Responsive image
博碩士論文 etd-0124108-173924 詳細資訊
Title page for etd-0124108-173924
論文名稱
Title
台灣雨傘節β-Bungarotoxin B鏈及其同源蛋白之演化相關性和細胞毒性機制之探討
Evolutionary relationship and cytotoxic mechanism of Taiwan banded krait β-Bungarotoxin's B chains and homologous proteins
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
165
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-16
繳交日期
Date of Submission
2008-01-24
關鍵字
Keywords
台灣雨傘節、β-Bungarotoxin B鏈
β-Bungarotoxin
統計
Statistics
本論文已被瀏覽 5640 次,被下載 12
The thesis/dissertation has been browsed 5640 times, has been downloaded 12 times.
中文摘要
中文摘要 β-bungarotoxin(β-Bgt)屬於突觸前phospholipase A2 (PLA2)神經毒素,由台灣雨傘節毒腺純化所得。β-Bgt由兩個不相同的單元體所構成,稱之為A chain 及B chain。A chain 結構相似於哺乳類與蛇類PLA2亦具有PLA2活性,以Cys15與B chain的Cys55構成分子間雙硫鍵形成一個完整的β-Bgt。而B chain的序列相似於Kunitz type 蛋白酶抑制劑與dendrotoxion。β-Bgt除了具有PLA2活性外,經由選擇性的抑制特定電位型鉀離子通道在神經肌肉接合處阻斷神經傳導物質釋放。目前台灣雨傘節已有八個A chain 及三個B chain的cDNA被確認,並可透過任意配對形成完整的β-Bgt異構毒素蛋白。隨著蛋白質層析分離技術的進步至少已分離十六種β-Bgt異構毒素蛋白。根據之前的研究指出A chain與B chain是源自於不同的基因,經各自mRNA轉譯後,A chain與B chain經不明的分子機制構成β-Bgt。此外,我們實驗室之前由台灣眼鏡蛇中選殖一Kunitz type 胰凝乳蛋白酶抑制劑(Naja naja arta chymotrypsin inhibitor,NACI)其基因組成相同於B chain且與B chain序列具有高度相似性。然而,對於B chain及其同源蛋白在基因演化上的研究仍是有限。本論文主要在於探討B chain及其同源蛋白在演化相關性及細胞毒性分子機制。
在此由台灣雨傘節中確認了β-Bgt的B2、B4、B5及B6基因,這些基因具有相同的基因結構皆由三個exon及兩各intron所構成,intron1的長度相近,intron2則明顯的長度不一。相較intron2發現B1及B2在intron2部分有兩個區塊的序列在B4、B5及B6基因中是不存在的。以RT-PCR分析結果指出在B4、B5及B6基因中缺失的兩段序列均可在台灣雨傘節的蛇腺、心臟、肝臟及肌肉組織出現,反映出這兩段的intron的序列可能插入台灣雨傘節的基因中的許多位置。相較於intron的序列,在exon的序列中除了signal peptide的部分之外具有較高的變異性。因此推測B chains在演化的過程中發生了Intron的插入或是剔除的現象;在蛋白質轉譯的序列則屬於accelerated evolution,在蛇的PLA2、neurotoxin及cardiotoxin基因演化過程中也有相同的演化現象發生。
β-Bgt誘導神經瘤SK-N-SH細胞升高細胞內鈣離子及ROS的濃度,並伴隨著p38 MAPK的活化,而導致細胞凋亡。SB202190 (p38 MAPK抑制劑), N-acetylcysteine (抗氧化劑), 1,2-bis (2-amino-phenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA) (Ca2+鏊合劑)和抑制細胞內鈣離子升高試劑(ruthenium red and 2-aminoethoxydiphenyl borate)等藥劑,可明顯的降低β-Bgt之細胞毒性。為了解A、B chain在β-Bgt 誘導神經瘤細胞凋亡的過程中所扮演的功能角色,將兩個單元體蛋白分別與神經瘤細胞作用,B chain可造成與β-Bgt相同的細胞毒性效果,而A chain則無此效力,且將β-Bgt的PLA2活性去除後,發現其活性並不影響其細胞毒性。NMDA接受器之拮抗劑(MK801)及鉀離子通道阻斷劑(4-aminopyridine, 4-AP)可明顯的減少β-Bgt、B chain及不具PLA2活性之β-Bgt所造成的細胞毒性。NMDA抗體可拮抗經rhodamin標定的β-Bgt與神經瘤細胞的結合。因此推測β-Bgt是藉由調控NMDA接受器及鉀離子通道使得神經瘤細胞產生細胞凋亡之現象,且B chain在過程中扮演重要的功能角色。
由台灣雨傘節中選殖出三個B chain同源蛋白基因, 因其蛋白質序列與Kuntize type蛋白酶抑制劑相似,稱之為蛋白酶抑制劑類蛋白protease inhibitor-like protein-1 (PILP-1), PILP-2 and PILP-3。這三個基因結構均相同於B chain及NACI基因,均由三個exon及兩個intron所構成。序列經分析後發現與B chain相同在演化上均屬於adaptive evolution。以PCR的方式重組PILPs的cDNA後,利用E.coli獲得重組蛋白並以HPLC進行純化。PILP-1及PILP-2使得人類前髓性白血病U937細胞產生細胞毒性,但PILP-3的效果遠不如前兩者明顯。PILPs造成的細胞死亡現象是屬於細胞凋亡且伴隨著caspase 蛋白水解。除了PILP-3之外,發現PILP-1及PILP-2會促進細胞內p38 MAPK的活化並抑制ERK1/2活化。且PILP-1會改變細胞週期產生sub-G1,傷害粒線體使得細胞發生粒線體膜電位的喪失、細胞色素C的釋放、Bcl-2及caspase 9蛋白的水解。p38 MAPK抑制劑(SB202190)與caspase 8抑制劑,分別可有效降低PILP-1及PILP-2所造成的caspase 8與caspase 3的水解現象。TNF RII受到PILP-1及PILP-2影響其含量有明顯增加之現象,透過SB202190的作用可以有效降低TNF RII的增加。另外在MEK1持續性的活化下,PILP-1及PILP-2所產生的細胞毒性及對ERK1/2和TNF RII的影響性顯著性的降低。在PILP-1及PILP-2誘導TNF RII增加的情形下,額外TNF造成細胞更大幅的死亡。因此推測PILP-1及PILP-2透過增加TNF RII、活化p38 MAPK及抑制ERK1/2誘導細胞發生細胞凋亡。
Abstract
β-Bungarotoxin (β-Bgt), a presynaptic phospholipase A2 (PLA2) neurotoxin isolated from the venom of Bungarus multicinctus (Taiwan banded krait), consists of A chain and B chain, cross-linked by an interchain disulfide bond. A chain is structurally homologous with phospholipase A2 (PLA2) enzymes, while the sequence of B chain is homologous to the Kunitz-type protease inhibitor and dendrotoxin. In addition to PLA2 activity, β-Bgt blocked the neurotransmission at the neuromuscular junction by selectively inhibiting certain voltage-sensitive potassium channels. The present studies investigated the B chain of β-bungarotoxin and B chain homologous proteins in evolutionary relationship and cytotoxic mechanism.
Eight A chain cDNAs and three B chain cDNAs have been cloned from B. multicinctus venom glands. Random combination of the A and the B chains should produce a number of β-Bgt isotoxins. There are at least 16 isoforms of β-Bgt were been isolated. Previous studies indicate that A and B chains are encoded separately by different genes, and the A and B chain genes do not originate from a common ancestor. These findings suggest that the intact β-Bgt molecules should be derived from the pairing of A and B chains after their mRNAs are translated. And, our recent studies show that B chain genes and Naja naja atra chymotrypsin inhibitor (NACI) share the same genomic organization and high sequence identity. Alternatively, limited studies on the evolutionary divergence of B chain gene and its homologous have been reported.
