Responsive image
博碩士論文 etd-0123102-160820 詳細資訊
Title page for etd-0123102-160820
論文名稱
Title
複金屬燈特性研究及電子安定器設計
Operating Characteristics and Ballast Design of Metal Halide Lamps
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-01-14
繳交日期
Date of Submission
2002-01-23
關鍵字
Keywords
保護電路、高功因、電子安定器、音頻共振、複金屬燈、定功率
protection circuit, constant power operation, high power factor, acoustic resonance, Metal halide lamp, electronic ballast
統計
Statistics
本論文已被瀏覽 5665 次,被下載 54
The thesis/dissertation has been browsed 5665 times, has been downloaded 54 times.
中文摘要
複金屬燈具有體積小、壽命長、演色性佳及發光效率高等優點,已成為最具潛力之光源;但複金屬燈也跟大多數氣體放電燈一樣,呈負增量電阻之電氣特性,所以必須搭配安定器以穩定電弧電流。另一方面,以高頻換流電路驅動的電子安定器應用於高照度氣體放電燈,仍有若干困難存在:複金屬燈所需之啟動電壓甚高,冷點燈約需數千伏特,熱點燈更高達冷點燈之十倍以上,此外還有音頻共振、冷點燈啟動暫態時間長與燈管等效電阻隨使用時數變化幅度大等問題,造成複金屬燈電子安定器在設計上的困難,尤其以具有熱點燈需求者為甚。
本論文首先針對複金屬燈啟動暫態及穩態工作時的各種特性進行研究,從而歸納出一種簡單的燈管電壓偵測法則,以辨別音頻共振現象。綜合各方面的研究分析,本論文決定以降昇壓功因修正電路結合負載共振換流器,設計可應用於寬電源電壓範圍的定功率電子安定器;另外以外加的高電壓點火電路,設計可熱點燈之電子安定器,兩者均為單級高功因電路架構,可縮短啟動暫態時間並克服燈管等效電阻變動的問題,同時以定頻操作的方式,避免音頻共振發生。
其次,本論文也針對氣體放電燈電子安定器提出一種結構簡單的保護電路,以取代使用保險絲或接點繼電器的保護功能,若應用於多燈管電子安定器電路,更可為所有的燈管提供個別的保護功能,意即當其中某些燈管因啟動失敗或壽命終了時,能予以隔離,同時又可維持其他燈管之正常運作。
最後,本文以實際製作的複金屬燈電子安定器進行測試,透過實驗的結果,證實本文所提的構想,確實能達到預期的效果。
Abstract
The metal halide lamp has become an attractive lighting source because of its compact size, good color rendering, long lamp life, and high luminous efficacy. As a member of high-intensity discharge lamps, it has a negative incremental resistance, which claims the necessity of a ballast circuitry. Similar to other gas discharge lamps, the operating performance can be further improved when driven by a high-frequency electronic ballast. However, there are some obstacles in ballasting the metal halide lamp with the high-frequency inverter.
For a cold lamp, an ignition voltage up to several kVs is required for breaking down the electrodes during starting period. The breakdown voltage and the equivalent lamp resistance may vary from time to time and lamp to lamp, and is sensitive to the used time. Furthermore, the ignition voltage for restarting a hot lamp can be ten times that for a cold lamp. On the other hand, the lamp driven by a high-frequency electronic ballast may suffer from acoustic resonance. All these make it difficult in the design of an electronic ballast, especially for the applications with hot restarting.
In this dissertation, the operating characteristics for both starting transient and steady-state of the metal halide lamp are first investigated. Then, a simple method by measuring the lamp voltage is proposed to detect the happening of acoustic resonance. Based on the investigated results, several electronic ballasts are designed for driving metal halide lamps with capabilities of wide input voltage range, high input power factor, hot restarting, fast transition. In addition, an inverter circuit is configured for ballasting multiple lamps. A buck-boost power-factor-correction circuit is integrated into the load resonant inverter to achieve a high power factor, fast transition, and constant power operation. The extremely high ignition voltage for hot restarting is generated by an auxiliary ignitor. The electronic ballast is precisely operated at the specific frequency at which acoustic resonance will not occur.
In addition to these features, a protection circuit is included to prevent from high voltage and/or current stresses on circuit components in case that the lamp fails to be started up or comes to the end of its life-time. For the ballast with multiple lamps, the load circuits with abnormal lamps can be isolated from the others which are under normal operation.
