).
Plum, L. M., L. Rink, and H. Haase, “The essential toxin: impact of zinc on human health,” International Journal of Environmental Research and Public Health, Vol. 7, pp. 1342-1365 (2010).
Palma, Di., L. and R. Mecozzi, “Heavy metals mobilization from harbor sediments using EDTA and citric acid as chelating agents,” Journal of Hazardous Materials, Vol. 147, pp. 768–775 (2007).
Palma, Di., L., D. Mancini, and F. Medici, “Lab scale granulation tests of artificial aggregate production from marine sediments and industrial wastes,” Chemical Engineering Transactions, Vol. 28, pp. 199-204 (2012).
Pazos, M., O. Iglesias, J. Go´mez, E. Rosales, and M. A. Sanroma´n, “Remediation of contaminated marine sediment using electrokinetic–Fenton technology,” Journal of Industrial and Engineering Chemistry, Vol. 19, pp. 932-937 (2013).
Perin, G., R. Fabris, S. Manente, A. R. Wagener, C. Hamacher, and S. Scotto, “A five-year study on the heavy-metal pollution of Guanabara Bay sediments (Rio de Janeiro, Brazil) and evaluation of the metal bioavailability by means of geochemical speciation,” Water Research, Vol. 31, pp. 3017-3028 (1997).
Pinto, I. S. S., I. F. F. Neto, and H. M. V. M. Soares, “Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review,” Environmental Science and Pollution Research, Vol. 21, pp. 11893-11906 (2014).
Popov, K., V. Yachmenev, A. Kolosov, and N. Shabanova, “Effect of soil electroosmotic flow enhancement by chelating reagents,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 160, pp. 135-140 (1999).
Pejmana, A., G. N. Bidhendia, M. Ardestania, M. Saeedib, and A. Baghvanda, “A new index for assessing heavy metals contamination in sediments: A case study,” Ecological Indicators, Vol. 58, pp. 365-373 (2015).
Pereira, T. d. S., I. T. A. Moreira, O. M. C. de Oliveira, M. C. Rios, W. A. C. S. Filho, M. de Almeida, and G. Correia de Carvalho, “Distribution and ecotoxicology of bioavailable metals and As in surface sediments of Paraguaçu estuary, Todos os Santos Bay, Brazil,” Marine Pollution Bulletin,” Marine Pollution Bulletin, Vol. 99, pp. 166-177 (2015).
Polettini, A., R. Pomi, and E. Rolle, “The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment,” Chemosphere, Vol. 66, pp. 866-877 (2007).
Polettini, A., R. Pomi, E. Rolle, D. Ceremigna, L. De Propris, M. Gabellini, and A. Tornato, “A kinetic study of chelant-assisted remediation of contaminated dredged sediment,” Journal of Hazardous Materials, Vol. 137, pp. 1458–1465 (2006).
Papassiopi, N., S. Tambouris, and A. Kontopoulos, “Removal of heavy metals from calcareous contaminated soils by EDTA leaching,” Water, Air, & Soil Pollution, Vol. 109, pp. 1-15 (1999).
PeÂrez-Cid, B., I. Lavilla, and C. Bendicho, “Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound,” Analytica Chimica Acta, Vol. 360, pp. 35-41 (1998).
Pourabadehei, M. and C. N. Mulligan, “Selection of an appropriate management strategy for contaminated sediment: A case study at a shallow contaminated harbour in Quebec, Canada,” Environmental Pollution, Vol. 219, pp. 846-857 (2016).
Qian, Y., W. Zhang, L. Yu, and H. Feng, “Metal pollution in coastal sediments,” Current Pollution Reports, Vol. 1, pp. 203-219 (2015).
Qiao, Y., Y. Yang, J. Zhao, R. Tao, and R. Xu, “Influence of urbanization and industrialization on metal enrichment of sediment cores from Shantou Bay, South China,” Environmental Pollution, Vol. 182, pp. 28-36 (2013).
Quievryn, G., J. Messer, and A. Zhitkovich, “Carcinogenic chromium(VI) induces cross-linking of vitamin c to DNA in vitro and in human lung A549 cells,” Biochemistry, Vol. 41, pp. 3156-3167 (2002).
Quevauviller, P., G. Rauret, and J. F. Lopez-Sanchez, “Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure,” The Science of the Total Environment, Vol. 205, pp. 223-234 (1997).
