Responsive image
博碩士論文 etd-0123108-175549 詳細資訊
Title page for etd-0123108-175549
論文名稱
Title
氧化鋅薄膜螢光特性之研究
Study on the Luminescence Characteristics of ZnO Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-04
繳交日期
Date of Submission
2008-01-23
關鍵字
Keywords
氧化鋅、光激發光、濺鍍法、氧空缺
ZnO, Sputtering, Photoluminescence, Oxygen Vacancy
統計
Statistics
本論文已被瀏覽 5702 次,被下載 2370
The thesis/dissertation has been browsed 5702 times, has been downloaded 2370 times.
中文摘要
氧化鋅薄膜是一個適合當作綠光電激發光元件發光層的發光材料,而探討氧化鋅薄膜的綠光發光機制便為一個重要的議題。
本論文以溶膠-凝膠法與射頻磁控濺鍍法製備氧化鋅薄膜,並利用快速熱退火技術進行不同溫度(200℃~900℃)及不同退火氣氛(真空、空氣及氧氣)的熱退火。先對不同製備技術製作之氧化鋅薄膜的物性與光激發光特性進行分析及討論;再藉由X光光電子能譜儀分析氧化鋅薄膜之化學組成特性,並與光激發光特性相互比較以找出造成氧化鋅薄膜綠光發光的主要發光中心;最後再將氧化鋅薄膜應用於交流電激發光元件的製作,並討論其特性。
根據利用溶膠-凝膠法與快速熱退火製備氧化鋅薄膜的實驗結果顯示,氧化鋅薄膜在退火後呈現較強之C軸優選且晶粒隨著退火溫度增加而變大。由光激發光光譜分析可知在紫外光波長位置有紫外光放射產生,且強度皆隨退火溫度增加而增強。在900℃氧氣氛下退火的氧化鋅薄膜可得到最強的紫外光放射。經由X光電子能譜儀分析可知在900℃氧氣氛下退火的氧化鋅薄膜具有較多的激發子因而造成較強的紫外光發光。但利用溶膠-凝膠法製備的氧化鋅薄膜卻無法得到綠光的放射。
而在射頻磁控濺鍍法與快速熱退火製備氧化鋅薄膜方面,X光繞射分析(XRD)顯示經退火後的氧化鋅薄膜具優選晶向,經200℃~500℃退火的氧化鋅薄膜的晶粒隨退火溫度增加而增大,在600℃及700℃時呈現熔融狀態,而在900℃退火下可得到最大及完整的氧化鋅晶粒。光激發光顯示在200℃~500℃的退火下,氧化鋅薄膜會產生紫外光放射且強度隨退火溫度增加而增強。當退火溫度超過500℃後,紫外光強度開始減弱且可得到綠光發光,其強度亦隨退火溫度增加而增強,至900℃退火後可得到最強的綠光放射。且在不同退火氣氛下退火的氧化鋅薄膜所得到的綠光放射皆位在523nm的位置,表示在不同環境下產生綠光的發光中心皆為同一種缺陷,以在900℃及空氣氣氛下退火之氧化鋅薄膜有最強的綠光放射。經由X光光電子能譜儀分析知,在空氣氣氛下600℃~900℃環境退火後的氧化鋅薄膜,其氧空缺濃度隨退火溫度增加而增加;在900℃不同退火氣氛下的氧空缺又以在空氣氣氛下為最多。
根據以上分析結果顯示,若以射頻磁控濺鍍法製備氧化鋅薄膜,為得到高比例鋅原子的存在,須先利用室溫成長薄膜以求增加薄膜內部鋅原子的比例,再進行高溫退火條件的控制,結果確實能得到比一般製程更強的綠光放射,而造成氧化鋅薄膜綠光發光的主要發光中心為氧空缺;另外,若是以溶膠-凝膠法製備氧化鋅薄膜,則因為Zn-O化學當量組成相當良好,所製備的氧化鋅薄膜的發光特性則以紫外光為主。
Abstract
ZnO thin film is a suitable material for the phosphor layer of green emission of the electroluminescence (EL) device. Therefore, the luminescence mechanism of green emission of ZnO thin film is a key issue to be investigated.