Prototypes of the proposed circuits are built and tested. Experimental results present the satisfactory performances.
目次 Table of Contents
第一章 簡介 1
1-1研究動機 1
1-1-1複金屬燈 1
1-1-2電磁耦合安定器與電子安定器 3
1-1-3 功因修正電路 5
1-1-4單級高功因電子安定器 8
1-2論文大綱 10
第二章 複金屬燈特性探討 11
2-1發光特性 11
2-2 暫態過渡現象 16
2-3 穩態工作特性 26
2-3-1燈管功率對燈管特性之影響 26
2-3-2使用時數對燈管特性之影響 31
第三章 音頻共振 35
3-1音頻共振燈管特性 35
3-2音頻共振頻率分佈 41
3-2-1相異燈管的頻率分佈 41
3-2-2使用時數的影響 45
3-2-3燈管功率的影響 45
3-3避免音頻共振的方法 49
3-3-1定頻操作之電子安定器 51
3-3-2低頻方波驅動之電子安定器 53
第四章 熱點燈 58
4-1熱點燈之對策 58
4-2 兩級升壓式高電壓點火電路 58
4-3 單級高電壓點火電路 70
第五章 泛用電源之高功因定功率電子安定器 72
5-1電路架構 72
5-2工作原理 75
5-3電路特性分析 79
5-4應用實例及量測 83
第六章 單級高功因可熱點燈電子安定器 96
6-1電路架構 96
6-2工作原理 98
6-3電路分析 101
6-4應用實例及量測 106
6-5保護電路與多燈操作 110
第七章 結論與未來研究方向 118
參考文獻 121
參考文獻 References
[1] IES Lighting Handbook, Reference and Application, Illuminating Engineering Society of North America, 8th Edition, 1995.
[2] POWERSTAR HOI-T and HQI-TS compact metal-halide lamps, Technical information, OSRAM company, 1997.
[3] M. Sugiura, “Review of Metal-Halide Discharge-Lamp Development 1980-1992,” IEE Proceedings-Science, Measurement and Technology, Vol. 140, Pt. A, No. 6, pp. 443-449, Nov. 1993.
[4] R. G. Gibson, “Dimming of Metal Halide Lamps,” Journal of the Illuminating Engineering Society, pp. 19-25, Summer 1994.
[5] N. Fukumori, H. Nishimura, K. Uchihashi, and M. Fukuhara, “A Study of HID Lamp Life when Operated by Electronic Ballasts,” Journal of the Illuminating Engineering Society, pp. 41-47, Winter 1995.
[6] W. Pabst and D. Klien, “Igniting High-Pressure Lamps with Electronic Ballasts,” Journal of the Illuminating Engineering Society, pp. 14-20, Summer 1992.
[7] I. K. Lee, S. J. Choi, K. C. Lee, and B. H. Cho, “Modeling and Control of Automotive HID Lamp Ballast,” IEEE International Conference on Power Electronics and Drive Systems, pp. 506-510, July 1999.
[8] T. R. Chen, J. J. Cheh, Te C. Chen, J. W. Lin, and J. B. Chen, “Implementation of Dimmable Electronic Ballast for High Pressure Sodium Lamp,” 19th Symposium on Electrical Power Engineering, Taipei, Taiwan, pp. 1068-1072, 1998.
[9] XBO Xenon Short Arc Lamps, OSRAM Berlin-Munich Germany, 1978.
[10] A. R. Prasad, P. D. Ziogas, and S. Manlas, “A Novel Passive Waveshaping Method for Single-Phase Diode Rectifiers,” IEEE Transactions on Industrial Electronics, Vol. 37, No. 6, pp. 521-530, Dec. 1990.
[11] J. Olsen and W. P. Moskowitz, “Time Resolved Measurements of HID Lamp Acoustic Frequency Spectra,” IEEE Industry Applications Society Annual Meeting, pp. 2111-2116,1998.
[12] H. L. Witting, “Acoustic Resonances in Cylindrical High-Pressure Arc Discharges,” 1978 American Institute of Physics, pp. 2680-2683, May 1978.
[13] S. Wada, A. Okada, and S. Morri, “Study of HID Lamps with Reduced Acoustic Resonances,” Journal of the Illuminating Engineering Society, pp. 162-175, Winter 1987.
