Responsive image
博碩士論文 etd-0123118-095942 詳細資訊
Title page for etd-0123118-095942
論文名稱
Title
利用三維流體力學模擬研究柴油引擎燃燒動力學
3D-CFD simulations of in-cylinder combustion kinetics for a diesel engine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-18
繳交日期
Date of Submission
2018-02-23
關鍵字
Keywords
氮氧化物、庚烷、化學反應機理、柴油引擎、流體力學模型、反應路徑
3D CFD model, Diesel engine, rate of production, mechanism, NOx, n-heptane
統計
Statistics
本論文已被瀏覽 5669 次,被下載 3
The thesis/dissertation has been browsed 5669 times, has been downloaded 3 times.
中文摘要
此研究的目的在於提出一組三維流體力學的模型用於模擬柴油引擎,並研究其燃燒過程
中的反應路徑以及產物的分布情形,以觀察燃料在不同時間以及不同位置的反應,搭配各
化合物在引擎中隨時間變化的濃度,來釐清燃料在引擎中燃燒的狀況。此研究使用了八分
之一扇形的柴油引擎模型,搭配庚烷-氮氧化物的化學反應機理來執行引擎燃燒的模擬。此
化學反應機理耦合了庚烷以及氮氧化物的子模型,合成後的反應機理包含34 個化合物以及
64 個反應方程式。我們在模擬的過程中收集各化合物在引擎內的平均濃度隨時間的變化,
畫出化合物在引擎中的濃度分布圖和反應路徑來做進一步的探討,
由平均濃度結果可知燃料在進入燃燒室的瞬間就開始反應直到燃燒結束,在這過程中藉
由濃度分布圖得知燃燒室中燃料生成不同化合物的位置以及擴散的過程,再搭配反應路徑
了解化合物反應的過程。
最後還有燃燒後的排氣結果比較。如此一來我們可以全面的觀察燃料在引擎中是如何的
燃燒和擴散。
Abstract
This study proposes 3D computational fluid dynamics (CFD) model that analyzes the
relationship between rate of production, contour and mass-average concentration history in diesel
engine combustion. A 45-degree sector engine model and n-heptane-NOx mechanism are used to
predict the diesel engine combustion. The n-heptane-NOx mechanism that combines a n-heptane
mechanism and NOx submodel has 34 species and 64 reactions. The results are analyzed in three
different injection moments: 30%, 60% and 90% of the total fuel mass injected respectively. The
contours and rate of production (ROP) are analyzed with the corresponding mass-average
concentration history.
Fuel decomposition is observed after the fuel is injected into the combustion chamber in terms
of mass-average concentration histories. Fuel propagation and generation of small hydrocarbon
products are clearly seen in contour analyses. Besides, the reaction pathways explain the
formation of chemical species. The results comprehensively describe the combustion details of in
diesel engine.
目次 Table of Contents
論文審訂書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
Table of Contents vi
List of Figures ix
List of Tables xiii
Nomenclature xiv
1. Introduction 1
1.1. Research purposes 3
2. Methodology 3
2.1. Diesel surrogate mechanism 4
2.1.1. Fuel mechanism arranging 4
2.1.2. 0D closed homogeneous reactor 4
2.2. 3-D engine model 5
2.2.1. Physical model 6
2.2.2. Mesh generation 8
2.2.3. Dynamic mesh 8
2.2.4. Grid independent test 9
2.2.5. Governing equations 10
2.2.6. Boundary and initial conditions 17
2.2.7. Fuel injection 18
2.2.8. Numerical method 19
3. Results and discussion 21
3.1. Validation 21
3.1.1. Kinetic mechanism 21
3.1.2. Internal combustion engine 22
3.2. Mass-average concentration history of in-cylinder combustion 24
3.3. Contours analysis 29
3.3.1. Contours at 30% of the total fuel mass injected 29
3.3.2. Contours at 60% of the total fuel mass injected 36
3.3.3. Contours at 90% of the total fuel mass injected. 42
3.4. Rate of production analysis 48
3.4.1. Rate of production at 30% of the total fuel mass injected 49
3.4.2. Rate of production at 60% of the total fuel mass injected 51
3.4.3. Rate of production at 90% of the total fuel mass injected 52
3.4.4. Rate of production of NOx 53
3.4.5. Evaporation time 53
3.5. Exhaust result 55
4. Conclusions 56
Acknowledgments 57
Appendix A. Detail mechanism 57
Appendix B. Thermal data 59
Appendix C. Transport data 63
References 64
參考文獻 References
1. Hairuddin, A., A. Wandel, and T. Yusaf, An introduction to a homogeneous charge compression ignition engine. Journal of Mechanical Engineering and Sciences, 2014. 7: p. 1042-1052.