In this thesis, ZnO thin films are deposited on SiO2/Si substrates using sol-gel method and sputtering technology, and then post-annealed by a rapid thermal annealing (RTA) process under various annealing temperatures (200℃~900℃) and atmospheres (vacuum, ambient atmosphere and oxygen). The physical and photoluminescence (PL) characteristics were first discussed. Secondly, the relationship between the chemical composition and the PL properties were also investigated to figure out the dominant luminescent center of ZnO thin film. Finally, ZnO thin film was applied as the phosphor layer of AC thin film EL device and the characteristics were discussed.
According to the experimental results of ZnO thin film prepared using sol-gel method and RTA process, the XRD patterns show a preferred (002) orientation after annealing. The grain size became larger with the increasing annealing temperature. From PL measurement, two ultraviolet (UV) luminescence bands were obtained, and the intensity became stronger when the annealing temperature was increased. The strongest UV light emission appeared at annealing temperature of 900℃ in oxygen. The X-ray photoelectron spectrum (XPS) demonstrated that a more stoichiometric ZnO thin film was obtained upon annealing in oxygen and more excitons were generated from the radiative recombination carriers consistently, and resulted in the strong UV emission. However, no green emission was obtained from ZnO thin film prepared by sol-gel method.
The XRD patterns also exit an excellent preferred (002) orientation of ZnO thin film deposited using sputtering and RTA process. The grain size of ZnO thin film annealed at 200℃~500℃ increased with the increasing annealing temperature, and then exhibited a melting state with the temperature of 600℃~700℃. A large and complete grain was observed at the temperature of 900℃. The PL spectrum illustrated that a stronger UV emission intensity appeared at annealing temperature of 500℃. On the other hand, the green light emission could be obtained as ZnO films were annealed above 500℃ and reached a maximum intensity at 900℃. Based on the XPS analysis, the O1s peak of ZnO film revealed that the concentration of oxygen vacancy increased with the annealing temperature from 600℃ to 900℃ under an ambient atmosphere. The PL results demonstrated that the intensity of green light emission at 523nm also increased with temperature. Under various annealing atmospheres, the analyses of PL indicated that only one emission peak (523nm) was obtained, indicating that only one class of defect was responsible for the green luminescence. The green light emission was strongest and the concentration of oxygen vacancies was highest when the ZnO film was annealed in ambient atmosphere at 900℃.
According to the experimental results manifested above, room temperature was used to deposit films to increase the ratio of Zn atoms inside the thin film when using sputtering technique to deposit ZnO thin film. With the modulation of the annealing parameters, stronger green light emission could be obtained. The luminescence mechanism of the emission of green light from a ZnO thin film is associated primarily with oxygen vacancies. In addition, only UV light emission of ZnO thin film prepared using sol-gel method was obtained because of the better stoichiometry.
目次 Table of Contents
Abstract………………………………………………………………………………I
Content………………………………………………………………………………VI
Chapter 1 Inroduction………………………………………………………………1
1.1 General background and motivation……………………………………………1
1.2 Organization of this thesis………………………………………………………4
Chapter 2 Theory………………………………………………………………………6
2.1 Luminescence Theory………………………………………………………….6
2.1.1 Luminescence………………………………………………………………6
2.1.2 Luminescence Mechanism…………………………………………………7
2.1.3 Luminescence Center………………………………..……………………..8
2.1.4 Luminescence Materials……………………………………………………9
2.2 Electroluminescence Device…………………………………..………………13