[14] H. Peng, S. Ratanapanachote, P. Enjeti, L. Laskai, and I. Pitel, “Evaluation of Acoustic Resonance in Metal Halide (MH) Lamps and An Approach to Detect Its Occurrence,” IEEE Industry Applications Society Annual Meeting, pp. 2276-2283, Oct. 1997.
[15] Requirements for Ignitors for Xenon Lamps, OSRAM Munich Germany, 1978.
[16] T. F. Lin, C. S. Moo, M. J. Soong, W. M. Chen, and C. R. Lee, “A High-Power-Factor Electronic Ballast for Metal Halide Lamps with Hot Restarting,” IEEE International Conference on Industrial Electronics Control and Instrumentation, pp. 2261-2266, 2000.
[17] W. M. Keeffe, “Recent Progress in Metal Halide Discharge-Lamp Research,” IEE Proceedings-Instrument Electric Engineering, Vol. 127, Pt. A, No. 3, pp 181-189, April 1980.
[18] E. Rasch and E. Statnic, “Behavior of Mental Halide Lamps with Conventional and Electronic Ballast,” Journal of the Illuminating Engineering Society, pp. 88-96, Summer 1991.
[19] W. R. Alling, “Important Design Parameters for Solid-State Ballasts,” IEEE Transactions on Industry Applications, Vol. 25, No. 2, pp. 203-207, Mar./Apr. 1989.
[20] H. J. Faehnrich and E. Rasch, “Electronic Ballasts for Metal Halide Lamps,” Journal of the Illuminating Engineering Society, pp. 131-140, Summer 1988.
[21] E. J. P. Mascarenhas, “Applications of Electronic Circuits in Lighting,” IEE Proceedings-Science, Measurement and Technology, Vol. 140, Pt. A, No. 6, pp. 435-442, Nov. 1993.
[22] M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 4, pp. 418-425, Aug. 1994.
[23] W. W. Byszewski, A. B. Budinger, and Y. M. Li, “HID Starting: Glow Discharge and Transition to the Thermionic Arc,” Journal of the Illuminating Engineering Society, pp. 3-9, Summer 1991.
[24] G. Zaslavsky, S. Cohen, and W. Keeffe, “Improved Starting of the 100-W Metal Halide Lamp,” Journal of the Illuminating Engineering Society, pp. 76-83, Summer 1990.
[25] T. J. Liang, K. H. Su, and W. H. Fu, “High Frequency Electrical Circuit Model of Metal-Halide Lamp,” IEEE Applied Power Electronics Conference and Exposition, pp. 1163-1167, 1998.
[26] M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 4, pp. 418-425, Aug. 1994.
[27] R. Severns, “Topologies for Three-Element Resonant Converter,” IEEE Transactions on Power Electronics, Vol. 7, No. 1, pp.89-98, Jan. 1992.
[28] B. L. Hesterman and T. M. Poehlman, “A Novel Parallel-Resonant Programmed Start Electronic Ballast,” IEEE Industry Applications Society Annual Meeting, pp.249-255,Oct. 1999.
[29] M. Gulko and S. Ben-Yaakov, “Current-Sourcing Push-Pull Parallel-Resonance Inverter (CS-PPRI): Theory and Application as a Discharge Lamp Driver,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 3, pp. 285-291, June 1994.
[30] P. K. Jain, A. St-Martin, and G. Edwards, “Asymmetrical Pulse-Width-Modulated Resonant DC/DC Converter Topologies,” IEEE Transactions on Power Electronics, Vol. 11, No. 3, pp. 413-422, May 1996.
[31] R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Transactions on Power Electronics, Vol. 3, No. 2, pp. 174-182, April 1988.
[32] Y. G. Kang, A. K. Upadhyay, and D. L. Stephens, “Analysis and Design of a Half-Bridge Parallel Resonant Converter Operating Above Resonance,” IEEE Transactions on Industry Applications, Vol. 27, No. 2, pp. 386-395, March/April 1991.
[33] R. L. Steigerwald, “A Comparison of Half-Bridge Resonant Converter Topologies,” IEEE Transactions on Power Electronics, Vol. 8, No. 4, pp.386-395, Oct. 1993.
