Responsive image
博碩士論文 etd-0124108-134951 詳細資訊
Title page for etd-0124108-134951
論文名稱
Title
以植物復育技術處理受多環芳香烴芘污染土壤之研究
The study of phytoremediation for soils contaminated by pyrene
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
180
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-11
繳交日期
Date of Submission
2008-01-24
關鍵字
Keywords
生物復育、植物復育、根區效應、芘
bioremediation, pyrene, root zone effect, phytoremediation
統計
Statistics
本論文已被瀏覽 5760 次,被下載 26
The thesis/dissertation has been browsed 5760 times, has been downloaded 26 times.
中文摘要
本研究之目的主要是利用植物復育技術處理被pyrene污染之土壤。試驗時選用蘆葦、香蒲、培地茅、萬年青、鹹草、雲林莞草及大花咸豐草等七種植物,進行土壤復育,並分析土壤中pyrene之降解效率及微生物之變化,植物組織中之pyrene濃度。
結果顯示,實驗二十二週後,種植培地茅、萬年青及香蒲等植物可提高土壤中pyrene降解效率,尤其是當實驗進行十四週後,種植培地茅、萬年青及香蒲等植物土壤中pyrene降解百分率分別為86%、84%及77%,比未種植物之66%高出10%到20%。實驗分別在夏天或在冬天進行,實驗經過時間相同時,夏天測得土壤中pyrene降解效率皆大於冬天所測的數值。當pyrene污染土壤經過滅菌後,種植香蒲進行植物復育時,結果發現土壤中之pyrene降解效率皆比未經滅菌的土壤為低,實驗進行十四週後,不論是在有種植或無種植香蒲的試驗中,經滅菌過的污染土壤中pyrene的降解效率分別為59%及55%,比未經過滅菌土壤之77%及66%為低。由此可知微生物對土壤中pyrene之降解具有極大的影響性。種植有香蒲之土壤,若添加肥料(花寶2號),則土壤中pyrene之降解效率具有明顯提高的作用,實驗進行十四週後。有種植及無種植香蒲在施肥之污染土壤中,pyrene降解效率分別為84%及73%,此數據顯示,比未施肥之77%及66%高出7%。研究結果發現,當土壤中加入界面活性劑Triton X-100及混合界面活性劑(Triton X-100、Tween 20及十二烷苯磺酸鈉),對pyrene之降解效率確實有提升之作用,例如實驗十週後,種植培地茅且在土壤中添加界面活性劑Triton X-100及混合界面活性劑(Triton X-100、Tween 20及十二烷苯磺酸鈉)時,pyrene之降解效率分別為85%及87%,比未加入界面活性劑之81%分別高出4%及6%。實驗二十二週後,種植培地茅且在土壤中添加界面活性劑Triton X-100及混合界面活性劑(Triton X-100、Tween 20及十二烷苯磺酸鈉)時,pyrene之降解效率分別為96%及96%,同樣也較未加入界面活性劑土壤之94%為高。在種植萬年青之相同實驗中,也有相似之結果。因此選擇適當之界面活性劑對植物復育污染之土壤具有正面之效果。
上層土壤及下層土壤中,由pyrene之降解研究結果得知,由於上層土壤之含氧量較高故好氧微生物之活性較大,因此上層土壤較下層土壤對pyrene之降解效率為高。當實驗進行二十二週後,土壤中種植培地茅時,上層及下層土壤pyrene的濃度則分別為5.7 mg/㎏及10.8 mg/㎏,而上層濃度只有下層之ㄧ半,由此可推測pyrene降解應為好氧反應。另外,土壤中種植萬年青時也有相似之結果。
植物復育機制分析時,本研究分別對植物之根、莖及葉組織進行濃度分析,結果發現植物莖及葉中並無pyrene之存在,pyrene沒有被植物吸入至植物體中,因此植物萃取(phytoextraction)及植物蒸散(phytovolatilization)作用等機制,應並不是本研究中植物復育的機制,而本研究中,對pyrene的降解主要應為根區效應所造成。
當土壤中種植培地茅時,對乳酸菌屬的微生物似乎有抑制的作用,而在土壤中種植萬年青及香蒲時,則會對根黴菌屬微生物造成不利之影響。當實驗進行4週之後原分別存在於土壤中之乳酸菌屬及根黴菌屬已不存在。而土壤總生菌數分析,也發現當土壤中種植培地茅、萬年青及香蒲時,微生物之總生菌數及活性因而增大,所以土壤中之pyrene降解效率也提高。
Abstract
The purpose of this study was to treat soils contaminated by pyrene through phytoremediation. The plant species selected were Phragmites communis Trin., Typha orientalis Presl, Vetiveria zizanioides, Rohdea japonica (Thunb.) Roth et Kunth, Cyperus malaccensis. Lam. subsp. monophyllus (Vahl) T. Koyama, Bolboschoenus planiculmis (F. Schmidt) T. Koyama and Bidens pilosa respectively. The degradation efficiencies of pyrene in soils and concentration of pyrene in the plant tissues were evaluated in this study. In addition, the change of microbial biota in soils was investigated in the tests of this study.