2.2.1 Mechanism of EL device……………………………….…………………13
2.2.2 Phosphor Materials…………………………………………………….…14
2.3 Characteristics of ZnO…………………………………….………………..…15
2.3.1 Introduction of ZnO………………………………………………………15
2.3.2 Applications of ZnO thin films………………………………….…..……15
2.4 Sol-Gel Technique…………………………………………………….…….…16
2.4.1 Sol-gel processing…………………………………………….………..…16
2.4.2 Fabrication of the film………………………………………………….…17
2.5 Sputtering Technique…………………………………………………..………17
2.5.1 Magnetron Sputtering…………………………………………………..…18
2.5.2 RF Sputtering………………………………………………………..……18
2.5.3 Reactive Sputtering…………………………………………..……...……19
2.6 Evaopration……………………………………………………………………20
2.7 Thermal Annealing…………………………………………………………….21
Chapter 3 Experiments……………………………………………………………….22
3.1 Fabrication of ZnO thin films………………………………………………….22
3.1.1 Thin film deposition………………………………………………..……..22
3.1.2 Thermal processing………………………………………………….……24
3.1.3 Structure of EL Device………………………………………..…………..25
3.1.4 Deposition of SiO2………………………………………………………..25
3.1.5 Deposition of ITO………………………………….……………….…….25
3.1.6 Evaporation of Al Electrode………………………………………………25
3.2 Characteristics of ZnO thin films……………………………………………...26
3.2.1 XRD analysis……………………………............................…....………...26
3.2.2 SEM analysis……………………………….................................………..26
3.2.3 AFM analysis……………………………………………….……………..26
3.2.4 XPS analysis…………………………………………………….………...26
3.2.5 PL analysis………………………………………………………………...27
3.2.6 CL analysis………………………………………………………………..27
3.2.7 I-V analysis………………………………………………………………..27
Chapter 4 Results and Discussion…………………………………………….……...28
4.1 The characteristics of ZnO thin films by Sol-Gel method…………..………...28
4.1.1 TGA/DTA…………………………………………………………………28
4.1.2 The properties of ZnO thin film annealed at various temperatures……….28
4.1.3 The properties of ZnO thin film annealed in various atmospheres……….31
4.2 The characteristics of ZnO thin films by Sputtering…………………………..35
4.2.1 The properties of ZnO thin film annealed at various temperatures……….35
4.2.2 The properties of ZnO thin film annealed in various atmospheres……….35
4.3 EL device of ZnO thin films by Sputtering …………………………………...42
Chapter 5 Conclusion………………………………………………………………...43
Chapter 6 Future Works……………………………………………………………...46
References……………………………………………………………………………47

Figures Caption



Fig. 1-1 Types and properties of EL device………………………………………...54
Fig. 2-1 The electromagnetic spectrum of the optical region………………………55
Fig. 2-2 The interaction between a photon and an electron in a solid……………...56
Fig. 2-3 The schematic structure of the traditional thin film EL device……………57
Fig. 2-4 Energy-band diagram of the EL device and the mechanism of the EL emission…………………………………………………………………...58
Fig. 2-5 The structure of ZnO………………………………………………………59
Fig. 2-6 The schematic diagram of the spin coating process……………………….60
Fig. 2-7 The structure diagram of the sealed circular magnetron…………………..61
Fig. 2-8 The schematic diagram of plasma and ion bombard………………………62
Fig. 2-9 Model of the reactive sputtering………………………………………..…63
Fig. 2-10 The schematic diagram of the infrared gold image furnace......................64
Fig. 3-1 The flow chart o. the experiment………………………………………….65
Fig. 3-2 Flow chart of sol-gel technique for ZnO thin film………………………..66
Fig. 3-3 The schematic diagram of the RF magnetron sputtering equipment……...67
Fig. 3-4 The structure of the Si EL device………………………………………….68
Fig. 3-5 The diagram of the photoluminescence system…………………………...69
Fig. 4-1 TG/DTA curves of the dried ZnO gel……………………………………..70
Fig. 4-2 XRD patterns of sol-gel-synthesized ZnO thin films annealed at various temperatures………………………………………………………………71
Fig. 4-3 SEM pictures of sol-gel-synthesized ZnO thin films annealed at various temperatures……………………………………………………………….72
Fig. 4-4 The trend of the grain size vs. the FWHM values of sol-gel-synthesized ZnO thin films annealed at various temperatures…………………………73