[34] M. K. Kazimieroczuk, “Class D Voltage-Switching MOSFET Power Amplifier,” IEE Proceedings-Electric Power Application, Vol. 138, Pt. B, No. 6, pp. 285-296, Nov. 1991.
[35] C. S. Moo, C. R. Lee, and Y. C. Chuang, “A Protection Circuit for Electronic Ballasts with Self- Excited Series-Load Resonant Inverter,” IEEE International Conference on Industrial Electronics Control and Instrumentation, pp. 1116- 1121, 1996.
[36] C. L. Tsay, H. S. Chun, L. M. Wu, and K. S. Kwan, “Development of the Versatile Electronic Ballast For Metal Halide Lamps with Phase-Shift Soft-Switching Control,” IEEE Industry Applications Society Annual Meeting, Vol. 4, pp. 2112-2119, 1996.
[37] Philips Semiconductors, “UBA2021 570V Drive IC for CFL and TL Lamps,” Application Note AN98099, 1998.
[38] International Rectifier “Self-Oscillation Half-Bridge Drive,” Control Integrated Circuit Designers,” Manual, pp. B199-B204,1994.
[39] J. Adams, T. J. Ribarich, and J. Ribarich, “A New Control IC for Dimmable High-Frequency Electronic Ballasts,” IEEE Applied Power Electronics Conference and Exposition, pp. 713-719, 1999.
[40] I. S. Yeo, D. H. Lee, and S. B. Song, “A Simple Electronic Starter Capable of End-Of-Life Protection for Fluorescent Lamps,” IEEE Applied Power Electronics Conference and Exposition, pp. 473-479, 1999.
[41] J. M. Alonso, A. J. Calleja, F. J. Ferrero, E. Lopez, J. Ribes, and M. Rico-Secades, “Signle-Stage Constant-Wattage High-Power-Factor Electronic Ballast with Dimming Capability,” IEEE Power Electronics Specialist Conference, pp. 2021-2027, 1998.
[42] R. G. Gibson, “Dimming of Metal Halide Lamps,” Journal of the Illuminating Engineering Society, pp. 19-25, Summer 1994.
[43] J. S. Subjak and J. S. Mcquilkin, “Harmonics-Causes, Effects, Measurements, and Analysis: An Update,” IEEE Transactions on Industry Applications, Vol. 26, No. 6, pp. 1032-1042, Nov./Dec. 1990.
[44] R. P. Stratford, “Harmonic Pollution on Power System- A Change in Philosophy,” IEEE Transactions on Industry Applications, Vol. 16, No. 5, Sep./Oct. 1980.
[45] M. E. Amoli and T. Florence, “Power Factor and Harmonic Distortion Characteristics of Energy Efficient Lamps,” IEEE Transactions on Power Delivery, Vol. 4, No. 3, pp. 1965-1969, July 1989.
[46] International Electromechanical Commission IEC 555-2 Standards: Disturbances in Supply Systems caused by Household Appliances and Similar Electrical Equipment, Part 2: Harmonics.
[47] R. O. Brioschi and J. L. F. Vieira, “High-Power-Factor Electronic Ballast with Constant DC-Link Voltage,” IEEE Transactions on Power Electronics, Vol. 13, No. 6, pp. 1030-1037, Nov. 1998.
[48] M. H. Kheraluwala and S. A. Hamamsy, “Modified Valley Fill High Power Factor Electronic Ballast for Compact Fluorescent Lamps,” IEEE Power Electronics Specialist Conference, pp. 10-14, 1995.
[49] J. Qian, F. C. Lee, and T. Yamauchi, “Analysis, Design and Experiments of a High Power Factor Electronic Ballast,” IEEE Applied Power Electronics Conference and Exposition, pp. 1024-1029, 1997.
[50] R. D. O. Brioschi and J. L. F. Vieira, “High-Power-Factor Electronic Ballast with Constant DC-Link Voltage,” IEEE Transactions on Power Electronics, Vol. 13, No. 6, pp. 1030-1037, Nov. 1998.
[51] J. Qian and F. C. Y. Lee, “A High-Efficiency Single-Stage Single-Switch High-Power-Factor AC/DC Converter with Universal Input,” IEEE Transactions on Power Electronics, Vol. 13, No. 4, pp. 699-705, July 1998.
[52] C. S. Moo, C. R. Lee, and T. F. Lin, “A High-Power-Factor Dc-link Resonant Inverter,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 4, pp. 814-819, Aug. 1999.
