Responsive image
博碩士論文 etd-0124111-182136 詳細資訊
Title page for etd-0124111-182136
論文名稱
Title
肝細胞生長因子缺失體轉染乳癌細胞株的蛋白質體分析
Proteomic analysis of MDA-MB-435S transfected by HGF truncated variants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-12
繳交日期
Date of Submission
2011-01-24
關鍵字
Keywords
NK4、NK1、肝細胞生長因子缺失體、NK3、NK2、二維電泳、MDA-MB-435S、蛋白質體分析
two-dimensional electrophoresis, MDA-MB-435S, proteomic analysis, NK3, NK4, NK2, NK1, HGF variants
統計
Statistics
本論文已被瀏覽 5669 次,被下載 332
The thesis/dissertation has been browsed 5669 times, has been downloaded 332 times.
中文摘要
肝細胞生長因子(Hepatocyte growth factor, HGF)經由其專一性受體MET調控了包括細胞的增生、移動、侵入和形態發生等生理過程。最近,我們實驗室的研究結果發現HGF缺失體(NK1、NK2、NK3及NK4)可以成為HGF的拮抗劑(Antagonist)去抑制乳癌細胞(MDA-MB-435S,MDA)的增生、移動及侵入,而將HGF缺失體的基因轉染到MDA細胞中也會有相似的結果產生。為了探討其中的分子機制,我們利用二維電泳技術對MDA細胞、空載體轉染的MDA細胞突變株(MDA-GFP)以及四種HGF缺失體轉染的MDA細胞突變株(MDA-NK1、MDA-NK2、MDA-NK3及MDA-NK4)進行蛋白質體的分析,完成了15組蛋白質體的比對結果。以MDA細胞作為對照組的五組蛋白質差異分析中發現共有56個蛋白質的表現產生差異。MDA和MDA-GFP細胞之間的比對發現共有17個表現差異的蛋白質,其中11個是負調控蛋白;6個是正調控蛋白。MDA和MDA-NK1細胞之間的比對顯示有18個表現差異蛋白,其中15個是負調控蛋白;3個是正調控蛋白。MDA和MDA-NK2細胞之間的比對發現14個負調控蛋白;8個正調控蛋白。相同的比對方法還發現MDA-NK3細胞中出現了11個負調控蛋白和5個正調控蛋白,而MDA-NK4細胞中則產生了15個負調控蛋白和3個正調控蛋白。以MDA-GFP細胞作為對照組的四組蛋白質差異分析(MDA-GFP和MDA-NK1,MDA-GFP和MDA-NK2,MDA-GFP和MDA-NK3,以及MDA-GFP和MDA-NK4)中顯示共有43個表現差異的蛋白。為了了解不同HGF缺失體轉染MDA細胞突變株之間的蛋白質表現差異,我們也完成了三組蛋白質差異分析(MDA-NK1和MDA-NK2,MDA-NK1和MDA-NK3,MDA-NK1和MDA-NK4),結果顯示共有37個表現差異的蛋白。以MDA-NK2細胞作為對照組與MDA-NK3及MDA-NK4細胞比對時發現有34個蛋白質的表現產生顯著差異。最後經由MDA-NK3和MDA-NK4細胞之間的比對發現共有19個顯著差異的蛋白。我們的結果顯示這些在MDA-MB-435S細胞和HGF缺失體轉染的MDA細胞突變株中表現差異的蛋白與HGF缺失體抑制乳癌細胞的增生和移動有關。
Abstract
Hepatocyte growth factor (HGF) and its specific receptor MET play a role in many physiological functions including proliferation, migration and morphogenesis. Recently, research results in our laboratory showed that recombinant HGF variants (NK1, NK2, NK3 and NK4) became antagonists to HGF/MET pathway by suppressing proliferation, migration and invasion in human breast cancer cells (MDA-MB-435S, MDA). Similar results were achieved when HGF variants genes were introduced in MDA cells. To understand the molecular mechanism of breast cancer cells metastasis suppressed by HGF variants, MDA and five transfectants, including MDA-GFP, MDA-NK1, MDA-NK2, MDA-NK3 and MDA-NK4 cells were used for proteomic analysis using two-dimensional electrophoresis (2-DE). Differential analysis revealed that a total of 56 polypeptides were differentially expressed through five sets of comparison using wild-type MDA cells as a control. A total of 17 polypeptides were shown differential expression between MDA and MDA-GFP cells, with 11 down-regulated and 6 up-regulated. Eighteen polypeptides were differentially expressed between MDA and MDA-NK1 cells, with 15 down-regulated and 3 up-regulated. There were 22 differentially expressed polypeptides found between MDA and MDA-NK2 cells, in which 14 were down-regulated and 8 were up-regulated. Sixteen polypeptides were shown differentially expressed between MDA and MDA-NK3 cells, with 11 down-regulated and 5 up-regulated. A total of 18 polypeptides were shown differential expression between MDA and MDA-NK4 cells, with 15 down-regulated and 3 up-regulated. Proteomic analysis showed that a total of 43 polypeptides were differentially expressed through four sets of comparison (MDA-GFP and MDA-NK1, MDA-GFP and MDA-NK2, MDA-GFP and MDA-NK3, and