2. Alrazen, H.A., et al., A review of the effect of hydrogen addition on the performance and emissions of the compression–Ignition engine. Renewable and Sustainable Energy Reviews, 2016. 54: p. 785-796.
3. Papagiannakis, R., et al., A combined experimental and theoretical study of diesel fuel injection timing and gaseous fuel/diesel mass ratio effects on the performance and emissions of natural gas-diesel HDDI engine operating at various loads. Fuel, 2017. 202: p. 675-687.
4. Pei, Y., et al., A multicomponent blend as a diesel fuel surrogate for compression ignition engine applications. Journal of Engineering for Gas Turbines and Power, 2015. 137(11): p. 111502.
5. Ranzi, E., et al., Reduced kinetic schemes of complex reaction systems: fossil and biomass‐derived transportation fuels. International Journal of Chemical Kinetics, 2014. 46(9): p. 512-542.
6. Stagni, A., et al., Skeletal mechanism reduction through species-targeted sensitivity analysis. Combustion and Flame, 2016. 163: p. 382-393.
7. Hiroyasu, H. Diesel engine combustion and its modeling. in COMODIA. 1985.
8. Amsden, A.A., KIVA-3V: A block-structured KIVA program for engines with vertical or canted valves. 1997, Los Alamos National Lab., NM (United States).
9. Jasak, H., A. Jemcov, and Z. Tukovic. OpenFOAM: A C++ library for complex physics simulations. in International workshop on coupled methods in numerical dynamics. 2007. IUC Dubrovnik, Croatia.
10. Fluent, A., Ansys fluent theory guide. ANSYS Inc., USA, 2011. 15317: p. 724-746.
11. Kong, S.-C., Z. Han, and R.D. Reitz, The development and application of a diesel ignition and combustion model for multidimensional engine simulation. 1995, SAE Technical paper.
12. Mati, K., et al., The oxidation of a diesel fuel at 1–10atm: Experimental study in a JSR and detailed chemical kinetic modeling. Proceedings of the Combustion Institute, 2007. 31(2): p. 2939-2946.
13. Farrell, J., et al., Development of an experimental database and kinetic models for surrogate diesel fuels. 2007, SAE Technical Paper.
14. Lemaire, R., et al., Experimental comparison of soot formation in turbulent flames of diesel and surrogate diesel fuels. Proceedings of the Combustion Institute, 2009. 32(1): p. 737-744.
15. Abani, N., et al., An improved spray model for reducing numerical parameter dependencies in diesel engine CFD simulations. 2008, SAE Technical Paper.
16. Kim, H.J., et al., A study of spray strategies on improvement of engine performance and emissions reduction characteristics in a DME fueled diesel engine. Energy, 2011. 36(3): p. 1802-1813.
17. Ra, Y., J.E. Yun, and R.D. Reitz, Numerical parametric study of diesel engine operation with gasoline. Combustion Science and Technology, 2009. 181(2): p. 350-378.
18. Chen, W., S. Shuai, and J. Wang, A soot formation embedded reduced reaction mechanism for diesel surrogate fuel. Fuel, 2009. 88(10): p. 1927-1936.