[53] C. S. Moo, C. R. Lee, and H. C. Yen, “A High-Power-Factor Constant-Frequency Electronic Ballast for Metal Halide Lamps,” IEEE Power Electronics Specialist Conference, pp. 1755-1760, May, 1998.
[54] C. S. Moo, T. F. Lin, and Y. C. Chuang, “An Electronic Ballast for Operating Fluorescent Lamps in Wide Temperature Range,” IEEE Applied Power Electronics Conference and Exposition, pp. 577-583, 2000.
[55] T. F. Wu, C. Y. Lee, Y. J. Wu, and J. Y. Su, “Improvement on Component Stresses of Single-Stage Electronic Ballasts,” IEEE Industry Applications Society Annual Meeting, pp. 285-292, 1999.
[56] H. Güldner, K. Lehnert, F. Böhme, and F. Raiser, “Principles of Electronic Ballasts for Fluorescent Lamps- an Overview,” IEEE Power Electronics Specialist Conference, pp. 19-25, 1999.
[57] T. F. Wu, T. H. Yu, and M. C. Chiang, “Single-Stage Electronic Ballast with Dimming Feature and Unity Power Factor,” IEEE Transactions on Power Electronics, Vol. 13, No.3, pp. 586-597, May 1998.
[58] C. S. Moo, T. F. Lin, and Y. C. Hsieh, “A Single-Stage High Power Factor Electronic Ballast for Fluorescent Lamps with Constant Power Operation,” IEE Proceedings-Electric Power Application, Vol. 148, No. 5, pp. 465-468, Sep. 2001.
[59] Recommendations for Ignitors for Metal Halide Lamps HQI, OSRAM, Feb. 1988.
[60] W. M. Flanagan, Handbook of Transformer Design & Applications, McGraw-Hill, Inc. New York, 1992.
[61] C. S. Moo, T. F. Lin, and Y. C. Chuang, “Design an Ignitor for Short-Arc Xenon Lamps,” IEEE Industry Applications Society Annual Meeting, pp 612-617, 1999.
[62] W. D. Greason, Z. Kucerovsky, S. Bulach, and M. W. Flatley, “Investigation of the Optical and Electrical Characteristics of a Spark Gap,” IEEE Industry Applications Society Annual Meeting, pp. 2059-2064, 1996.
[63] D. Klien, “A New Heating Concept for Fluorescent Lamp Ballasts,” IEEE Industry Applications Society Annual Meeting, pp. 3428-3433, Oct. 2000.
[64] E. E. Hammer, “Photocell Enhanced Technique for Measuring Starting Electrode Temperature of Fluorescent Lamps,” IEEE Industry Applications Society Annual Meeting, pp.2313-2333, Oct. 1997.
[65] C. S. Moo, H. C. Yen, and Y. C. Hsieh, “Fluorescent Lamp Model for High-Frequency Electronic Ballasts,” IEEE Industry Applications Society Annual Meeting, pp.3361-3366, Oct. 2000.
[66] Y. Ji, R. Davis, C. O’Rourke, and W. M. Chui, “Compatibility Testing of Fluorescent Lamp and Ballast Systems,” IEEE Transactions on Industry Applications, Vol. 35, No. 6, pp. 1271-1276, Nov./Dec. 1999.
[67] E. E. Hammer, “High Frequency Characteristics of Fluorescent Lamps up to 500kHz,” Journal of the Illuminating Engineering Society, pp. 52-61, Winter 1987.
[68] M. Graovac, F. P. Dawson, M. Fila, and D. E. Cormack, “Fluorescent Lamp Cold Environment Performance Improvement,” IEEE Industry Applications Society Annual Meeting, pp. 2158-2163, 1998.
[69] E. E. Hammer, “Effects of Ambient Temperature on the Performance of Bent Tube Fluorescent Lamps,” IEEE Transactions on Industry Applications, Vol. 25, No. 2, pp. 216-223, March/April 1989.
[70] E. E. Hammer, “Starting Voltage Comparisons with Various Bent Tube Fluorescent Lamps,” Journal of the Illuminating Engineering Society, pp. 2-14, Winter 1990.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.196.217
論文開放下載的時間是 校外不公開

Your IP address is 18.117.196.217
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code