In the first part, the structural organization of the genes encoding B2, B4, B5 and B6 chains of β-Bgt are reported. These genes shared virtually identical overall organization with three exons interrupted by two introns in similar positions. On the contrary, intron 1 of these genes had a similar size, a notable variation with the size of intron 2 was observed. It was found that two regions at the second intron of B1 and B2 chains were absent in that of B4, B5 and B6 chains. RT-PCR analyses indicated that Bungarus multicinctus venom gland, heart, liver and muscle expressed the RNA transcripts showing sequence similarity with the intronic segment being deleted in B4, B5 and B6 chain genes. This reflects that the ancestral gene of the intronic segment might insert in multiple loci of B. multicinctus genome. Comparative analyses of B chain genes showed that the protein-coding regions of the exons are more diverse than introns, except for in the signal peptide domain. These results suggest that intron insertions or deletions occur with the evolution of B chains, and that accelerated evolution may diversify the protein-coding sequence of B chain genes same as snake phospholipase A2, neurotoxin and cardiotoxin genes.
The second part is to explore the functional contribution of the two subunits to the toxicity of β-Bgt. β-Bgt was found to induce apoptotic death of SK-N-SH cells via elevating intracellular Ca2+ and intracellular ROS production. Moreover, an activation of p38 MAPK was associated with the cytotoxicity of β-Bgt. SB202190( p38 MAPK inhibitor), N-acetylcysteine (antioxidant reagent), 1,2-bis (2-amino-phenoxy) ethane-N,N,N,N-tetraacetic acid (BAPTA) (Ca2+ chelator) and the inhibitors of Ca2+ release from intracellular depots (ruthenium red and 2-aminoethoxydiphenyl borate) effectively attenuated the cytotoxicity of β-Bgt. In sharp contrast to the inability of A chain, B chain was able to induce cytotoxic effects on SK-N-SH cells as β-Bgt did. Abolishment of PLA2 activity did not significantly alter the cytotoxic activity of β-Bgt. MK801 (an NMDA receptor antagonist), antibodies against NMDA receptor and 4-aminopyridine (a potassium channel blocker) markedly reduced the cytotoxic effects of β-Bgt, B chain and catalytically inactivated β-Bgt. Moreover, antibodies against NMDA receptor blocked the binding of rhodamine-labeled β-Bgt to SK-N-SH cells. Taken together, our data indicate that B chain is a functional subunit responsible for the cytotoxicity of β-Bgt, and suggest that the cytotoxicity of β-Bgt is mediated by NMDA receptor and potassium conductance.
Homologous proteins of the B chain, namely, protease inhibitor-like protein-1 (PILP-1), PILP-2, and PILP-3, were successfully cloned from the Bungarus multicinctus genome. The 3 cloned genes each comprised 3 exons and 2 introns, similar to the genes of the B chain of β-bungarotoxin and NACI. Based on the Ka/Ks values of the gene sequences of PILPs, the B1 chain, and NACI, the PILPs may have undergone adaptive evolution. The cDNAs of the PILPs were recombined by PCR, and the recombinant proteins were successfully expressed and purified. PILPs induced cytotoxicity in U937 cells, but PILP-3 reduced viability only slightly. Induction of cell death by PILP-1 and PILP-2 was by apoptosis that occurred in a caspases-dependent manner. PILP-1 and PILP-2 activated p38 MAPK and downregulated ERK1/2; however, PILP-3 caused no such effects. PILP-1 increased the population of sub-G1 cells and caused mitochondrial damage. PILP-1-treated cells were observed to demonstrate loss of mitochondrial membrane potential, release of cytochrome C, and a decrease in the level of Bcl-2 and pro-caspase 9. Pretreatment of U937 cells with either SB202190 or a caspase 8 inhibitor significantly prevented the PILP-1- and PILP-2-induced degradation of caspase 8 or 3. PILP-1 and PILP-2 increased the level of TNFRII, which was suppressed by the p38 MAPK inhibitor. The transient transfection of PILP-1- and PILP-2-treated cells with pCMV-MEK1 efficiently increased their survival and phosphorylation of ERK1/2 but reduced the level of TNFRII. After PILP-1 and PILP-2 induced TNFRII, the excess TNF caused a significant reduction in cell viability. TNFRI levels were not significantly changed in PILP-1- and PILP-2-treated U937 cells. These results suggest that PILP-1 and PILP-2 induce apoptosis via an increase in the level of TNFRII and p38 MAPK activity and the suppression of ERK activity.
目次 Table of Contents
目錄
頁數
中文摘要…………………………………………………… 1
Abstract…………………………………………………… 5
序論………………………………………………………… 9
第一章
前言………………………………………………………… 18
材料與方法………………………………………………… 20
結果………………………………………………………… 23
圖…………………………………………………………… 28
討論………………………………………………………… 36
第二章
前言………………………………………………………… 38
材料與方法………………………………………………… 40
結果………………………………………………………… 47
圖…………………………………………………………… 51
討論………………………………………………………… 72
第三章
前言………………………………………………………… 75
材料與方法………………………………………………… 77
結果………………………………………………………… 87
圖…………………………………………………………… 97
討論………………………………………………………… 118
參考文獻…………………………………………………… 123
參考文獻 References
參考文獻