MDA-GFP and MDA-NK4). To understand the differential expression among different HGF variants-transfected MDA cells, three sets of cross analysis were also carried out (MDA-NK1 and MDA-NK2, MDA-NK1 and MDA-NK3, and MDA-NK1 and MDA-NK4) and the results showed that a total of 37 differentially expressed polypeptides were found in the three sets of comparison. Similarly, when MDA-NK2 cells were used as a control to compare with MDA-NK3 and MDA-NK4 cells, 34 significantly differential expressed polypeptides were found. The last set of comparison between MDA-NK3 and MDA-NK4 cells, 19 polypeptides were found significantly differential expression. Therefore, our current results revealed that the differentially expressed polypeptides in MDA-MB-435S cells and HGF variants-transfected MDA cells could be related to the inhibition of proliferation and migration of human breast cancer cells by HGF variants.
目次 Table of Contents
Chapter 1: Introduction
1.1 Human hepatocyte growth factor (HGF)……………………...P1
1.1.1 Structure of HGF…………………………………………………P1
1.1.2 HGF/MET signaling…………………………………………...P2
1.1.3 HGF/MET and cancer………………………………………….P4
1.2 The aim…………………………………………………………P8
Chapter 2: Materials and methods
2.1 The formulae of medium and buffers…………………………..P10
2.2 Cell lines and cell cultures………………………………………P12
2.2.1 Subculture…………………………………………………….P12
2.2.2 Defreezing………………………………………………………P13
2.2.3 Preservation……………………………………………………..P13
2.3 Sample preparation for two-dimensional electrophoresis (2-DE)……………………………………………………………...P13
2.3.1 Extraction of cellular proteins from MDA cells and five transfectants…………………………………………………… P13
2.3.2 Proteins precipitation and quantification……………………….P14
2.4 2-DE………………………………………………………………P15
2.4.1 The first dimension: isoelctric focusing (IEF)………………….P15
2.4.2 Equilibration……………………………………………………P15
2.4.3 The second dimension: SDS-polyacrylamide gel electrophoresis (PAGE)………………………………………………………….P16
2.5 Gel image analysis……………………………………………….P17
Chapter 3: Results
3.1 Differentially expressed polypeptides in comparison of wild-type MDA cells with MDA-GFP, MDA-NK1, MDA-NK2, MDA-NK3 and MDA-NK4 cells………………………………………………P18
3.2 Differentially expressed polypeptides in comparison of MDA-GFP cells with HGF variants-transfected MDA cells………………...........................................................................P20
3.3 Differentially expressed polypeptides in comparison of MDA-NK1 cells with MDA-NK2, MDA-NK3 and MDA-NK4 cells…...............................................................................................P21
3.4 Differentially expressed polypeptides in comparison of MDA-NK2 cells with MDA-NK3 and MDA-NK4 cells………………….......................................................................P22
3.5 Comparison of differentially expressed polypeptides between MDA-NK3 and MDA-NK4 cells....................................................P23
Chapter 4: Discussion
4.1 The 2-DE-based proteomic analysis on breast cancer metastasis………………………………………………………P25
4.2 Differential proteomic analysis of HGF variants-transfected MDA cells………………………………………………………P29
4.2.1 The debate of the origin of MDA-MB-435 cells……………….P29
4.2.2 Correlation coefficients among six cell line…………………….P30
4.2.3 Proteome differential expression through MDA cells and five transfectants…………………………………………………….P31