Fig. 4-5 PL spectra of sol-gel-synthesized ZnO thin films annealed at various temperatures………………………………………………………………74
Fig. 4-6 A typical wide-scan spectrum of sol-gel-synthesized ZnO thin films annealed at 600℃…………………………………………………………75
Fig. 4-7 Three fitted components of the O 1s peak of sol-gel-synthesized ZnO thin films……………………………………………………………………….76
Fig. 4-8 The relative intensity of three binding energy peaks of sol-gel-synthesized ZnO thin films annealed at various temperatures…………………………77
Fig. 4-9 XRD patterns of sol-gel-synthesized ZnO thin films annealed at 900℃ in various atmospheres……………………………………………………….78
Fig. 4-10 SEM pictures of sol-gel-synthesized ZnO thin films annealed at 900℃ in various atmospheres……………………………………………………...79
Fig. 4-11 Surface roughness of the as-grown and annealed ZnO thin films under various atmospheres..…………………………………………………….80
Fig. 4-12 PL intensities of sol-gel-synthesized ZnO thin films annealed at 900℃ in various atmospheres……………………………………………………...81
Fig. 4-13 The relative intensities of three binding energy peaks of sol-gel-synthesized ZnO thin films annealed in various annealing atmospheres..……………………………………………………………..82
Fig. 4-14 The UV intensity as a function of the thickness of ZnO thin films annealed in various atmospheres.…………………………………………………..83
Fig. 4-15 XRD patterns of ZnO films as-grown and annealed from 200℃ to 900℃………………………………………………………………………...84
Fig. 4-16 The Zn (101) diffraction peak of ZnO films as-grown and annealed at temperatures from 200℃ to 500℃.……………………………………..85
Fig. 4-17 The relative intensities of ZnO (002) and Zn (101) peaks……………….86
Fig. 4-18 The SEM morphologies of ZnO films (a) as-grown and annealed at (b) 200℃, (c) 300℃, (d) 400℃, (e) 500℃, (f) 600℃, (g) 700℃, (h) 800℃ and (i) 900℃.…………………………………………………………………87
Fig. 4-19 PL spectra of ZnO films as-grown and annealed under 200℃ to 900℃..88
Fig. 4-20 A typical wide-scan spectrum of the ZnO film prepared by sputtering and annealed at 600℃..………………………………………………………89
Fig. 4-21 The relative intensities of three binding energy of ZnO films annealed from 600℃ to 900℃.……………………………………………………90
Fig. 4-22 The PL intensity ratio versus the relative intensity of oxygen vacancy of ZnO films annealed at 600~900℃...……………………………………..91
Fig. 4-23 XRD patterns of ZnO thin films annealed at 900℃ in various atmospheres………………………………………………………………92
Fig. 4-24 SEM pictures of ZnO thin film annealed in various atmospheres at 900℃…………………………………………………………………………93
Fig. 4-25 The relative intensities of three binding energy of the ZnO film annealed at 900℃ in various atmospheres.…………………………………………..94
Fig. 4-26 PL spectra of ZnO films annealed at 900℃ in various atmospheres…....95
Fig. 4-27 The relationship between the PL ratio and the relative amount of oxygen vacancies of the ZnO thin film annealed in various atmospheres……….96
Fig. 4-28 CL spectra of ZnO thin film annealed at 900℃ in air atmosphere…...…97
Fig. 4-29 I-V curve of ZnO EL device.…………………………………..…………98
Fig. 4-30 The measurement setup and the photograph of the green emission of ZnO EL device...…………………………………………………………99
Tables Caption

Table 1 The detail of the advantages and drawbacks……………………………...100
Table 2 Characteristics of low-voltage phosphor materials……………………….101
Table 3 Characteristics of ZnO……………………………………………………102
參考文獻 References
[1] B. Y. Lee, L. G. Kim and S. W. Cho, Thin Solid Films, 302 (1997) 25.
[2] M. H. Song, Y. H. Lee and T. S. Hahn, Solid State Electron., 42 (1998) 1711.
[3] W. F. Yao, H. Wang, X. H. Xu and S. X. Shang, Mater. Lett., 57 (2003) 1899.
[4] Y. A. Ono, “Electroluminescent display”, World Scientific, Singapore, (1995) Chap. 5.
[5] J. Ohwaki, O. Kogure and B. Tsujiyama, Rev. Electron Comm. Lab., 35 (1987) 741.
[6] M. Yokoyama, Soc. Automotive Eng. Int. Congress., Detroit (1988) 47.
[7] P. D. Rack and P. H. Holloway, Mater. Sci. Eng. R, 21 (1998) 171.
[8] A. N. Krasnov and P. G. Hofstra, Prog. Cryst. Growth Charact. Mater., (2001) 65.