Abe, T., Alema, S., Miledi, R., 1977. Isolation and characterization of presynaptically acting neurotoxin from the venom of Bungarus snake. Eur. J. Biochem. 80, 1–12.

Adams, J.M., Cory, S., 2001. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26, 61–66.

Afifiyan, F., Armugam, A., Tan, C.H., Gopalakrishnakone, P., Jeyaseelan, K., 1999. Postsynaptic a-neurotoxin gene of the spitting cobra, Naja naja sputatrix: structure, organization, and phylogenetic analysis. Genome Res. 9, 259–266.

Annunziato, L., Amoroso, S., Pannaccione, A., Cataldi, M.,Pignataro, G., D’Alessio, A., Sirabella, R., Secondo, A.,Sibaud, L., Di Renzo, G.F., 2003. Apoptosis induced inneuronal cells by oxidative stress: role played by caspases andintracellular calcium ions. Toxicol. Lett. 139, 125–133.

Antuch, W., Guntert, P., Billeter, M., Hawthorne, T., Grossenbacher, H. and Wuthrich, K. 1994. NMR solution structure of the recombinant tick anticoagulant protein (rTAP), a factor Xa inhibitor from the tick Ornithodoros moubata. FEBS Lett. 352, 251-257.

Ashkanazi, A., Dixit, V.M., 1998. Death receptors: signaling and modulation. Science 281, 1305-1308.

Benishin, C.G., 1990. Potassium channel blockade by the B subunit of β-bungarotoxin. Mol. Pharmacol. 38, 164–169.

Bethea, J. R.; Ohmori, Y.; Hamilton, T. A. 1997. A tandem GC box motif is necessary for lipopolysaccharide-induced transcription of the type II TNF receptor gene. J. Immunol. 158,5815-5823.

Bouchon, A., Krammer, P.H., Walczak, H., 2000. Critical role for mitochondria in B cell receptor-mediated apoptosis. Eur J Immunol 30, 69-77.

Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., Sheu,S.S., 2004. Calcium, ATP, and ROS: a mitochondriallove–hate triangle. Am. J. Physiol. Cell Physiol. 287, C817–C833.

Brunet, C.L., Gunby, R.H., Benson, R.S., Hickman, J.A., Watson, A.J., Brady, G., 1998. Commitment to cell death measured by loss of clonogenicity is separable from the appearance of apoptotic markers. Cell Death Differ. 5, 107-115.