4.2.4 Proteome differential expression through MDA-GFP cells and HGF variants-transfected MDA cells……………………….......P32
4.2.5 Proteome differential expression in different HGF variants-transfected MDA cells…………………………………P33
4.3 Conclusion..................................................................................P35
References…………………………………………………...............P36
Figures……………………………………………………………….P50
Tables………………………………………………………………...P91
Appendixes……………………………………………………….....P99
參考文獻 References
Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198-207.

Asami, O., Ihara, I., Shimidzu, N., Shimizu, S., Tomita, Y., Ichihara, A., and Nakamura, T. (1991). Purification and characterization of hepatocyte growth factor from injured liver of carbon tetrachloride-treated rats. J Biochem 109, 8-13.

Birchmeier, C., Birchmeier, W., Gherardi, E., and Vande Woude, G.F. (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4, 915-925.

Blackstock, W.P., and Weir, M.P. (1999). Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17, 121-127.

Boccaccio, C., Ando, M., Tamagnone, L., Bardelli, A., Michieli, P., Battistini, C., and Comoglio, P.M. (1998). Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391, 285-288.

Bolanos-Garcia, V.M. (2005). MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor. Mol Cell Biochem 276, 149-157.

Bottaro, D.P., Rubin, J.S., Faletto, D.L., Chan, A.M., Kmiecik, T.E., Vande Woude, G.F., and Aaronson, S.A. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251, 802-804.

Challapalli, K.K., Zabel, C., Schuchhardt, J., Kaindl, A.M., Klose, J., and Herzel, H. (2004). High reproducibility of large-gel two-dimensional electrophoresis. Electrophoresis 25, 3040-3047.

Cheng, P.H. (2007). Expression and characterization of truncated HGF in human breast cancer cell., Master Thesis, Department of Biological Sciences, National Sun Yat-sen University.

Chirgadze, D.Y., Hepple, J.P., Zhou, H., Byrd, R.A., Blundell, T.L., and Gherardi, E. (1999). Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nat Struct Biol 6, 72-79.

Cicek, M., Samant, R.S., Kinter, M., Welch, D.R., and Casey, G. (2004). Identification of metastasis-associated proteins through protein analysis of metastatic MDA-MB-435 and metastasis-suppressed BRMS1 transfected-MDA-MB-435 cells. Clin Exp Metastasis 21, 149-157.

Comoglio, P.M., Giordano, S., and Trusolino, L. (2008). Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7, 504-516.
Corso, S., Migliore, C., Ghiso, E., De Rosa, G., Comoglio, P.M., and Giordano, S. (2008). Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 27, 684-693.

Duncan, M.W., and Hunsucker, S.W. (2005). Proteomics as a tool for clinically relevant biomarker discovery and validation. Exp Biol Med (Maywood) 230, 808-817.

Eder, J.P., Vande Woude, G.F., Boerner, S.A., and LoRusso, P.M. (2009). Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15, 2207-2214.

Ellison, G., Klinowska, T., Westwood, R.F., Docter, E., French, T., and Fox, J.C. (2002). Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55, 294-299.