[9] T. Toyama, D. Adachi, M. Fujii, Y. Nakano and H. Okamoto, J. Non-cryst. Solids., 299-302 (2002) 1111.
[10] K. Okamoto, T. Yoshimi, K. Nakamura, T. Kobayashi, S. Sato and S. Miura, Jpn. J. Appl. Phys., 28 (1989) 1378.
[11] A. H. Kitai, Thin Solid Films, 445 (2003) 367.
[12] X. Ouyang, A. H. kitai and T. Xiao, J. Appl. Phys., 79 (1996) 3229.
[13] G. Ning, X. Zhao, J. Li and C. Zhang, Opt. Mater., 28 (2006) 385.
[14] V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva and E. Vavrinsky, Thin Solid Films, 515 (2007) 8756.
[15] Q. P. Wang, D. H. Zhang, Z. Y. Xue and X. J. Zhang, Opt. Mater., 26 (2004) 23.
[16] R. Hong, H. Qi, J. B. Huang, H.B. He, Z. X. Fan and J. Shao, Thin Solid Films, 473 (2005) 58.
[17] J. Lim, K. Shin, H. W. Kim and C. Lee, J. Lumin., 109 (2004) 181.
[18] S. Bethke, H. Pan and B. W. Wessels, Appl. Phys. Lett., 52 (1998) 138.
[19] T. Minami, H. Nanto and S. Takata, Thin Solid Films, 109 (1983) 379.
[20] B. J. Pierce and R. L. Hengehold, J. Appl. Phys., 47 (1976) 477.
[21] R. Dingle, Phys. Rev. Lett., 23 (1969) 579.
[22] X. D. Gao, X. M. Li and W. D. Yu, Mater. Sci. Eng. B, 113 (2004) 274.
[23] Q. P. Wang, D. H. Zhang, Z. Y. Xue and X. T. Hao, Appl. Surf. Sci., 201 (2002) 123.
[24] K. Sakurai, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, S. Fujita and S. Fujita, Jpn. J. Appl. Phys., 39 (2000) L1146.
[25] S. A. Studenikin, N. Golego and M. Cocivera, J. Appl. Phys., 84 (1998) 2287.
[26] X. Xu, C. Guo, Z. Qi, H. Liu, J. Xu, C. Shi, C. Chong, W. Huang, Y. Zhou and C. Xu, Chem. Phys. Lett., 364 (2002) 57.
[27] Y. Zou, Y. Wang, Z. Chen, J. Wang and Y. Li, Mater. Lett., 59 (2005) 3042.
[28] Y. Lin, J. Xie, H. Wang, Y. Li, C. Chavez, S. Y. Lee, S. R. Foltyn, S. A. Crooker, A. K. Burrell, T. M. McCleskey and Q. X. Jia, Thin Solid Films, 492 (2005) 101.
[29] W. Q. Peng, S. C. Qu, G. W. Cong and Z. G. Wang, Mater. Sci. Semicond. Process., 9 (2006) 156.
[30] H. S. Kang, J. W. Kim, S. H. Lim, H. W. Chang, G. H. Kim, J. H. Kim and S. Y. Lee, Superlattices Microstruct., 39 (2006) 193.
[31] B. Cao, W. Cai, H. Zeng and G. Duan, J. Appl. Phys., 99 (2006) 073516-1.
[32] H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys., 95 (2004) 1246.
[33] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun., 103 (1997) 459.
[34] S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong and J. B. Ketterson, Appl. Phys. Lett., 75 (1999) 2761.
[35] V. Srikant and D. R. Clarke, J. Appl. Phys., 83 (1998) 5447.
[36] P. H. Kasai, Phys. Rev., 130 (1963) 989.
[37] F. A. Kröger and H. J. Vink, J. Chem. Phys., 22 (1954) 250.
[38] M. Liu, A. H. Kitai and P. Mascher, J. Lumin., 54 (1992) 35.
[39] E. G. Bylander, J. Appl. Phys., 49 (1978) 1188.
[40] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and D. Liu, J. Cryst. Growth, 263 (2004) 269.
[41] B. Lin, Z. Fu, Y. Jia and G. Liao, J. Electrochem. Soc., 148 (2001) G110.