Ryu, B. G., G. Y. Park, J. W. Yang, and K. Baek, “Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil,” Separation and Purification Technology, Vol. 79, pp. 170-176 (2011).
Roig, N., J. Sierra, M. Nadal, I. Moreno-Garrido, E. Nieto, M. Hampel, E. P. Gallego, M. Schuhmacher, and J. Blasco, “Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: the Ebro river basin case study,” Science of the Total Environment, Vol. 53, pp. 269-278 (2015).
Ruiz, C., E. Mena, P. Cañizares, J. illaseñor, and M. A. Rodrigo, “Removal of 2,4,6-trichlorophenol from spiked clay soils by electrokinetic Soil flushing sssisted with granular activated carbon permeable reactive barrier,” Industrial & Engineering Chemistry Research, Vol. 53, pp. 840-846 (2014).
Reddy, K. R., M. J. Rood, S. Danda, and R. E. Saichek, “Complicating factors of using ethylenediamine tetraacetic acid to enhance electrokinetic remediation of multiple heavy metals in clayey soils,” Journal of Environmental Engineering, Vol. 130, pp. 1357-1366 (2004).
Reddy, K. R., R. E. Saichek, K. Maturi, and P. Ala, “Effects of soil moisture and heavy metal concentrations on electrokinetic remediation,” Indian Geotechnical Journal, Vol. 32, pp. 258 (2002).
Reddy K. R. and A. B. Shirani, “Electrokinetic remediation of metal contaminated glacial tills,” Geotechnical and Geological Engineering, Vol. 15, pp. 3-29 (1997).
Reddy, K. R. and M. R. Karri, “Effect of oxidant dosage on integrated electrochemical remediation of contaminant mixtures in soils,” Journal of Environmental Science and Health Part A, Vol. 43, pp. 881-893 (2008).
Rozas, F. and M. Castellote, “Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes,” Electrochimica Acta, Vol. 86, pp. 102-109 (2012).
Rozas, F. and M. Castellote, “Selecting enhancing solutions for electrokinetic remediation of dredged sediments polluted with fuel,” Journal of Environmental Management, Vol. 151, pp. 153-159 (2015)
Rascio, N. and F. Navari-Izzo, “Heavy metal accumulating plants: how and why do they do it? And what makes them so interesting?” Plant Science, Vol. 180, pp. 169-181 (2011).
Roberts, D. A., “Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments,” Environment International, Vol. 40, pp. 230-243 (2012).
Robles, I., M. J. Lozano, S. Solís, G. Hernández, M. V. Paz, M. G. Olvera, and E. Bustos, “Electrokinetic Treatment Of Mercury-Polluted Soil Facilitated By Ethylenediaminetetraacetic Acid Coupled With A Reactor With A Permeable Reactive Barrier Of Iron To Recover Mercury (II) From Water,” Electrochimica Acta, Vol. 181. pp. 68-72 (2015).
Reimann C. and P. de Caritat, “Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors,” Science of the Total Environment, Vol. 337, pp. 91-107 (2005).
Song, Y., M. T. Ammami, A. Benamar, S. Mezazigh, and H. Wang, “Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment,” Environmental Science and Pollution Researchm Vol. 23, pp. 10577-10586 (2016).

Sabir, M., E. A. Waraich, K. R. Hakeem, M. Öztürk, H. R. Ahmad, and M. Shahid, “Phytoremediation: mechanisms and adaptations,” Soil Remediation and Plants, pp. 85–105 (2015).
Singh, A., R. Pal, C Gangwar, A. Gupta, and A. Tripathi, “Release of heavy metals from industrial waste and e-waste burning and its effect on human health and environment,” International Journal of Emerging Research in Management &Technology, Vol. 4, pp. 2278-9359 (2015).
Shakir, H. A., J. I. Qazi, and A. S. Chaudhry, “Assessing human health Risk of metal accumulations in a wild carp fish from selected sites of a river loaded with municipal and industrial wastes,” International Journal of Environmental Research, Vol. 9, pp. 545-552 (2015).
Suanon, F., Q. Sun, B. Dimon, D. Mama, and C. P. Yu, “Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis (carboxymethyl) glutamic acid and citric acid,” Journal of Environmental Management, Vol. 166, pp. 341-347 (2016).
Saichek, R. E. and K. R. Reddy,” Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil,” Chemosphere, Vol. 51, pp. 273-287 (2003).