Fan, S., Ma, Y.X., Wang, J.A., Yuan, R.Q., Meng, Q., Cao, Y., Laterra, J.J., Goldberg, I.D., and Rosen, E.M. (2000). The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3' kinase. Oncogene 19, 2212-2223.

Follenzi, A., Bakovic, S., Gual, P., Stella, M.C., Longati, P., and Comoglio, P.M. (2000). Cross-talk between the proto-oncogenes Met and Ron. Oncogene 19, 3041-3049.

Gandino, L., Longati, P., Medico, E., Prat, M., and Comoglio, P.M. (1994). Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J Biol Chem 269, 1815-1820.

Gherardi, E., Sandin, S., Petoukhov, M.V., Finch, J., Youles, M.E., Ofverstedt, L.G., Miguel, R.N., Blundell, T.L., Vande Woude, G.F., Skoglund, U., and Svergun, D.I. (2006). Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A 103, 4046-4051.

Giordano, S., Corso, S., Conrotto, P., Artigiani, S., Gilestro, G., Barberis, D., Tamagnone, L., and Comoglio, P.M. (2002). The semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4, 720-724.

Gohda, E., Tsubouchi, H., Nakayama, H., Hirono, S., Sakiyama, O., Takahashi, K., Miyazaki, H., Hashimoto, S., and Daikuhara, Y. (1988). Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 81, 414-419.

Gorg, A., Weiss, W., and Dunn, M.J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665-3685.



Graziani, A., Gramaglia, D., Cantley, L.C., and Comoglio, P.M. (1991). The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem 266, 22087-22090.

Hanash, S. (2003). Disease proteomics. Nature 422, 226-232.

Hartmann, G., Weidner, K.M., Schwarz, H., and Birchmeier, W. (1994). The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires intracellular action of Ras. J Biol Chem 269, 21936-21939.

Hiscox, S., and Jiang, W.G. (1997). Regulation of endothelial CD44 expression and endothelium-tumour cell interactions by hepatocyte growth factor/scatter factor. Biochem Biophys Res Commun 233, 1-5.

Hondermarck, H., Dolle, L., El Yazidi-Belkoura, I., Vercoutter-Edouart, A.S., Adriaenssens, E., and Lemoine, J. (2002). Functional proteomics of breast cancer for signal pathway profiling and target discovery. J Mammary Gland Biol Neoplasia 7, 395-405.

Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA Cancer J Clin 60, 277-300.



Jo, M., Stolz, D.B., Esplen, J.E., Dorko, K., Michalopoulos, G.K., and Strom, S.C. (2000). Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem 275, 8806-8811.

Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60, 2299-2301.

Kawakami-Kimura, N., Narita, T., Ohmori, K., Yoneda, T., Matsumoto, K., Nakamura, T., and Kannagi, R. (1997). Involvement of hepatocyte growth factor in increased integrin expression on HepG2 cells triggered by adhesion to endothelial cells. Br J Cancer 75, 47-53.

Kuba, K., Matsumoto, K., Date, K., Shimura, H., Tanaka, M., and Nakamura, T. (2000). HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 60, 6737-6743.

Lee, H.S., Huang, G.T., Sheu, J.C., Chiou, L.L., Horng, M.C., Lai, M.Y., Chen, D.S., and Lee, S.C. (1995). Lack of critical domains in the beta-chain of hepatocyte growth factor. Biochem Biophys Res Commun 210, 1017-1024.



Li, D.Q., Wang, L., Fei, F., Hou, Y.F., Luo, J.M., Zeng, R., Wu, J., Lu, J.S., Di, G.H., Ou, Z.L., Xia, Q.C., Shen, Z.Z., and Shao, Z.M. (2006). Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6, 3352-3368.

Lin, Y.L., Chen, H.L., Kuo, H.M., and He, S.P. (2008). NK3 and NK4 of HGF enhance filamin production via STAT pathway, but not NK1 and NK2 in human breast cancer cells. Acta Pharmacol Sin 29, 728-735.