19. Pitz, W.J. and C.J. Mueller, Recent progress in the development of diesel surrogate fuels. Progress in Energy and Combustion Science, 2011. 37(3): p. 330-350.
20. Um, S. and S.W. Park, Modeling effect of the biodiesel mixing ratio on combustion and emission characteristics using a reduced mechanism of methyl butanoate. Fuel, 2010. 89(7): p. 1415-1421.
21. Shah, A., et al., Literature review and simulation of dual fuel diesel-CNG engines. 2011, SAE Technical Paper.
22. Kitamura, T., et al., Mechanism of smokeless diesel combustion with oxygenated fuels based on the dependence of the equivalence ration and temperature on soot particle formation. International Journal of Engine Research, 2002. 3(4): p. 223-248.
23. Maghbouli, A., et al., Modeling knocking combustion in hydrogen assisted compression ignition diesel engines. Energy, 2014. 76: p. 768-779.
24. Golovitchev, V.I. and J. Yang, Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications. Biotechnology advances, 2009. 27(5): p. 641-655.
25. Brakora, J.L., et al., Development and validation of a reduced reaction mechanism for biodiesel-fueled engine simulations. SAE International Journal of Fuels and Lubricants, 2008. 1(2008-01-1378): p. 675-702.
26. Shahabuddin, M., et al., Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel. Renewable and Sustainable Energy Reviews, 2013. 21: p. 623-632.
27. Pang, K.M., H.K. Ng, and S. Gan, Development of an integrated reduced fuel oxidation and soot precursor formation mechanism for CFD simulations of diesel combustion. Fuel, 2011. 90(9): p. 2902-2914.
28. Naik, C.V., K. Puduppakkam, and E. Meeks, Simulation and analysis of in-cylinder soot formation in a low temperature combustion diesel engine using a detailed reaction mechanism. SAE International Journal of Engines, 2013. 6(2013-01-1565): p. 1190-1201.
29. Li, J., et al., Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Applied Energy, 2015. 160: p. 777-783.
30. Xi, J. and B.-J. Zhong, Reduced Kinetic Mechanism of n‐Heptane Oxidation in Modeling Polycyclic Aromatic Hydrocarbon Formation in Diesel Combustion. Chemical engineering & technology, 2006. 29(12): p. 1461-1468.
31. Pang, K.M., H.K. Ng, and S. Gan, Investigation of fuel injection pattern on soot formation and oxidation processes in a light-duty diesel engine using integrated CFD-reduced chemistry. Fuel, 2012. 96: p. 404-418.
32. Hewson, J. and M. Bollig. Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames. in Symposium (International) on Combustion. 1996. Elsevier.
33. Brakora, J.L. and R.D. Reitz, Investigation of NOx predictions from biodiesel-fueled HCCI engine simulations using a reduced kinetic mechanism. 2010, SAE Technical Paper.
34. Patel, A., S.-C. Kong, and R.D. Reitz, Development and validation of a reduced reaction mechanism for HCCI engine simulations. 2004, SAE Technical Paper.
35. Bahlouli, K., et al., A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine. Energy Conversion and Management, 2014. 79: p. 85-96.
36. Zheng, Z. and M. Yao, Charge stratification to control HCCI: Experiments and CFD modeling with n-heptane as fuel. Fuel, 2009. 88(2): p. 354-365.
37. Maroteaux, F. and L. Noel, Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling. Combustion and Flame, 2006. 146(1): p. 246-267.
38. Yao, M., Z. Zheng, and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 2009. 35(5): p. 398-437.
39. Ra, Y., et al., Study of high speed gasoline direct injection compression ignition (GDICI) engine operation in the LTC regime. SAE International Journal of Engines, 2011. 4(2011-01-1182): p. 1412-1430.