Sundelin, B. and A. K. Eriksson, “Mobility and bioavailability of trace metals in sulfidic coastal sediments,” Environmental Toxicology and Chemistry, Vol. 20, pp. 748-756 (2001).
Tsai, T. T., J. Sah, and C. M. Kao, “Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: A laboratory feasibility study,” Journal of Hydrology, Vol. 380, pp. 4-13 (2010).
Tandy, S., K. Bossart, R. Mueller, J. Ritschel, L. Hauser, R. Schulin, and B. Nowack, “Extraction of heavy metals from soils using biodegradable chelating agents,” Environmental Science & Technology, Vol. 38, pp. 937-944 (2004).
Tsang, D. C. W., W. E. Olds, and P. Weber, “Residual leachability of CCA-contaminated soil after treatmen with biodegradable chelating agents and lignite-derived humic substances,” Journal of Soils and Sediments, Vol. 13, pp. 895–905 (2013).
Taylor, S. R., “Abundance of chemical elements in the continental crust: a new table,” Geochimica et Cosmochimica Acta, Vol. 28, pp. 1273-1285 (1964).
Tessier, A., P. G. C. Campbell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Analytical Chemistry Vol. 51, pp. 844–851 (1979).
Tomasevic, D. D., M. Dalmacija, M. B. Prica, B. D. Dalmacija, D. V. Kerkez, M. R. Becelic-Tomin, and S. D. Roncevic,” Use of fly ash for remediation of metals polluted sediment – Green remediation,” Chemosphere, Vol. 92, pp. 1490-1497 (2013).
Tahmasbian I. and A. A. S. Sinegani, “Monitoring the effects of chelating agents and electrical fields on active forms of Pb and Zn in contaminated soil,” Environmental Monitoring and Assessment, Vol. 185, pp. 8847–8860 (2013).
Tejeda-Benitez, L. R. Flegal, K. Odigie, and J. Olivero-Verbel, “Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia,” Environmental Pollution, Vol. 212, pp. 238-250 (2016).
USEPA, “permeable reactive barrier technologies for contaminant remediation,” EPA-600-R-98-125., USEPA, Washington DC (1998).
Viana, P., K. Yin, X. Zhao, and K. Rockne, “Active sediment capping for pollutant mixtures: control of biogenic gas production under highly intermittent flows,” Land Contamination & Reclamation, Vol. 15, pp. 413-425 (2007).
Vieira, C., S. Morais, S. Ramos, C. Delerue-Matos, and M. B. P. P. Oliveira, “Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: Intra- and inter-specific variability and human health risks for consumption,” Food and Chemical Toxicology, Vol. 49, pp. 923-932 (2011).
Varadachari, C., G. Goswami, and K. Ghosh, “Dissolution of Iron Oxides,” Clay Research, Vol. 25, pp. 1-19 (2006).
Wu, Q., Y. Cui, Q. Li, and J. Sun, “Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA,” Journal of Hazardous Materials, Vol. 283, pp. 748-754 (2015a).
Wu, Q., G. Duan, Y. Cui, and J. Sun, “Removal of heavy metal species from industrial sludge with the aid of biodegradable iminodisuccinic acid as the chelating ligand,” Environmental Science and Pollution Research, Vol. 22, pp. 1144-1150 (2015b).
Wei, B. and L. Yang, “A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China,” Microchemical Journal, Vol. 94, pp. 99-107 (2010).
Wang, F. and J. Chen, “Relation of sediment characteristics to trace metal concentrations: a statistical study,” Water Research, Vol. 34, pp. 694-698 (2000).
Wang, H., T. Liu, D. C. W. Tsang, and S. Feng, “Transformation of heavy metal fraction distribution in contaminated river sediment treated by chemical-enhanced washing,” Journal of Soils and Sediments, Vol. 17, pp. 1208–1218 (2016).
Wang, J., R. Liu, P. Zhang, W. Yu, Z. Shen, and C. Feng, “Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary,” Marine Pollution Bulletin, Vol. 87, pp. 364-373 (2014).
Wang, L. and W. X. Wang “Depuration of metals by the green‐colored oyster Crassostrea sikamea,” Environmental Toxicology and Chemistry, Vol. 33, pp. 2379-2385 (2014).
Wuana, R. A., F. E. Okieimen, and J. A. Imborvungu, “Removal of heavy metals from a contaminated soil using organic chelating acids,” Environmental Science & Technology, Vol. 7, pp. 485–496 (2010).