Liu, X., Newton, R.C., and Scherle, P.A. (2010). Developing c-MET pathway inhibitors for cancer therapy: progress and challenges. Trends Mol Med 16, 37-45.

Lokker, N.A., Mark, M.R., Luis, E.A., Bennett, G.L., Robbins, K.A., Baker, J.B., and Godowski, P.J. (1992). Structure-function analysis of hepatocyte growth factor: identification of variants that lack mitogenic activity yet retain high affinity receptor binding. EMBO J 11, 2503-2510.

Ma, J., Defrances, M.C., Zou, C., Johnson, C., Ferrell, R., and Zarnegar, R. (2009). Somatic mutation and functional polymorphism of a novel regulatory element in the HGF gene promoter causes its aberrant expression in human breast cancer. J Clin Invest 119, 478-491.


Machide, M., Hashigasako, A., Matsumoto, K., and Nakamura, T. (2006). Contact inhibition of hepatocyte growth regulated by functional association of the c-Met/hepatocyte growth factor receptor and LAR protein-tyrosine phosphatase. J Biol Chem 281, 8765-8772.

Mars, W.M., Zarnegar, R., and Michalopoulos, G.K. (1993). Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 143, 949-958.

Martinkova, J., Gadher, S.J., Hajduch, M., and Kovarova, H. (2009). Challenges in cancer research and multifaceted approaches for cancer biomarker quest. FEBS Lett 583, 1772-1784.

Matsumoto, K., and Nakamura, T. (2003). NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci 94, 321-327.

Matsumoto, K., Nakamura, T., and Sakai, K. (2008). Hepatocyte growth factor and Met in tumor biology and therapeutic approach with NK4. Proteomics 8, 3360-3370.

Mazzone, M., Basilico, C., Cavassa, S., Pennacchietti, S., Risio, M., Naldini, L., Comoglio, P.M., and Michieli, P. (2004). An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. J Clin Invest 114, 1418-1432.

Miyazawa, K., Shimomura, T., Kitamura, A., Kondo, J., Morimoto, Y., and Kitamura, N. (1993). Molecular cloning and sequence analysis of the cDNA for a human serine protease reponsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J Biol Chem 268, 10024-10028.

Miyazawa, K., Tsubouchi, H., Naka, D., Takahashi, K., Okigaki, M., Arakaki, N., Nakayama, H., Hirono, S., Sakiyama, O., and Takahashi, K. (1989). Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem Biophys Res Commun 163, 967-973.

Montesano, R., Soriano, J.V., Malinda, K.M., Ponce, M.L., Bafico, A., Kleinman, H.K., Bottaro, D.P., and Aaronson, S.A. (1998). Differential effects of hepatocyte growth factor isoforms on epithelial and endothelial tubulogenesis. Cell Growth Differ 9, 355-365.

Nakamura, T., Nawa, K., and Ichihara, A. (1984). Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 122, 1450-1459.

Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., Tashiro, K., and Shimizu, S. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature 342, 440-443.



Nakamura, T., Teramoto, H., and Ichihara, A. (1986). Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci U S A 83, 6489-6493.

Naldini, L., Tamagnone, L., Vigna, E., Sachs, M., Hartmann, G., Birchmeier, W., Daikuhara, Y., Tsubouchi, H., Blasi, F., and Comoglio, P.M. (1992). Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J 11, 4825-4833.

Pelicci, G., Giordano, S., Zhen, Z., Salcini, A.E., Lanfrancone, L., Bardelli, A., Panayotou, G., Waterfield, M.D., Ponzetto, C., Pelicci, P.G. (1995). The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene 10, 1631-1638.

Ponzetto, C., Bardelli, A., Zhen, Z., Maina, F., dalla Zonca, P., Giordano, S., Graziani, A., Panayotou, G., and Comoglio, P.M. (1994). A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261-271.