The experimental results indicated that after twenty-two weeks, soils planted with V. zizanioides, R. japonica and T. orientalis have better pyrene degradation efficiencies. Especially, after fourteen weeks the pyrene degradation efficiencies were 86%, 84% and 77% respectively, which showed that the efficiencies 10% to 20% higher than those unplanted control experiments, which was 66%. In addition, the pyrene degradation efficiencies in summer were found to be higher than those in winter. The degradation efficiencies of pyrene in sterilized soil with and without T. orientalis were found equal to 59% and 55%, respectively. These values were found lower than those in the experiment without sterilization, in which the pyrene degradation efficiencies with and without T. orientalis were 77% and 66%, respectively, after the fourteen weeks experiment. Hence the rhizospheric microorganisms had a significant effect on the degradation of pyrene in soils.
The pyrene degradation efficiencies were improved with application of fertilizer (HYPONeX No.2, HYPONeX Co., USA). After fourteen weeks, it was found that the experiment with fertilizer and with or without T. orientalis planted were 7% higher, which were 84% and 73% respectively, compared to 77% and 66% with no application of fertilizer.
Proper surfactants have positive effect on phytoremediation. In this study, we found that addition of the surfactant Triton X-100 or combined surfactants (Triton X-100, Tween 20 and sodium dodecylbenzene sulfonate) both presented better pyrene degradation efficiencies than the system without adding surfactant. After ten weeks, soils planted with V. zizanioides and added with surfactants showed the pyrene degradation efficiencies equal to 85% and 87% (combined) respectively, which showed that 4% and 6% higher rate than the system without adding surfactants (81% ). After twenty two weeks, soils planted with V. zizanioides and added with surfactants showed that the pyrene degradation efficiencies were 96% and 96% (combined) respectively. They were all higher than the system without adding surfactants (94%). Soils planted with R. japonica also showed the same results.
In this study, it was also found that the degradation efficiencies were higher at the surface layer of the soil than subsurface layer due to better oxygen content there. Hence the activities of microorganisms in the surface layer were higher than those in the subsurface layer of soils. After twenty two weeks, soils planted with V. zizanioides showed the residual concentration of pyrene were 5.7mg/Kg (surface layer) and 10.8 mg/Kg (subsurface layer). The difference between them was about 50%. Soils planted with R. japonica, T. orientalis or unvegetation also showed the same results.
The pyrene concentrations of the roots, stems and leaves were analyzed and the results showed that pyrene did not exist in the plant stems or its leaves. Since pyrene could not be absorbed into plant’s tissues by plants, the phytoextraction and phytovolatilization did not occur in this study. It was concluded that the degradation of pyrene in soils was mainly in rhizoremediation.