40. Gong, C., M. Jangi, and X.-S. Bai, Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 2014. 136: p. 373-381.
41. Bolla, M., et al., Soot formation modeling of n-heptane sprays under diesel engine conditions using the conditional moment closure approach. Combustion Science and Technology, 2013. 185(5): p. 766-793.
42. Sun, Y. and R.D. Reitz, Modeling diesel engine NOx and soot reduction with optimized two-stage combustion. 2006, SAE Technical Paper.
43. Hoffman, S.R. and J. Abraham, A comparative study of n-heptane, methyl decanoate, and dimethyl ether combustion characteristics under homogeneous-charge compression–ignition engine conditions. Fuel, 2009. 88(6): p. 1099-1108.
44. Hanson, R.M., et al., An experimental investigation of fuel reactivity controlled PCCI combustion in a heavy-duty engine. SAE international journal of engines, 2010. 3(2010-01-0864): p. 700-716.
45. Luo, Z., et al., A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel, 2012. 99: p. 143-153.
46. Liu, H., et al., Experimental and simulation investigation of the combustion characteristics and emissions using n-butanol/biodiesel dual-fuel injection on a diesel engine. Energy, 2014. 74: p. 741-752.
47. Gustavsson, J. and V. Golovitchev, Spray combustion simulation based on detailed chemistry approach for diesel fuel surrogate model. 2003, SAE Technical Paper.
48. Bhattacharjee, S. and D.C. Haworth, Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 2013. 160(10): p. 2083-2102.
49. Luo, Z., et al., Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. Combustion theory and modelling, 2014. 18(2): p. 187-203.
50. Samec, N., B. Kegl, and R.W. Dibble, Numerical and experimental study of water/oil emulsified fuel combustion in a diesel engine. Fuel, 2002. 81(16): p. 2035-2044.
51. Hergart, C., H. Barths, and N. Peters, Modeling the combustion in a small-bore diesel engine using a method based on representative interactive flamelets. 1999, SAE Technical Paper.
52. Chen, Z., et al., Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact. Energy conversion and management, 2014. 78: p. 787-795.
53. Splitter, D., et al., Reactivity controlled compression ignition (RCCI) heavy-duty engine operation at mid-and high-loads with conventional and alternative fuels. 2011, SAE Technical Paper.
54. Som, S., et al., Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions. Fuel, 2011. 90(3): p. 1267-1276.
55. Som, S., et al., Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and large eddy simulation turbulence model. Journal of Energy Resources Technology, 2012. 134(3): p. 032204.
56. Hong, S., et al., Development and application of a comprehensive soot model for 3D CFD reacting flow studies in a diesel engine. Combustion and Flame, 2005. 143(1): p. 11-26.
57. Luo, Z., et al., A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications. Combustion Theory and Modelling, 2012. 16(2): p. 369-385.
58. Raju, M., et al., Acceleration of detailed chemical kinetics using multi-zone modeling for CFD in internal combustion engine simulations. 2012, SAE Technical Paper.
59. Wang, H., et al., Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combustion and Flame, 2013. 160(3): p. 504-519.
60. Liu, X., et al., Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion. Applied Energy, 2017. 189: p. 187-200.
61. Design, R., CHEMKIN Collection, release 4.1. Reaction Design. Inc., San Diego, CA, 2006.
62. Xu, H., C. Yao, and G. Xu, Chemical kinetic mechanism and a skeletal model for oxidation of n-heptane/methanol fuel blends. Fuel, 2012. 93: p. 625-631.
63. Liu, H., et al., Effects of n-butanol, 2-butanol, and methyl octynoate addition to diesel fuel on combustion and emissions over a wide range of exhaust gas recirculation (EGR) rates. Applied energy, 2013. 112: p. 246-256.
64. Ma, S., et al., Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied energy, 2013. 109: p. 202-212.
65. Yang, B., et al., Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel. Applied Energy, 2014. 113: p. 722-733.
66. Liang, L., et al., Efficient simulation of diesel engine combustion using realistic chemical kinetics in CFD. 2010, SAE Technical Paper.