Ponzetto, C., Zhen, Z., Audero, E., Maina, F., Bardelli, A., Basile, M.L., Giordano, S., Narsimhan, R., and Comoglio, P. (1996). Specific uncoupling of GRB2 from the Met receptor. Differential effects on transformation and motility. J Biol Chem 271, 14119-14123.

Rae, J.M., Creighton, C.J., Meck, J.M., Haddad, B.R., and Johnson, M.D. (2007). MDA-MB-435 cells are derived from M14 melanoma cells--a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104, 13-19.

Rae, J.M., Ramus, S.J., Waltham, M., Armes, J.E., Campbell, I.G., Clarke, R., Barndt, R.J., Johnson, M.D., and Thompson, E.W. (2004). Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin Exp Metastasis 21, 543-552.

Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S.S., Van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J.C.F., Lashkari, D., Shelon, D., Myers, T.G., Weinstein, J.N., Botstein, D., and Brown, P.O. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24, 227-235.

Sellappan, S., Grijalva, R., Zhou, X., Yang, W., Eli, M.B., Mills, G.B., and Yu, D. (2004). Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res 64, 3479-3485.

Schaeper, U., Gehring, N.H., Fuchs, K.P., Sachs, M., Kempkes, B., and Birchmeier, W. (2000). Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 149, 1419-1432.


Shimomura, T., Miyazawa, K., Komiyama, Y., Hiraoka, H., Naka, D., Morimoto, Y., and Kitamura, N. (1995). Activation of hepatocyte growth factor by two homologous proteases, blood-coagulation factor XIIa and hepatocyte growth factor activator. Eur J Biochem 229, 257-261.

Stamos, J., Lazarus, R.A., Yao, X., Kirchhofer, D., and Wiesmann, C. (2004). Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J 23, 2325-2335.

Tomioka, D., Maehara, N., Kuba, K., Mizumoto, K., Tanaka, M., Matsumoto, K., and Nakamura, T. (2001). Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res 61, 7518-7524.

Valledor, L., and Jorrin, J. (2010). Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74, 1-18.

Weidner, K.M., Arakaki, N., Hartmann, G., Vandekerckhove, J., Weingart, S., Rieder, H., Fonatsch, C., Tsubouchi, H., Hishida, T., Daikuhara, Y. and Birchmeier, W. (1991). Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci U S A 88, 7001-7005.


Weidner, K.M., Di Cesare, S., Sachs, M., Brinkmann, V., Behrens, J., and Birchmeier, W. (1996). Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384, 173-176.

Xiao, G.H., Jeffers, M., Bellacosa, A., Mitsuuchi, Y., Vande Woude, G.F., and Testa, J.R. (2001). Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 98, 247-252.

Xu, S.G., Yan, P.J., and Shao, Z.M. (2010). Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis. J Cancer Res Clin Oncol 136, 1545-1556.

Yoshiyama, Y., Arakaki, N., Naka, D., Takahashi, K., Hirono, S., Kondo, J., Nakayama, H., Gohda, E., Kitamura, N., Tsubouchi, H. (1991). Identification of the N-terminal residue of the heavy chain of both native and recombinant human hepatocyte growth factor. Biochem Biophys Res Commun 175, 660-667.

Youles, M., Holmes, O., Petoukhov, M.V., Nessen, M.A., Stivala, S., Svergun, D.I., and Gherardi, E. (2008). Engineering the NK1 fragment of hepatocyte growth factor/scatter factor as a MET receptor antagonist. J Mol Biol 377, 616-622.
Zarnegar, R., and Michalopoulos, G. (1989). Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. Cancer Res 49, 3314-3320.

Zhou, H., Mazzulla, M.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T., Rubin, J.S., Bottaro, D.P., and Byrd, R.A. (1998). The solution structure of the N-terminal domain of hepatocyte growth factor reveals a potential heparin-binding site. Structure 6, 109-116.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code