The soils planted with V. zizanioides showed that the inhibition of Lactobacillus sp, while the soils planted with R. japonica and T. orientalis showed unfavorable conditions to Rhibopus sp.. Four weeks after this experiment, both Lactobacillus sp. and Rhibopus sp. were not existent. The soils planted with V. zizanioides, R. japonica and T. orientalis showed an increase of the number of bacteria (CFU), and thus the pyrene degradation efficiency was increased.
目次 Table of Contents
中文摘要-------------------------------------------------Ⅰ
英文摘要-------------------------------------------------Ⅲ
目錄-----------------------------------------------------Ⅵ
圖目錄---------------------------------------------------XI
表目錄--------------------------------------------------XIV
第一章 緒論-----------------------------------------------1
1-1 研究動機-------------------------------------------1
1-2 植物復育之趨勢-------------------------------------1
1-3 研究目的-------------------------------------------3
第二章 文獻回顧-------------------------------------------4
2-1多環芳香烴碳氫化合物(PAHs)--------------------------4
2-1-1多環芳香烴碳氫化合物(PAHs)之特性--------------5
2-1-2多環芳香烴碳氫化合物(PAHs)之降解反應機構-----10
2-2土壤復育技術---------------------------------------14
2-2-1工程處理及化學處理技術-----------------------15
2-2-2 自然處理------------------------------------19
2-2-3 生物復育------------------------------------20
2-2-4 植物復育------------------------------------22
2-2-4-1 植物復育機制------------------------22
2-2-4-2 植物復育之優缺點--------------------25
2-2-4-3 植物篩選----------------------------25
2-2-4-4 根區效應----------------------------28
2-2-4-5 界面活性劑之分類特性及作用機制------31
2-2-4-6 植物復育技術之回顧------------------35
2-2-4-7 植物復育技術與其他復育法之成本比較--38
第三章 實驗及分析方法------------------------------------39
3-1 實驗藥品及設備材料--------------------------------39
3-1-1 實驗藥品------------------------------------39
3-1-2 儀器設備及材料------------------------------40
3-1-3 植物種類------------------------------------41
3-2 實驗方法------------------------------------------42
3-2-1 Pyrene污染土壤之製備------------------------42
3-2-2 土壤及植物滅菌------------------------------43
3-2-3 植物植入------------------------------------43
3-2-4 菌種植入------------------------------------46
3-2-5 界面活性劑之添加----------------------------46
3-2-6 有機酸之添加--------------------------------46
3-2-7 肥料之添加----------------------------------46
3-2-8 溫室培養------------------------------------47
3-3 分析方法------------------------------------------51
3-3-1 土壤樣品中pyrene之萃取----------------------51
3-3-1-1 土壤之取樣--------------------------51
3-3-1-2 樣品中Pyrene之萃取------------------52
3-3-2 植物組織中pyrene之萃取----------------------54
3-3-3 高效液相層析儀(HPLC)分析--------------------56
3-3-4 總生菌數(CFU)之分析-------------------------58
3-3-5 土壤中之菌種分析----------------------------59
第四章 植物復育技術土壤中pyrene降解之研究---------------62
4-1 前言----------------------------------------------62
4-2 結果與討論----------------------------------------63
4-2-1 植物種類對pyrene降解之影響-----------------63
4-2-2 季節(冬天及夏天)對pyrene降解之影響---------65
4-2-3 施肥對pyrene降解之影響---------------------70
4-2-4 土壤滅菌對pyrene降解之影響-----------------72
4-2-5 界面活性劑對pyrene降解之影響---------------74
4-2-5-1 培地茅植物復育系統------------------74
4-2-5-2 萬年青植物復育系統------------------82
4-2-6 有機酸對pyrene降解之影響-------------------91
4-2-7 植物種類及添加微生物對pyrene降解之影響-----95
4-2-8 土壤上層及土壤下層之pyrene降解分析---------97
4-3 小結---------------------------------------------100
第五章 植物組織中pyrene之分析--------------------------102
5-1 前言---------------------------------------------102
5-2 結果與討論---------------------------------------102