[42] M. T. Mohammad, A. A. Hashim and M. H. Al-Maamory, Mater. Chem. Phys., 99 (2006) 382.
[43] Z. Fu, B. Lin and J. Zu, Thin Solid Films, 402 (2002) 302.
[44] F. Jiang, C. Zheng, L. Wang, W. Fang, Y. Pu and J. Dai, J. Lumin., 122-123 (2007) 905.
[45] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, Appl. Surf. Sci., 142 (1999) 233.
[46] X. H. Li, A. P. Huang, M. K. Zhu, S. L. Xu, J. Chen, H. Wang, B. Wang and H. Yan, Mater. Lett., 75 (2003) 4655.
[47] W. Water and S. Y. Chu, Mater. Lett., 55 (2002) 67.
[48] C. Shi, Z. Fu, C. Guo, X. Ye, Y. Wei, J. Deng, J. Shi and G. Zhang, J. Electron Spectros. Relat. Phenomena., 101-103 (1999) 629.
[49] P. T. Hsieh, Y. C. Chen, K. S. Kao and C. M. Wang, Phys. B, 403 (2008)178.
[50] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, Opt. Mater., 17 (2001) 327.
[51] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng, Chem. Phys. Lett., 375 (2003) 113.
[52] D. G. Baik and S. M. Cho, Thin Solid Films, 354 (1999) 227.
[53] S. Y. Kuo, W. C. Chen and C. P. Cheng, Superlattices Microstruct., 39 (2006) 162.
[54] H. M. Cheng, H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin and W. F. Hsieh, J. Cryst. Growth, 277 (2005) 192.
[55] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, J. Cryst. Growth, 209 (2000) 522.
[56] J. Zhao, L. H. Hu, Z. Y. Wanf, Y. Zhao, X. P. Liang and M. T. Wang, Appl. Sur. Sci., 229 (2004) 311.
[57] S. J. Chen, Y. C. Liu, J. G. Ma, D. X. Zhao, Z. Z. Zhi, Y. M. Lu, J. Y. Zhang, D. Z. Shen and X. W. Fan, J. Cryst. Growth, 240 (2002) 467.
[58] R. K. Gupta, N. Shridhar and M. Katiyar, Mater. Sci. Semicond. Process., 5 (2002) 11.
[59] Y. Yang, H. Yan, Z. Fu, B. Yang, L. Xia, Y. Xu, J. Zuo and F. Li, Solid State Commun., 138 (2006) 521.
[60] Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Lu and B. K. Tay, J. Cryst. Growth, 259 (2003) 335.
[61] D. J. Qiu, H. Z. Wu, A. M. Feng, Y. F. Lao, N. B. Chen and T. N. Xu, Appl. Surf. Sci., 222 (2004) 263.
[62] O. Agyeman, C. N. Xu, W. Shi, X. G. Zheng and M. Suzuki, Jpn. J. Appl. Phys., 41 (2002) 666.
[63] R. Ghosh, G. K. Paul and D. Basak, Mater. Res. Bull., 40 (2005) 1905.
[64] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang and L. S. Wen, Appl. Surf. Sci., 158 (2000) 134.
[65] M. K. Puchert, P. Y. Timbrell and R. N. Lamb, J. Vac. Sci. Technol. A, 14(4) (1996) 2220.
[66] T. Szörényi, L. D. Laude, I. Bertóti, Z. Kántor and Zs. Geretovszky, J. Appl. Phys., 78 (1995) 6211.
[67] J. C. C. Fan and J. B. Goodenough, J. Appl. Phys., 48 (1977) 3524.
[68] P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan and R. M. Perks, Dalton
Trans., (2004) 2995.
[69] C. Y. Leung, A. B. Djurisic, Y. H. Leung, L. Ding, C. L. Yang and W. K. Ge, J. Cryst. Growth, 290 (2006) 131.
[70] X. Wang, T. Yang, G. Du, H. Liang, Y. Chang, W. Liu and Y. Xu, J. Cryst. Growth, 285 (2005) 521.
[71] Y. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu and D. O. Henderson, Solid State Commun., 121 (2002) 531.