Brunet, C.L., Gunby, R.H., Benson, R.S., Hickman, J.A., Watson, A.J., Brady, G., 1998. Commitment to cell death measured by loss of clonogenicity is separable from the appearance of apoptotic markers. Cell Death Differ. 5, 107-1015.

Caccin, P., Rigoni, M., Bisceglie, A., Rossetto, O., Montecucco,C., 2006. Reversible skeletal neuromuscular paralysis induced by different lysophospholipids. FEBS Lett. 580, 6317–6321.

Cardle, L., Dufton, M.J., 1997. Foci of amino acid residue conservation in the 3D structures of the Kunitz BPTI proteinase inhibitors: how do variants from snake venom differ? Protein Eng. 10, 131-136.

Carpentier, I., Coornaert, B., Beyaert, R., 2004. Function and regulation of tumor necrosis factor type 2. Curr Med Chem. 11, 2205-2012.

Chang, L.S., Wu, P.F., Chang, C.C., 1996. cDNA sequence analysis and expression of the A chain of β-bungarotoxin form Bungarus multicinctus (Taiwan banded krait). Biochem. Biophys. Res. Commun. 221, 328–332.

Chang, L.S., Lin, J., Chou, Y.C., Hong, E., 1997a. Genomic structure of cardiotoxins and cobrotoxin from Naja naja atra (Taiwan cobra). Biochem. Biophys. Res. Commun. 239, 756–762.

Chang, L.S., Lin, S.K., Wu, P.F., 1998. Differentially expressed snoRNAs in Bungarus multicinctus (Taiwan banded krait). Biochem. Biophys. Res Commun. 245, 397–402.

Chang, L.S., Lin, S.K., Huang, S.B., Hsiao, M., 1999. Genetic organization of β-bungarotoxins from Bungarus multicinctus (Taiwan banded krait): evidence showing that the production of β-bungarotoxin isotoxins are not derived from edited mRNAs. Nucleic Acids Res. 27, 3970–3975.

Chang, L.S., Chung, C., Wu, B.N., Yang, C.C., 2002. Characterization and gene organization of Taiwan banded krait (Bungarus multicinctus) β-bungarotoxin. J. Protein Chem. 221, 223–229.


Chang, L.S., Lin, S.K., Chung, C., 2004. Molecular cloning and evolution of the genes encoding the precursors of Taiwan cobra cardiotoxin and cardiotoxin-like basic protein. Biochem Genet. 42, 429–440.

Chang, L.S., Chu, Y.P., Cheng, Y.C., Liou, J.C., Yang, C.C., 2005. Lys-64 of the A chain is involved in the enzymatic activity and neurotoxic effect of β-bungarotoxin. Toxicon 45, 179–185.

Chen, C., Hsu, C.H., Su, N.Y., Lin, Y.C., Chiou, S.H., Wu, S.H. 2001. Solution Structure of a Kunitz-Type Chymotrypsin Inhibitor from Bungarus Fasciatus. J. Biol. Chem. 276, 45079-45087.

Cheng, Y.C., Yang, F.J., Chang, L.S., 2005. Taiwan cobra chymotrypsin inhibitor: cloning, functional expression and gene organization. Biochim. Biophys. Acta 1747, 213–220.

Chen, Y.J., 2005. Phospholipase A2 activity of β-bungarotoxin is essential for induction of cytotoxicity on cerebellar granule neurons. J. Neurobiol. 64, 213–223.

Cheng, Y.C., Chen, K.C., Lin, S.K., Chang, L.S., 2006. Divergence of genes encoding B chains of β-bungarotoxins. Toxicon 47, 322–329.

Chu, Y.P., Chang, L.S., 2002. The organization of the genes encoding the A chains of β-bungarotoxins: evidence for the skipping of exon. Toxicon 40, 1437–1443.

Chu, C.C., Li, S.H., Chen, Y.H., 1995. Resolution of isotoxins in the β-bungarotoxin family. J. Chromatogr. 694, 492–497.

Chung, C., Wu, B.N., Yang, C.C., Chang, L.S., 2002. Muscarinic toxin-like proteins from Taiwan banded krait (Bungarus multicinctus) venom: purification, characterization and gene organization. Biol. Chem. 383, 1397–1406.

Comeron, J.F., 1999. K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics. 15, 763–764.

Danial, N.N., Korsmeyer, S,J., 2004. Cell death: Critical control points. Cell 116, 205-219.

Declercz, W., Denecker, G., Fiers, W., Vandenabeele, P., 1998. Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor. 75. J Immunol 161, 390-399.

Desagher, S., Martinou, J.-C., 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369–377.

Deshimaru, M., Ogawa, T., Nakashima, K., Nobuhisa, I., Chijiwa, T., Shimohigashi, Y., Fukumaki, Y., Niwa, M., Yamashina, I., Hattori, S., Ohno, M., 1996. Accelerated evolution of crotalinae snake venom gland serine proteases. FEBS Lett. 397, 83-88.

Devadas, S., Das, J., Liu, C., Zhang, L., Roberts, A.I., Pan, Z,, Moore, P.A., Das, G., Shi, Y., 2006. Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity 25, 237-247.

Emerit, J., Edeas, M., Bricaire, F., 2004. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58, 39–46.