5-3 小結---------------------------------------------104
第六章 植物復育技術對土壤菌相變化及pyrene降解之影響----105
6-1 前言---------------------------------------------105
6-2 結果與討論---------------------------------------105
6-2-1 植物種類對土壤中總生菌數之影響-------------105
6-2-2 土壤滅菌對土壤中總生菌數之影響-------------107
6-2-3 界面活性劑對土壤中總生菌數之影響-----------109
6-2-4 土壤中菌種分析-----------------------------112
6-4 小結---------------------------------------------117
第七章 統計分析-----------------------------------------119
7-1 前言---------------------------------------------119
7-2 統計分析方法-------------------------------------119
7-3 結果與討論---------------------------------------121
7-3-1 植物種類對pyrene降解之影響----------------121
7-3-2 植物種植及土壤滅菌對pyrene降解之影響------124
7-3-3 溫度(冬天及夏天)對pyrene降解之影響--------127
7-3-4 施肥對pyrene降解之影響--------------------129
7-3-5 植物種類對土壤中總生菌數之影響-------------130
7-3-6 植物種植及土壤滅菌對土壤中總生菌數之影響---131
第八章 結論與建議---------------------------------------132
8-1 結論---------------------------------------------132
8-2 建議---------------------------------------------136
第九章 參考文獻-----------------------------------------138
附錄 Pyrene 回收率之影響之研究--------------------------153
附錄-1 前言------------------------------------------153
附錄-2 結果與討論------------------------------------154
附錄-2-1 萃取溶劑對污染土壤中pyrene萃取回收率之
影響------------------------------------154
附錄-2-2 萃取溶劑二氯甲烷量對污染土壤中pyrene回
收率之影響------------------------------156
附錄-2-3 污染土壤中pyrene濃度對pyrene 回收率之
影響------------------------------------157
附錄-2-4 細胞粉碎機之萃取時間對污染土壤中pyrene
回收率之影響----------------------------158
附錄-2-5 細胞粉碎機之萃取次數對污染土壤中pyrene 回
收率之影響------------------------------159
附錄-3 小結------------------------------------------161
參考文獻 References
Alexander, M. (1997). Introduction to Soil Microbiology, 2nd ed.,John wiley and Sons, New York, 423
Alkorta, I., and Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technol. 79, 273.
Amelia, H. (2003). Effect of drought, flooding, and potassium stress on the quantity and composition of root exudates in axenic culter. Utah state University.
Anderson, T.A., and Walton, B.T. (1992). Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species: Implications for bioremediation of contaminated surface, ORNL/TM-12017, Oak Ridge, TN,186
Anderson, T.A., Guthrie, E.A., and Walton, B.T. (1993). Bioremadiation in the rhizosphere-plant roots and associated microbes clean contaminated soil. Environ. Sci. Technol. 27,2630.
Aprill, W., and Sim, R.C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil, Chemosphere. 20,253.
Armstrong, W. (1978). Root aeration in the wetland condition. In: HORK, D.D. and CRAWFORD, R.M.M.(Eds), Plant Life Anaerobic Environments. Ann Arbor Science, Ann Arbor, MI, 269.
Barber, S.A. (1984). Soil Nutrient Bioavailability. John wiley and Sons, New York.
Barber, D.A., and Martin, J.K. (1976). The release of organic substances by cereal roots into soil. New phytpl. 76, 69.
Bell, R.M. (1992). Higher plant accumulation of organic pollutants from soils, EPA/600/SR-92/138, U.S. Environmental Protection Agency, Cincinnati, OH, 1.
Bell, R.M. and Failey, R.A. (1991). Plant uptake of organic pollutants, in Organic Contaminants in the Environment, Jones, K.C., ED., Elsevier Science, New York, 189
Bragg, J.R., Prince, R.C., Harner, E.J., and Atlas, R.M. (1994). Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368, 413.
Boldrin, B., Tiehm, A., and Fritzsche, C. (1993). Degradation of phenanthrene, fluorine, fluoranthene, and pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 59,1927.