[72] S. M. Sze, “Semiconductor Device 2nd”, John Wiley and Sons Inc., New York, (2001) p.283.
[73] Y. C. Huang, Master thesis (Feng-Chia University, 2003).
[74] C. C. Hu, Master thesis (National Sun Yat-Sen University, 2005).
[75] S. H. Su, Ph.D. thesis (National Cheng Kung University, 1998).
[76] J. W. Li, Ph.D. thesis (National Cheng Kung University, 1995)
[77] C. T. Hsu, J. W. Li, C. H. Liu, Y. K. Su and M. Yokoyama, J. Appl. Phys., 71
(1992) 1509.
[78] J. W. Li, Y. K. Su and M. Yokoyama, Jpn. J. Appl. Phys., 32 (1993) 3598.
[79] T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nataka and M. Yoshida, Digest of 1974 SID International Symposium, (1974) 84.
[80] K. H. Yoon and J. Y. Cho, Mater. Res. Bull., 35 (2000) 39.
[81] S. J. Martin, S. S. Schwartz, R. L. Gunshor and R. F. Pieret, J. Appl. Phys., 54 (1983) 561.
[82] J. B. Lee, H. J. Kim, S. G. Kim, C. S. Hwang, S. H. Hong, Y. H. Shin and N. H. Lee, Thin Solid Films, 435 (2003) 179.
[83] D. Song, A. G. Aberle and J. Xia, Appl. Surf. Sci., 195 (2002) 291.
[84] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis and G. Kiriakidis, Thin Solid Films, 515 (2006) 551.
[85] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Vacuum, 72(25) (1998) 3270.
[86] W. Gao and Z. W. Li, J. Alloys and Compounds, 449 (2008) 202.
[87] M. A. Martinez, J. Herrero and M. T. Gutierrez, Solar Energy Mater. Solar Cells, 45 (1997) 75.
[88] R. L. Hoffman, B. J. Norris and J. F. Wagera, Appl. Phys. Lett., 82 (2003) 733.
[89] M. A. Aegerter, M. Jafelicci Jr., D. F. Souza and E. D. Zanotto, “SOL-GEL SCIENCE and TECHNOLOGY’, World Scientific, Singapore (1989).
[90] B. Jirgensons and M. E. Straumains, “Colid Chemistry”, MvMillan Co., New York (1962).
[91] 莊達人,”VLSI製造技術”,高立圖書有限公司,(1995), p.160.
[92] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, (1980) p.201.
[93] S. M. Sze, “Semiconductor Device 2nd”, John Wiley and Sons Inc., New York, (2001) p.425.
[94] F. Shinoki and A. Itoh, J. Appl. Phys., 46 (1975) 3381.
[95] Y. Zhang, B. Lin, Z. Fu, C. Liu, and W. Han, Opt. Mater., 28 (2006) 1192.
[96] H. Li, J. Wang, H. Liu, H. Zhang and X. Li, J. Cryst. Growth, 275 (2005) e943.
[97] A. Chatterjee, C. H. Shen, A. Ganguly, L. C. Chen, C. W. Hsu, J. Y. Hwang and K. H. Chen, Chem. Phys. Lett., 391 (2004) 278.
[98] J. F. Moulder, W. F. Stickel, P. E. Sobol, K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data”, Perkin-Elmer, (1992).
[99] Z. G. Wang, X. T. Zu, S. Zhu and L. M. Wang, Phys. E, 35 (2006) 199.
[100] S. Major, S. Kumar, M. Bhatnagar and K. L. Chopra, Appl. Phys. Lett., 49 (1986) 394.
[101] Z. B. Fang, Z. J. Yan, Y. S. Tan, X. Q. Liu and Y. Y. Wang, Appl. Surf. Sci., 241 (2005) 303.
[102] J. Lim and C. Lee, Thin Solid Films, 515 (2006) 3335.
[103] P. T. Hsieh, Y. C. Chen, K. S. Kao, M. S. Lee and C. C. Cheng, J. Eur. Cream. Soc., 27 (2007) 3815.
[104] B. Manjon, F. J. Manjon, M. Mollar, J. Cembrero and R. Gomez, Appl. Surf. Sci., 252 (2006) 2826.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code