Yao, Z., J. Li, H. Xie, and C. Yu, “Review on remediation technologies of soil contaminated by heavy metals,” Procedia Environmental Sciences, Vol. 16, pp. 722-729 (2012).
Yoo, J. C., C. D. Lee, J. S. Yang, and K. Baek, “Extraction characteristics of heavy metals from marine sediments,” Chemical Engineering Journal, Vol. 228, pp. 688-699 (2013).
Yoo, J. C., J. S. Yang, E. K. Jeon, and K. Baek, “Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment,” Environmental Science and Pollution Research, Vol. 22, pp. 9912-9921 (2015).
Yang, G. C. C. and Y. I. Chang, “Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil,” Separation and Purification Technology, Vol. 79, pp. 278-284 (2011a).
Yang, G. C. C., Y. H. Chiu, and C. L. Wang, “Integration of electrokinetic process and nano-Fe3O4/S2O82- oxidation process for remediation of phthalate esters in river sediment,” Electrochimica Acta, Vol. 181, pp. 217–227 (2015).
Yang, G. C. C., S. C. Hung, Y. S. Jen, and P. S. Tsai, “Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process,” Chemosphere, Vol. 150, pp. 576-585 (2016b).
Yang, G. C. C., S. C. Hung, C. L. Wang, and Y. S. Jen, “Degradation of phthalate esters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite,” Vol. 159, pp. 282-292 (2016a).
Yang, J. S., M. J. Kwon, J. Choi, K. Baek, and E. J. O’Loughlin, “The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning,” Chemosphere, Vol. 117, pp. 79-86 (2014).
Yang, G. C.C. and S. L. Lin, “Removal of lead from a silt loam soil by electrokinetic remediation,” Journal of Hazardous Materials, Vol. 58, pp. 285-299 (1998).
Yang, G. C.C. and C. Y. Liu, “Remediation of TCE contaminated soils by in situ EK-Fenton process,” Journal of Hazardous Materials, Vol. B85, pp. 317-331 (2001).
Yang, G. C.C. and Y. W. Long, “Removal and degradation of phenol in a saturated flow by in-situ electrokinetic remediation and Fenton-like process,” Journal of Hazardous Materials, Vol. B69, pp. 259-271 (1999).
Yang, G. C. C. and C. F. Yeh, “Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics,” Separation and Purification Technology, Vol. 79, pp. 261-271 (2011b).
Zou, Z., R. Qiu, W. Zhang, H. Dong, Z. Zhao, T. Zhang, X. Wei, and X. Cai, “The study of operating variables in soil washing with EDTA,” Environmental Pollution, Vol. 157, pp. 229-236 (2009).
Zhao, H., Y. Wanga, Y. Wanga, T. Cao, and G. Zhao, “Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: High activity, wide pH range and catalytic mechanism,” Applied Catalysis B: Environmental, Vol. 125, pp. 120-127 (2012).
Zhou, D. M., C. F. Deng, and L. Cang, “Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents,” Chemosphere, Vol. 56, pp. 265–273 (2004).
Zhou, D. M., C. F. Deng, L. Cang, and A. N. Alshawabkeh, “Electrokinetic remediation of a Cu–Zn contaminated red soil by controlling the voltage and conditioning catholyte pH,” Chemosphere, Vol. 61, pp. 519–527 (2005).
Zhou, L. X. and J. W. C. Wong, “Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption,” Journal of Environmental Quality, Vol. 30, pp. 878-883 (2001).
Zhang, W., H. Feng, J. Chang, J. Qu, H. Xie, and L. Yu, “Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes,” Environmental Pollution, Vol. 157, pp. 1533-1543 (2009).
Zhang, T., H. Zou, M. Ji, X. Li, L. Li, and T. Tang, “Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes,” Environmental Science and Pollution Research, Vol. 21, pp. 3126-3133 (2014).
Zhuang, W. and X. L. Gao, “Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: Comparison among typical marine sediment quality indices,” PLOS ONE, Vol. 9, pp. 1-17 (2014).
Zoller, W. H., E. S. Gladney, and R. A. Duce, “Atmospheric concentrations and sources of trace metals at the south pole,” Science, Vol. 183, pp. 198-200 (1974).