Brusseau, M.L. (1991). Cooperative sorption of organic chemical in systems composed of low organic carbon aquifer materials. Environ. Sci. Technol. 25, 1747.
Brusseau, M.L., and Rao, P,S.C. (1991). Influence of sorbate structure on nonequilibrium sorption of organic compounds. Environ. Sci. Technol. 25,1501.
Burken, J.G., and Schnoor, J.L. (1996). Phytoremediation: plant uptake of atrazine and role of exudates. J. Environ. Eng. 1222, 958.
Cerniglia, C.E. (1981). Aromatic hydrocarbon ( pesticides ): metabolism by bacteria, fungi and algae. Rev. Biochem. Toxicol. 3,321.
Carman, K.R., Means, J.C., and Pomarico, S.C. (1996). Response of sedimentary bacteria in a Louisiana salt march to contamination by diesel fuel. Aquat. Microb. Ecol. 10,231.
Cerniglia, C.E. (1984). Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30,31.
Cerniglia, C.E. (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 3, 351.
Cerniglia, C.E. (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr. Opin. Biotechnol. 4,331.
Chin, Y.P., Aiken, G.R., and Danielsen, K.M. (1997). Binding of pyrene to aquatic and commercial humic substances; the role of molecular weight and aromaticity. Environ. Sci. Technol. 31,1635
Crowdy, S.H., and Jones, D.R. (1956). Partition of sulphonamides in plant roots: a factor in their translocation. Nature. 178,1165.
Cunninghan, S.D., and Berti, W.R. (1993). Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev. Biol. 29, 207.
Cunninghan, S.D., and Ow,D.W.(1996).Promises and prospects of phytoremediation. Plant Physiol. 110,715.
Doloressa, G., Nikolai, V.B., Ludmyla, G.B., Ralf, K., Alexander, P., Marina, S., Slavid, D., Sithes, L., Yuri, Y.G., and Ilya,R. (1999). Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA. 96,5973.
Dean-Ross, D., and Cerniglia, C.E. (1996). Degradation of pyrene by Mycobacterium flavescens. Appl. Microbiol. Biotechnol. 46,307.
Donkin, P., Widdow, J., Evans, S.V., and Brinsley, M.D. (1991). OSAR for the sublethal response of marine mussels(Mytilius edulis). Sci. Total Environ. 109/110,461.
Dowty, R.A., Shaffer, G.P., Hester, M.W., Childer, G.W.,Campo, F.M., and Greene, M.C. (2001). Phytoremediation of small-scale oil spills in fresh march environmental: a mesocosm simulation. Mar. Environ. Res. 52,195.
Dunnett, C.W. (1980). Pairwise multiple comparisons in the unequal variance case. J. Am. Stat. Assoc. 75,796.
Edward, D.A., Luthy, R.G., and Liu, Z. (1991). Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25,127.
Ferro, A.M., Sims, R.C., and Bugbee, B. (1994). Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J. Environ. Quality. 23, 272.
Finlayson, D.G., and MacCarthy, H.R. (1973). Pesticide residues in plants, in Environmental Pollution by pesticides, Edwards, C.A., Ed., Plenum press, New York.
Gao, Y., and Zhu, L. (2004). Plant uptake, accumulation and translocation of phenanthrene and pyrene in soil. Chemosphere. 55, 1169.
Garrison, A.W.; Nzengung, V.A.,and Avant, J.K. (2000). Phytoremediation of p,p,DDT and the enantiomers of o,p,DDT. Environ. Sci. Technol. 34,1663.
Glick, B.R. (2003). Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21, 383.
Hambrick, G.A., Delaune, R.D., and Patrick, W.H. (1980). Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl. Environ. Microbiol. 40, 365.
Hander, M. (1983) Physical and chemical properties of polycyclic aromatic hydrocarbons. In: Bjrrseth, A.(ed.) Handbook of polycyclic Aromatic Hydrocarbons 1-26. Marcel Dekker, Inc., New York.