Fathi, H.B., Rowan, E.G., Harvey, A.L., 2001. The facilitatory actions of snake venom phospholipase A2 neurotoxins at the neuromuscular junction are not mediated through voltagegated K+ channel. Toxicon 39, 1871–1882.

Filippovich, I., Sorokina, N., Masci, P.P., de Jersey, J., Whitaker, A.N., Winzor, D.J., Gaffney, P.J., Lavin, M.F., 2002. A family of textilinin genes, two of which encode proteins with antihaemorrhagic properties. Br. J. Haematol. 119, 376-384.

Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N., Krause, K.H., 2000. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 97, 5723–5728

Fry, B.G., 1999. Structure-function properties of venom components from Australian elapids. Toxicon 37, 11–32.

Green, D.R,, Reed, J.C., 1998. Mitochondria and apoptosis. Science. 281, 1309-13012.

Grunnet, M., Jespersen, T., Angelo, K., Frokjaer-Jensen, C., Klaerke, D.A., Olesen, S.P., Jensen, B.S., 2001. Pharmacological modulation of SK3 channels. Neuropharmacology 40, 879–887.

Gupta, S., 2001. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 69, 2957-2964.

Gupta, S., 2002. Decision between life and death during TNF-induced signaling. J Clin Immunol 22, 270-278.

Gupta, S., 2003. Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int J Oncol. 22, 15-20.

Harris, J.B. 1991 in: Snake Toxins (Harvey, A.L., Ed.), pp. 91-129, Pergamon Press, New York.

Haridas, V., Darnay, B.G., Natrajan, K., Helle, R., and Aggarwal, B.B., 1998. Overexpression of the p80 TNFR leads to TNF-dependent apoptosis, nuclear factor-kappa B activation. J Immunol 160, 3152-3162.

Harvey, A.L. 2001. Twenty years of dendrotoxins. Toxicon 39, 15-26.

Hernandez, M., Burillo, S.L., Crespo, M.S., Nieto, M.L., 1998. Secretory phospholipase A2 activated the cascade of mitogenactivated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. J. Biol. Chem. 273, 606–612.

Herkert, M., Shakhman, O., Schweins, E., Becker, C.M., 2001. β-Bungarotoxin is a potent inducer of apoptosis in cultured rat neurons by receptor-mediated internalization. Eur. J. Neurosci. 14, 821–828.

Hengartner, M.O., 2002. The biochemistry of apoptosis. Nature 407, 770-776.

Hokama, Y., Iwanaga, S., Tatsuki, T. and Suzuki, T. 1976. Snake venom proteinase inhibitors. III. Isolation of five polypeptide inhibitors from the venoms of Hemachatus haemachatus (Ringhal's corbra) and Naja nivea (Cape cobra) and the complete amino acid sequences of two of them. J. Biochem. (Tokyo) 79, 559-578.

Inagaki, K., Kobayashi, H., Yoshida, R., Kanada, Y., Fukuda,Y., Yagyu, T,, Kondo, T., Kurita, N., Kitanaka, T., Yamada, Y., Sakamoto, Y., Suzuki, M., Kanayama, N., Terao, T., 2005. Suppression of urokinase expression and invasion by a soybean Kunitz trypsin inhibitor are mediated through inhibition of Src-dependent signaling pathways. J Biol Chem. 31428-31437.

Isaacson, J.S., Murphy, G.J., 2001. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca2+-activated K+ channels. Neuron 31, 877–879.

Kasibhatla, S., Brunner, T., Genestier, L., Echeverri, F., Mahboubi, A., Green, D.R., 1998. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-B and AP-1. Mol Cell 1, 543-551.

Kluck, R.M., Bossy-Wetzel, E., Green, D.R., Newmeyer, D.D., 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136.

Kobayashi, H., Suzuki, M., Tanaka, Y., Kanayama, N., Terao, T. A., 2003. Kunitz-type protease inhibitor, bikunin, inhibits ovarian cancer cell invasion by blocking the calcium-dependent transforming growth factor-beta 1 signaling cascade. J. Biol. Chem. 278, 7790–7799.

Kobayashi, H., Suzuki, M., Hirashima, Y., Terao, T., 2003. The protease inhibitor bikunin, a novel anti-metastatic agent. Biol Chem. 384, 749–754.

Kobayashi, H., Yagyu, T., Inagaki, K., Kondo, T., Suzuki, M., Kanayama, N., Terao, T., 2004. Therapeutic efficacy of once-daily oral administration of a Kunitz-type protease inhibitor, bikunin, in a mouse model and in human cancer. Cancer. 100, 869-877.

Kodirov, S.A., Brunner, M., Busconi, L., Koren, G., 2003. Longterm restitution of 4-aminopyridine-sensitive currents in Kv1DN ventricular myocytes using adeno-associated virusmediated delivery of Kv1.5. FEBS Lett. 550, 74–78.

Kordis, D., Gubensek, F., 1996. Ammodytoxin C gene helps to elucidate the irregular structure of Crotalinae group II phospholipase A2 genes. Eur J Biochem. 240, 83-90.

Kondo, K., Toda, H., Narita, K., Lee, C.Y., 1982a. Amino acid sequence of β-bungarotoxin from Bungarus multicinctus venom. The amino acid substitution in the B chains. J. Biochem. (Tokyo) 91, 1519–1530.