刁茂文,「底泥中重金屬分佈特性之探討」,碩士學位論文,國立屏東科技大學環境工程與科學系,屏東縣 (2003)。
王暢,杜虹,楊運雲及郭鵬然,「重金屬形態連續萃取法對沉積物礦物相態的影響」分析化學研究,第39卷,第12期,第1887-1892頁 (2011)。
任于昇,「前鎮河底泥中16種多環芳香烴流布調查及新穎類Fenton 法結合電動力整治污染底泥之研究」,碩士論文,國立中山大學環境工程研究所,高雄市 (2016)
朱采菽、張惠娟、林蘭砡、鄭維智、方紹威、薛復琴、潘志寬及蔡詩偉,「食品用洗潔劑國內外法規及相關標章之探討」食品藥物研究年報,第5卷,第356-364頁 (2014)。
李皓瀅,「阿公店溪水體、底泥重金屬污染之調查」,碩士學位論文,國立高雄海洋科技大學海洋環境工程研究所,高雄市 (2015)。
林澤佑,「底泥添加黃酸對灌溉水體及底泥重金屬有效性影響之研究」,碩士學位論文,朝陽科技大學海洋環境工程與管理系,台南市 (2013)。
凌彗紋,「以生物淋溶法處理受重金屬污染之河川底泥過程中底泥物化因子的變化」,碩士學位論文,嘉南藥理科技大學環境工程與科學系,台南市 (2004)。
曹婉如,「高雄愛河沉積物重金屬元素分佈研究」,碩士學位論文,國立臺灣海洋大學海洋環境資訊學系,基隆市 (2014)。
陳明宏,「高屏海底峽谷內沉積物重金屬含量變化之分析探討」,碩士學位論文,國立中山大學大學海洋環境工程研究所,高雄市 (2011)。
陳愛玲,「鉻在土壤中不同粒徑粒子之存在型態及不同萃取劑之清洗效率」碩士學位論文,朝陽科技大學海洋環境工程與管理系,台南市 (2008)。
傅子龍,「臺灣大漢溪底泥重金屬含量調查與可能污染源之探討」,碩士學位論文,國立臺灣大學生物暨農學院農業化學系,台北市 (2016)。
彭議源,「台灣西南沿海沉積物重金屬之分布與探討」,碩士學位論文,國立高雄海洋科技大學海洋環境工程研究所,高雄市 (2014)。
黃慧雅,「後勁溪水體、底泥及吳郭魚重金屬濃度之調查」,碩士學位論文,國立高雄海洋科技大學海洋環境工程研究所,高雄市 (2011)。
楊博名,「高雄港沉積物中重金屬分佈與累積之研究」,碩士學位論文,國立高雄海洋科技大學海洋環境工程研究所,高雄市 (2009)。
葉琮裕,「以植生復育法處理重金屬污染底泥之探討」台灣礦業,第63卷,第4期,第28-43頁 (2011)。
蔡沛軒,「以螯合劑及還原劑萃取土壤重金屬」碩士學位論文,國立屏東科技大學環境工程與科學系,屏東縣 (2014)。
蔡嘉仁,「電動力技術整治電鍍工廠污染土壤之三維模場研究」,碩士學位論文,國立高雄大學土木與環境工程學系,高雄市 (2013)。
環保署,「土壤、底泥、廢棄物及毒性化學物質中六價鉻檢測方法—鹼性消化/比色法」,行政院環境保護署環境檢驗所,NIEA T303.12C https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2017年7月查詢 (2012b)。
環保署,「土壤中重金屬檢測方法-王水消化法」,行政院環境保護署環境檢驗所,NIEA S321.64B,https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2017年7月查詢 (2012a)。
環保署,「土壤及底泥水分含量測定方法-重量法」,行政院環境保護署環境檢驗所,NIEA S280.62C,https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2017年7月查詢 (2012c)。
環保署,「土壤酸鹼值(pH 值)測定方法-電極法」,行政院環境保護署環境檢驗所,NIEA S410.62C,https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2017年7月查詢 (2008)。
環保署,「水中金屬及微量元素檢測方法—感應耦合電漿原子發射光譜法」,行政院環境保護署環境檢驗所,NIEA W311.53C https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER,2017年7月查詢 (2014)。
環保署,「底泥品質指標之分類管理及用途限制辦法」,行政院環保署環保法規https://oaout.epa.gov.tw/law/LawContentDetails.aspx?id=FL063884&KeyWordHL,(2012b)
環保署,「底泥採樣方法」,行政院環境保護署環境檢驗所,NIEA S104.32B https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=SOIL,2017年7月查詢 (2016)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code