Harkey, G.A., Van, H.P.L., and Landrum, P.F. (1995). Bioavailability of polycyclic aromatic hydrocarbons from a historically contaminated sediment core. Environ. Toxicol. Chem. 14,1551.
Hawthorne, S.B., Grabanski, C.B., Martin, E., and Miller, D.J. (2000). Comparisons of soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. J. Chromatogr. A. 892, 421.
Heitkamp, M.A., and Cerniglia, C.E. (1987). The effect of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in fresh water and estuarine ecosystem. Environ, Toxicol. Chem. 6,535.
Heitkamp, M.A., Freeman, J7P., Miller, D.W., and Cerniglia, C.E. (1988). Pyrene degradation by a Mycobacterium sp.:Identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54, 2556.
Herman, D.C., Lenhard, R.J., and Miller, R.M. (1997). Formation and removal of hydrocarbon residual in porous media: Effects of attached bacteria and biosurfactants. Environ. Sci. Technol. 31,1290.
Hodson, P.V., Ibrahim, I., Zambon, S., Ewert, A., and Lee, K. (2002). Bioavailability to fish of sediment PAHs as an indicator of the success of onsite remediation treatment at an experiment oil spill. Bioremediation J. 6, 297.
Huang, X.D., El-Alawi, Y., Penrose, D.M., Glick, B.R., and Greenberg, B.M. (2004). A multi-process phytoremediation system for removal of polycyclic hydrocarbons form contaminated soils. Environ. Pollut. 130, 465.
Jafvert, C.T., Van, H.P.L., and Heath, J.K. (1994). Solubilization of non-polar compounds by nonionic surfactants micelles. Water Res. 28,1009.
Jin, Z., Simkin, S., and Xing, B. (1999). Bioavailability of freshly added and aged naphthalene in soil under gastric PH condition. Environ. Toxicol. Chem. 18,2751.
Johnson, D.L., Anderson, D.R., and Mcgrath, S.P. (2005). Soil microbial response during the phytoremediation of PAH contaminated soil. Soil Biol. Biochem. 37, 2334.
Johnson, S,E., Herman, J.S., Mills, A.L., and Hornberger, G.M. (1999) Bioavailability and desorption characteristics of aged, nonextractable atrazine in soil. Environ. Toxicol. Chem. 18,1747.
Joner, E.J., Corgie, S.C., Amellal, N., and Leyval, C. (2002) Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biol. Biochem. 34,859.
Joseph,G.L. and Rita, R.C. (1984). Microbial degradation of hydrocarbons in the environment. American Society for Microbiology. 305
Kami, E., MuKaidani, T., Miyoshi, S., and Tamaki, M. (2006). Ryegrass enhancement of biodegradation in disel-contaminated soil. Environ Exp. Bot. 55,110..
Ke, L., Wang, W.Q., Wong, T.W.Y., Wong, Y.S., and Tam, N.F.Y. (2003). Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere. 51, 25.
Kelley, I. and Cerniglia, C.E. (1991). The metabolism of fluoranthene by aspecies of Mycobacterium. J. Ind. Microbiol. 7,19.
Kelley, I., Freeman,J.P., vans, F.E., and Cerniglia, C.E. (1991). Identification of a carboxylic acid metabolite from the catabolism of fluoranthene by a Mycobacterium. Sp. Appl. Enviro. Microbiol. 57,636.
Kelley, S.L., Aitchison, E.W.; Deshpande, M.; Schnoor, J.L.; and Alvarez, P.J.J. (2001). Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp.Cb1190. Water Res. 35(16),3791.
Kile, D.E.,and Chiou, C.T. (1989). Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ. Sci. Technol. 23,832.
Koegel-Knabner, I., Totsche, K.U. and Raber, B. (2000). Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic matter : effect of solution composition and aging. J. Environ. Qual. 29, 906.
Lin, Q., Chen, Y.X., Wang, Z.W., and Wang, Y.P. (2004). Study on the possibility of hydrogen peroxide pretreatment and plant system to remediation soil pollution. Chemosphere. 57, 1439.