Kondo, K., Toda, H., Narita, K., Lee, C.Y., 1982b. Amino acid sequence of three β-bungarotoxins (β3-,β4-, and β5-bungarotoxins) from Bungarus venom. Amino acid substitutions in the A chains. J. Biochem. (Tokyo) 91, 1531–1548.

Kordis, D., Gubensek, F., 2000. Adaptive evolution of animal toxin multigene families. Gene. 261, 43-52.

Kordis, D,, Gubensekm F.m 1997. Bov-B long interspersed repeated DNA (LINE) sequences are present in Vipera ammodytes phospholipase A2 genes and in genomes of Viperidae snakes. Eur J Biochem. 246, 772-779.

Kwong, P.D., McDonaled, N.O., Signer, P.B., Hendricksun, W.A., 1995. Structure of β2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure 3, 1109–1119.

Korsmeyer, S.J., 1992a. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80, 879–886.

Korsmeyer, S.J., 1992b. Bcl-2: a repressor of lymphocyte death. Immunol. Today 13, 285–288.

Kroemer, G., and Reed, J.C., 2000. Mitochondrial control of cell death. Nat Med 6, 513-519.

Kucharczak, J., Simmons, M.J., Fan, Y., Gelinas, C., 2003. To be, or not to be: NF-B is the answer--role of Rel/NF-B in the regulation of apoptosis. Oncogene 22, 8961-8982.

Kuhnert, P.; Kemper, O.; Wallach, D. 1994. Cloning, sequencing and partial functional characterization of the 5' region of the human p75 tumor necrosis factor receptor-encoding gene (TNF-R) Gen 150, 381

Lachumanan, R., Armugam, A., Tan, C.H., Jeyaseelan, K., 1998. tructure and organization of the polymorphic cardiotoxin gene in Naja naja sputatrix. FEBS Lett. 433, 119–124.

Li, Q., Verma, I.M., 2002. NF-B regulation in the immune system. Nat Rev Immunol. 2, 725–734.

Liou, J.C., Kang, K.H., Chang, L.S., Ho, S.Y., 2006. Mechanism of β-bungarotoxin in facilitating spontaneous transmitter release at neuromuscular synapse. Neuropharmacology 51, 671–680.

Liu, Y., Fiskum, G., Schubert, D., 2002. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80, 780–787.

Locksley, R.M., Killeen, N., Lenardo, M.J., 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487– 501.

Luo, X., Budihardjo, I., Zou, H., Slaughter, C., Wang, X., 1998. Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.

Montecucco, C,, Rossetto, O., 2000. How do presynaptic PLA2 neurotoxins block nerve terminals? Trends Biochem Sci. 25,266-270.

Mukherjee, P.K., DeCoster, M.K., Campbell, F.Z., Divis, R.J., Bazan, N.G., 1999. Glutamate receptor signaling interplay modulates stress-sensitive mitogen-activated protein kinases and neuronal cell death. J. Biol. Chem. 274, 6493–6498.

Munroe, M.E,, Bishop, G.A., 2004. Role of tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) in distinct and overlapping CD40 and TNF receptor 2/CD120b-mediated B lymphocyte activation.
J Biol Chem. 279, 53222-53231.

Nakashima, K.I., Ogawa, T., Oda, N., Mattori, M., Sakaki, Y.,Kihara, H., Ohno, M., 1993. Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipase A2 isozyme. Proc. Natl Acad. Sci. USA 90, 5964–5968.

Nakashima, K., Nobuhisa, I., Deshimaru, M., Nakai, M., Ogawa, T., Shimohigashi, Y., Fukumaki, Y., Hattori, M., Sakaki, Y. and Hattori, S. 1995. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc. Natl. Acad. Sci. USA 92, 5605-5609.

Neco, P., Rossetto, O., Gil, A., Montecucco, C., Gutierrez, L.M., 2003. Taipoxin induces F-actin fragmentation and enhances release of catecholamines in bovine chromaffin cells. J. Neurochem. 85, 329–337.

Nicholls, D., Snelling, R., Dolly, O., 1985. Bioenergetic actions of β-bungarotoxin, dendrotoxin and bee-venom phospholipase A2 on guinea-pig synaptosomes. Biochem. J. 229, 653–662.

Nobuhisa, I., Deshimaru, M., Chijiwa, T., Nakashima, K., Ogawa, T., Shimohigashi, Y., Fukumaki, Y., Hattori, S., Kihara, H., Ohno, M., 1997. Structures of genes encoding phospholipase A2 inhibitors from the serum of Trimeresurus flavoviridis snake. Gene. 191, 31-37

Nobuhisa, I., Nakashima, K., Deshimaru, M., Ogawa, T., Shimohigashi, Y., Fukumaki, Y., Sakaki, Y., Hattori, S., Kihara, H., Ohno, M., 1996. Accelerated evolution of Trimeresurus okinavensis venom gland phospholipase A2 isozyme-encoding genes. Gene. 172, 267-272.

Markland, F.S., 1998. Snake venoms and the hemostatic system. Toxicon 36, 1749–1800.

Mikhailov, V., Mikhailova, M., Pulkrabek, D.J., Dong, Z., Venkatachalam, M.A., Saikumar, P., 2001. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J. Biol. Chem. 276, 18361–18374.