67. Ra, Y. and R.D. Reitz, A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels. Combustion and Flame, 2008. 155(4): p. 713-738.
68. Ra, Y., et al., Effects of fuel physical properties on diesel engine combustion using diesel and bio-diesel fuels. SAE International Journal of Fuels and Lubricants, 2008. 1(2008-01-1379): p. 703-718.
69. Voglsam, S. and F. Winter, A global combustion model for simulation of n-heptane and iso-octane self ignition. Chemical engineering journal, 2012. 203: p. 357-369.
70. Gambit, R., 2.3. 16.
71. Jagus, K. and X. Jiang, Large eddy simulation of diesel fuel injection and mixing in a HSDI engine. Flow, turbulence and combustion, 2011. 87(2): p. 473-491.
72. Pang, K.M., H.K. Ng, and S. Gan, In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study. Applied energy, 2012. 93: p. 466-478.
73. Gosman, A. and E. Loannides, Aspects of computer simulation of liquid-fueled combustors. Journal of Energy, 1983. 7(6): p. 482-490.
74. REITZ, R., Modeling atomization processes in high-pressure vaporizing sprays. Atomisation and Spray Technology, 1987. 3(4): p. 309-337.
75. Liu, A.B., D. Mather, and R.D. Reitz, Modeling the effects of drop drag and breakup on fuel sprays. 1993, WISCONSIN UNIV-MADISON ENGINE RESEARCH CENTER.
76. Miller, R., K. Harstad, and J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. International Journal of Multiphase Flow, 1998. 24(6): p. 1025-1055.
77. Sazhin, S.S., Advanced models of fuel droplet heating and evaporation. Progress in energy and combustion science, 2006. 32(2): p. 162-214.
78. Dembinski, H.W. and H.-E. Angstrom, Optical study of swirl during combustion in a CI engine with different injection pressures and swirl ratios compared with calculations. 2012, SAE Technical Paper.
79. Bharathi, V.P. and D.G. Prasanthi, The Influence of Air Swirl on Combustion and Emissions in a Diesel Engine. International Journal of Research in Mechanical Engineering & Technology, 2013. 5762: p. 26-28.
80. Raj, R.T.K. and R. Manimaran, Effect of swirl in a constant speed DI diesel engine using computational fluid dynamics. CFD Letters, 2012. 4(4): p. 214-224.
81. Manimaran, R. and R. Thundil Karuppa Raj, Computational studies of swirl ratio and injection timing on atomization in a direct injection diesel engine. Frontiers in Heat and Mass Transfer (FHMT), 2014. 5(1).
82. Jayakumar, C., Effect of intake temperature and boost pressure on the auto-ignition of fuels with different cetane numbers and volatilities. 2013, Wayne State University.
83. Petitpas, G., M. McNenly, and R. Whitesides, A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments. 2016, Lawrence Livermore National Laboratory (LLNL), Livermore, CA.
84. Sukumaran, S. and S.-C. Kong, Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner. Combustion and flame, 2013. 160(10): p. 2159-2168.
85. Sukumaran, S., Numerical modeling of pollutant emissions in practical combustion systems using detailed chemical kinetics. 2014.
86. Bittle, J., B. Knight, and T. Jacobs, Two-stage ignition as an indicator of low-temperature diesel combustion. Combustion Science and Technology, 2011. 183(9): p. 947-966.
87. Fu, X. and S.K. Aggarwal, Two-stage ignition and NTC phenomenon in diesel engines. Fuel, 2015. 144: p. 188-196.
88. Yin, Z., I. Adamovich, and W. Lempert, OH radical and temperature measurements during ignition of H 2-air mixtures excited by a repetitively pulsed nanosecond discharge. Proceedings of the Combustion Institute, 2013. 34(2): p. 3249-3258.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code