Lin, Q., and Mendelssohn, I.A. (1998). The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol. Eng. 10, 263.
Liste, H.H., and Alexander, M. (2000). Plant promoted pyrene degradation in soil. Chemosphere. 40, 7.
Liste, H.H., and Prutz, I. (2006). Plant performance, dioxygenase-expressing rhizosphere bacteria and bioremediation of weathered hydrocarbons in contaminated soil. Chemosphere. 62, 1411.
Luthy, R.G., Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gschwend, P.M., Pignatello,J.J., Reinhard, M., Traina, S.J., Weber, J.W.J., and Westall, J.C. (1997). Sequestration of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 31,3341.
Macek, T., Mackova, M., and Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18, 23.
Marchiol, L., Assolari, S., Sacco, P., and Zerb, G. (2004). Phytoremediation of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut. 132, 21.
Manoli, E., and Samara, C. (1999). Polycyclic aromatic hydrocarbons in natural water: Sources, occurrence and analysis. Anal. Chem.18,6,418.
Montgomery, D.C. (2005). Design and analysis of experiments. 6th edition. New York: John Wiley and Sons.
Miller, M.E., and Alexander, M. (1991). Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension. Environ. Sci. Technol. 25,240.
Nardi, S., Sessi, E., Pizzeghello, D., Sturaro, A., Rella, R., and Parvoli, G. (2002). Biological activity of soil organic matter mobilized by root exudates. Chemosphere. 46(7),1075.
Noordman,W.H., Ji, W., and Brusseau, M.L. (1998). Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ. Sci. Technol. 32,1806.
Olaniran, A.O., Pillay, D., and Pillay, B. (2006). Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere. 63, 600.
Parrish, Z.D., Banks, M.K., and Schwab, A.P. (2005). Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ. Pollut. 137, 187.
Patel, J.R., and Gibson, D.T. (1974). Purification and properties of cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J. Bacteriol. 119,879.
Pichtel, J., and Liskanen, P. (2001). Degradation of diesel fuel in rhizosphere soil. Environ. Eng. Sci. 18, 145.
Pradhan, S.P., Conrad, J.R., Paterek, J.R., and Srivastava, V.J. (1998). Potential of phytoremediation for treat of PAHs in soil at MGP sites. J. Soil Contam. 7, 467.
Rahman, K.S.M., Rahman, T.J., Kourkoutas, Y., Petsas, I., Marchant, R., and Banat, I.M. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacteria consortium amended with rhamnolipid and micronutrients. Bioresource Technol. 90, 159.
Reilley, K., Banks, M.K., and Schwab, A.P. (1996). Dissipation of polycylic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25,212.
Ryan, J.A., Bell, R.M., Davidson, J.M., and O,conner, G.A. (1988). Plant uptake of non-ionic chemicals from soils. Chemosphere. 17, 2299.
Salt, D.E., Smith, R.D., and Raskin, I. (1998). Phytoremediation. Annu. Rev. Plant Molec. Biol. 49, 643.
Salvesen, I., and Vadstein, O. (2000). Evaluation of plate count methods for determination of maximum specific growth rate in mixed microbial communities, and its possible application for diversity assessment. J. Appl. Microbiol. 88, 442.
Sandmann, E.R.I.C., and Loos, M.A. (1984). Enumeration of 2,4-D-degrading microorganisms in soil and crop plant rhizospheres using indicator media: high population associated with sugarcane (Saccharum officinarum). Chemosphere. 13, 1073.
Schneider, j., Grosser, R., Jayasimhulu, K., Xue, W., and Warshawsky, D. (1996). Degradation of pyrene, benzo[a]anthracene and benzo[a]pyrene by Mycobacterium sp.strain RJGⅡ-135,isolated from a former coal gasification site. Appl. Environ. Microbiol. 62,13.
Schnoor, J.L., Licht, L.A., Mccutcheon, S.C., Wolfe, N.L., and Carriera, L.H. (1995). Phytoremediation : an emerging technology for contaminated soils. Environ. Sci. Technol. 29, 318.