Ohno, M., Menez, R., Ogawa, T., Danse, J.M., Shimohigashi, Y., Formen, C., Ducancel, F., Zinn-Justin, S., Le Du, M.H., Boulain, J.C., Tamiya, T., Menez, A., 1998. Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog. Nucleic Acids Res. Mol. Biol. 59, 307–364.

Ogawa, T., Nakashima, K., Nobuhisa, I., Deshimaru, M., Shimohigashi, Y., Fukumaki, Y., Sakaki, Y., Hattori, S., Ohno, M., 1996. Accelerated evolution of snake venom phospholipase A2 isozymes for acquisition of diverse physiological functions. Toxicon. 34, 1229-1236.

Ogita, K., Okuda, H., Watanabe, M., Nagashima, R., Sugiyama, C., Yoneda, Y., 2005. In vivo treatment with the K+ channel blocker 4-aminopyridine protects against kainate-induced neuronal cell death through activation of NMDA receptors in murine hippocampus. Neuropharmacology 48, 810–821.

Orrenius, S., Zhivotovsky, B., Nicotera, P., 2003. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4, 552–565.

Ono, K., and Han, J., 2000. The p38 signal transduction pathway: activation and function. Cell Signal. 12, 1–13.

Ott, M., Gogvadze, V., Orrenius, S., Zhivotovsky, B., 2002. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A. 99,1259-1263.

Ott, M., Gogvadze, V., Orrenius, S., 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12, 913–922.

Packham, G., Lahti, J.M., Fee, B.E., 1997. Fas activates NF-B and induces apoptosis in T-cell lines by signaling pathways distinct from those induced by TNF. Cell Death Differ 4, 130-139.

Pahl, H.L., 1999. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6855-6866.

Patthy, L., 1999. Protein Evolution. Blackwell Science, Oxford.

Perkins, N.D., 2004. NF-B: tumor promoter or suppressor? Trends Cell Biol 14, 64-69.

Petrovic, U., Sribar, J., Paris, A., Rupnik, M., Krzan, M., Vardjan, N., Gubensek, F., Zorec, R., Krizaj, I., 2004. Ammodytoxin, a neurotoxic secreted phospholipase A2, can act in the cytosol of the nerve cell. Biochem. Biophys. Res. Commun. 324, 981–985.

Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T., Rizzuto, R., 2000. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2- overexpressing cells. J. Cell Biol. 148, 857–862.

Prasarnpun, S., Walsh, J., Harris, J.B., 2004. β-bungarotoxin-induced depletion of synaptic vesicles at the mammalian neuromuscular junction.
Neuropharmacology. 47, 304-314.

Proskuryakov, S.Y., Konoplyannikov, A.G., Gabai, V.L., 2003. Necrosis: a specific form of programmed cell death? Exp. Cell Res. 283, 1–16.

Rehm, H., Schafer, T., Betz, H., 1982.β -Bungarotoxin-induced cell-death of neurons in chick retina. Brain Res. 250, 309–319.

Rigoni, M., Caccin, P., Gschmeissner, S., Koster, G., Postle, A.D., Rossetto, O., Schiavo, G., Montecucco, C., 2005. Equivalent effects of snake PLA2 neurotoxins and lysophospholipid–fatty acid mixtures. Science 310, 1678–1680.

Rigoni, M., Pizzo, P., Schiavo, G., Weston, A.E., Zatti, G., Caccin, P., Rossetto, O., Pozzan, T., Montecucco, C., 2007.Calcium influx and mitochondrial alterations at synapses exposed to snake neurotoxins or their phospholipid hydrolysis products. J. Biol. Chem. 282, 11238–11245.

Ritonja, A., Meloun, B., Gubensek, F., 1983. The primary structure of Vipera ammodytes venom trypsin inhibitor I. Biochim Biophys Acta. 748, 429-435.

Rosenberg, P., 1997. Pitfalls to avoid in the study of correlations between enzymatic activity and pharmacological properties of phospholipase A2 enzymes. In: Kini, R.M. (Ed.), Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism. Wiley, Chichester, pp. 155–184.

Rossetto, O., Morbiato, L., Caccin, P., Rigoni, M., Montecucco, C., 2006. Presynaptic enzymatic neurotoxins. J. Neurochem. 97, 1534–1545.

Rowan, E.G., 2001. What does β-bungarotoxin do at the neuromuscular junction? Toxicon 39, 107–118.

Rugolo, M., Dolly, J.O., Nicholls, D.G., 1986. The mechanism of action of β-bungarotoxin at the presynaptic plasma membrane. Biochem. J. 233, 519–523.

Schweitz, H., Heurteaux, C., Bois, P., Moinier, D., Romey, G. and Lazdunski, M. 1994. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 91, 878-882.

Screaton, G., and Xu, X.-N., 2000. T cell life and death signaling via TNF-receptor family members. Curr Opin Immunol 12, 316-322.

Shafqat, J., Beg, O.U., Yin, S.J., Zaidi, Z.H. and Jornvall, H. 1990. Primary structure and functional properties of cobra (Naja naja naja) venom Kunitz-type trypsin inhibitor.Eur. J. Biochem. 194, 337-341.

Shafqat, J., Zaid,i Z.H., Jörnvall, H., 1990. Purification and characterization of a chymotrypsin Kunitz inhibitor type of polypeptide from the venom of cobra (Naja naja naja). FEBS Lett. 275, 6-8.

Shah, N.M., Haylett, D.G., 2002. K+ currents generated by NMDA receptor activation in rat hippocampal pyramidal neurons. J. Neurophysiol. 87, 2983–2989.

Shakhman, O., Herkert,M., Rose, C., Humeny, A., Becker, C.M., 2003. Induction by β-bungarotoxin of apoptosis in cultured hippocampal neurons is mediated by Ca2+-dependent formation of reactive oxygen species. J. Neurochem. 87, 598–608.

Shi, Y., 2002. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470.

Siddiqi, A.R., Zaidi, Z.H. and Jornvall, H. 1991. Purification and characterization of a Kunitz-type trypsin inhibitor from Leaf-nosed viper venom. FEBS Lett. 294, 141-143.

Takahashi, H., Iwanaga, S., Kitagawa, T., Hokama, Y. and Suzuki,
T. 1974. Snake venom proteinase inhibitors. II. Chemical structure of inhibitor II isolated from the venom of Russell's viper (Vipera russelli). J. Biochem. (Tokyo) 76, 721-733.

Tang, G., Minemoto, Y., Dibling, B., Purcell, N.H., Li, Z., Karin, M., Lin, A., 2001. Inhibition of JNK activation through NF-κB target genes. Nature 414, 313-317.

Thorburn, A., 2004. Death receptor-induced cell killing. Cell Signal 16, 139-144.

Tseng, W.P., Lin-Shiau, S.Y., 2003a. Neuronal death signaling by β-bungarotoxin through the activation of the N-methyl-Daspartate (NMDA) receptor and L-type calcium channel. Biochem. Pharmacol. 65, 131–142.

Tseng, W.P., Lin-Shiau, S.Y., 2003b. Activation of NMDA receptor partly involved in β-bungarotoxin-induced neurotoxicity in cultured primary neurons. Neurochem. Int. 42, 333–344.

Tseng, W.P., Lin-Shiau, S.Y., 2003c. Calcium-activated NO production plays a role in neuronal death induced by β-Bungarotoxin in primary cultures of cerebellar granular neurons. Naunyn-Schmiedeberg’s Arch. Pharmacol. 367, 451–461.

Vermes, I., Haanen, C., Reutelingsperger, C.P.M., 1995. A novel assay for apoptosis: Flow cytometric detection of phosphatidylserine expression on early apoptoic cells using fluorescein labelled annexin V. J Immunol Methods, 180, 39-51

Wajant, H., Pfizenmaier, K., Scheurich, P., 2003 Tumor necrosis factor signaling. Cell Death Differ 10, 45-65.

Wang, X., 2001. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933.

Waring, P., 2005. Rodox active calcium ion channels and cell death. Arch. Biochem. Biophys. 434, 33–42.

Wu, P.F., Chang, L.S., 2000. Genetic organization of A chain and B chain of β-bungarotoxin from Taiwan banded krait (Bungarus multicinctus). A chain genes and B chain genes do not share a common origin. Eur. J. Biochem. 267, 4668–4675.

Wu, P.F., Chang, L.S., 2001. Expression of A chain and B chain of β-bungarotoxin from Taiwan banded krait: the functional implication of the interchain disulfide bond between A chain and B chain. J. Protein Chem. 20, 413–421.

Wu, P.F., Wu, S.N., Chang, C.C., Chang, L.S., 1998. Cloning and functional expression of B chains of β-bungarotoxins from Bungarus multicinctus (Taiwan banded krait). Biochem. J. 334, 87–92.

Yang, B., Leveck, D.E., Ferguson, A.V., 2005. Transient potassium conductances protect nucleus tractus solitarius neurons from NMDA induced excitotoxic plateau depolarizations. Brain Res. 1056, 1–9.

Yang, C.C., 1997. Chemical modification and functional sites of phospholipase A2. In: Kini, R.M. (Ed.), Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism. Wiley, Chichester, pp. 185–204.

Yang, C.C., Lee, H.J., 1986. Selective modification of tyrosine-68 in β1-bungarotoxin from the Bungarus multicinctus (Taiwan banded krait). J. Protein Chem. 5, 15–28.

Yang, C.C., Chang, L.S., 1999. Biochemistry and molecular biology of snake neurotoxin. J. Chin. Chem. Soc. 46, 319–332.

Yazdi, H.H., Janahmadi, M., Behzadi, G., 2007. The role of small-conductance Ca2+-activated K+ channels in the modulation of 4-aminopyridine-induced burst firing in rat cerebellar purkinje cells. Brain Res. 1156, 59–66.

Zimmermann, K.C., Green, D.R., 2001. How cells die: apoptosis pathways. J Allergy Clin Immunol. 108, S99-103.

Zupunski V, Kordis D, Gubensek F. 2003. Adaptive evolution in the snake venom Kunitz/BPTI protein family. FEBS Lett. 547, 131-136.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.115.179
論文開放下載的時間是 校外不公開

Your IP address is 18.222.115.179
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code