Siciliano, S.D., and Germida, J.J. (1997). Bacterial inoculants of forage grasses that enchance degradation of 2-chlorobenzoic acid in soil. Environ. Toxicol. Chem. 16,1098.
Steinberg, S.M., Pignatello, J.J., and Sawhney, B.L. (1987). Persistence of 1,2-dibromoethane in soil: Entrapment in intraparticle micropores. Environ. Sci. Technol. 21,1201.
Siciliano, S.D., and Greer, C.W. (2000). Plant-bacterial combinations to phytoremediate soil contaminated with high concentrations of 2,4,6-trinitrotoluene. J. Environ. Qual. 29,311.
Stringfellow, W.T., and Alvarez-Cohen, L. (1999). Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Water Res. 33,2533.
Sung, K., Munster, C.L., Rhykerd, R., and Drew, M.C. (2003). The use of vegetation to remediate soil freshly contaminated by recalcitrant contaminants. Water. Res. 37, 2408.
Sutherland, J.B., Selby, A.L.,Freeman, J.P., FU, p.p., Miller, D.W., and Cerniglia, C.E. (1992). Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycol. Res. 96,509.
Tang, J., and Alexander, M. (1999). Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environ. Toxicol. Chem. 18,2711.
Weber, J.B. and Coble, H.D. (1968). Microbial decomposition of diquat adsorbed on montmorillonite and kaolinite clays. J. Agr. Food Chem.16,478.
Willumsen, P.A., and Arvin, E. (1999). Kinetic of degradation of surfactant-solubilized fluoranthene by a Sphingomonas paucimobilis. Environ. Sci. Technol. 33, 2571.
WITE, J.C., Mathina, I.M., Lee, W.Y., Eitzer, B.D., and Iannucci-Berger, W. (2003). Role of organic acid in enhancing the desoroption and uptake of weathered p,p-DDE by Cucurbita pepo. Environ. Pollut. 124,71.
White, K.L. (1986). An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Environ. Carcinogen Rev. C4,163.
Whitehouse, B.G. (1984). The effect of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem. 14,319.
Xu, J., Song, Y., Min, B., Steinberg, L., and Logan, B.E. (2003). Microbial degradation of perchlorate: principles applications. Environ. Eng. Sci. 20, 405.
Yoshitomi, K.J., and Shann, J.R. (2001). Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil Biol. Biochem. 33, 1769.
Yu, X., Trapp, S., Zhou, P., and Hu, H. (2005). The effect of temperature on the rate of cyanide metabolism of two woody plants. Chemosphere. 59 1099.
Zakia, D.P. (2003). The effectiveness of phytoremediation as asecondary treatment for aged polycyclic aromatic hydrocarbons(PAHs) in soil. Purdue University.
Zhang,Y., and Miller, R.M. (1992). Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant(biosurfactant). APPl. Environ. Microbiol. 58,3276.
Zhou, M., and Rhue, R.D. (2000). Screening commercial surfactants suitable for remediating DNAPL source zones by solubilization. Environ. Sci. Technol. 34,1985.
王裕文,2000,培地茅(Vetiveria zizanioides)簡介,中華民國雜草學會會刊,21(1):59-63。
王櫻方,2002瀝青拌合至鋪面過程各階段之PAHs溢散特徵與鋪面勞
工之曝露評估,國立成功大學論文,台南。
林春吉,2000,台灣水生植物(1),田園影像出版社,台北。
高志明,1994,廢棄物自然處理講義,IX,國立中山大學環境工程研究所,高雄。
陳俊位,2003,台中區農業專訊(14):4-11。
張名琴、吳玉琛、余雅茹、王淑瑛及何宜芬,2002,含Pyrene污染土壤配置及萃取方法之研究,弘光技術學院環境工程系專,台中。
趙承琛,1995,界面科學基礎,複文書局,台南。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.81.94
論文開放下載的時間是 校外不公開

Your IP address is 3.16.81.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code