Responsive image
博碩士論文 etd-0124113-221233 詳細資訊
Title page for etd-0124113-221233
論文名稱
Title
磁性氧化鐵奈米粒子應用於降解有機染料與檢測三磷酸腺苷
Synthesis and Application of Iron Oxide Nanoparticles : Degradation of Organic Dyes and Sensing of Adenosine Triphosphate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-11-27
繳交日期
Date of Submission
2013-01-24
關鍵字
Keywords
聚苯乙烯磺酸、三磷酸腺苷、三磷酸腺苷螢光試劑、磁性氧化鐵奈米粒子、費頓反應
BODIPY FL ATP, Adenosine Triphosphate, Fenton reaction, PSS, Iron Oxide Nanoparticles
統計
Statistics
本論文已被瀏覽 5676 次,被下載 4747
The thesis/dissertation has been browsed 5676 times, has been downloaded 4747 times.
中文摘要
本篇論文利用磁性氧化鐵奈米粒子 (Iron Oxide Nanoparticles,Fe3O4 NPs) 的化學性質,配合修飾上聚苯乙烯磺酸 (Polystyrene sulfonic acid,PSS) 塗層包覆(PSS-Fe3O4 NPs),做為吸附劑和非均相 Fenton reaction 催化劑以降解有機污染物。而接續的第二部分研究,利用 Fe3O4 NPs 結合三磷酸腺苷螢光試劑 (ATP-FL) 配合螢光儀檢測三磷酸腺苷 (ATP) 的濃度。
一、利用修飾聚苯乙烯磺酸塗層的四氧化三鐵奈米粒子降解環境水樣中的有機染料亞甲基藍與羅丹明B:
PSS-Fe3O4 NPs 擁有類似辣根過氧化物酶 (Horseradish peroxidase,HRP)的催化能力,可以在過氧化氫(H2O2)的存在下,催化與過氧化氫相關氧化反應中的過氧化物酶受質,進而產生比色或螢光信號。本實驗中用 PSS-Fe3O4 奈米粒子降解常見有機染料,亞甲基藍 (Methylene blue) 和羅丹明 B(Rhodamine B)。降解的過程以紫外光/可見光譜儀分析,染料吸收光譜的強度會隨著反應時間增加而下降。首先 PSS-Fe3O4 奈米粒子與溶液中有機染料進行吸附過程,接著在添加過氧化氫溶液後開始降解反應,反應兩個小時後可移除溶液中97.8 % 的亞甲基藍 (10 mL,50 μM) 或七個小時後移除96.6 % 的羅丹明B (10 mL,5 μM)。實驗結果顯示,1克的 PSS-Fe3O4 奈米粒子可降解 1.8 毫克的亞甲基藍或 2.7 毫克的羅丹明B。
二、利用磁性氧化鐵奈米粒子結合三磷酸腺苷螢光試劑檢測三磷酸腺苷:
在本篇研究中,利用 Fe3O4 奈米粒子表面的 Fe3+ 與 Fe2+ 對三磷酸腺苷螢光試劑 (BODIPY FL ATP,簡稱ATP-FL) 有螢光消光的現象,當加入三磷酸腺苷 (Adenosine triphosphate,ATP) 時會抑制消光的反應,使螢光訊號升高。因此隨著添加的 ATP 反應濃度越高螢光訊號也會隨之增高,我們藉由此方法來偵測 ATP ,最後可應用在血球真實樣品中 ATP 的濃度檢測。
Abstract
none
目次 Table of Contents
論文審定書 ....................................................................................................................... i
摘要 .................................................................................................................................. ii
目錄 ................................................................................................................................. iii
圖目錄 ............................................................................................................................. vi
縮寫表 ............................................................................................................................. ix
第一章利用修飾聚苯乙烯磺酸塗層的四氧化三鐵奈米粒子降解環境水樣中的有
機染料亞甲基藍與羅丹明B .......................................................................................... 1
一、前言 .......................................................................................................................... 1
1.1 磁性奈米粒子 ........................................................................................................... 1
1.2 染料 (Dye) ................................................................................................................ 2
1.3 染料污水的處理方法 ............................................................................................... 2
1.4 高級氧化處理程序 .................................................................................................... 2
1.5 Fenton 氧化法程序 .................................................................................................... 3
二、實驗部分 .................................................................................................................. 6
2.1 藥品 ........................................................................................................................... 6
2.2 儀器裝置 .................................................................................................................. 7
2.3 磁性氧化鐵奈米粒子之合成與修飾 ...................................................................... 11
2.3.1 合成Bare Fe3O4 奈米粒子 ........................................................................... 11
2.3.2 合成PSS-Fe3O4 奈米粒子 ........................................................................... 11
2.4 染料樣品製備與檢測步驟 ..................................................................................... 12
2.4.1 標準樣品配製 ............................................................................................... 12
2.4.2 真實水樣配製與檢測步驟 ........................................................................... 12
三、結果與討論 ............................................................................................................ 13
3.1 PSS-Fe3O4 奈米粒子之性質探討 ........................................................................... 13
3.2 最佳化反應條件之探討 ......................................................................................... 20
3.2.1 PSS-Fe3O4 奈米粒子吸附能力探討 ............................................................ 20
3.2.2 吸附時間最佳化探討 ................................................................................... 20
3.2.3 PSS-Fe3O4 奈米粒子—Fenton 氧化法降解反應之過氧化氫濃度最適化 21
3.3 PSS-Fe3O4 與 Fe3O4 奈米粒子降解能力比較 ..................................................... 25
3.4 降解染料亞甲基藍與羅丹明B 的反應 ............................................................... 27
3.5 使用自來水樣品之降解染料反應 ......................................................................... 29
3.6 PSS-Fe3O4 NPs 降解染料反應之重複使用性探討 ............................................... 31
四、結論 ........................................................................................................................ 33
五、參考文獻 ................................................................................................................ 34
第二章利用磁性氧化鐵奈米粒子結合三磷酸腺苷螢光試劑檢測三磷酸腺苷 ...... 39
一、前言 ........................................................................................................................ 39
1.1 三磷酸腺苷(Adenosine triphosphate,ATP) 簡介 ........................................ 39
1.2 偵測方法—螢光消光 ............................................................................................. 40
二、實驗部分 ................................................................................................................ 43
2.1 藥品與溶液配製 ..................................................................................................... 43
2.2 儀器裝置 ................................................................................................................. 45
2.3 合成磁性氧化鐵奈米粒子 (Bare Fe3O4 奈米粒子) ........................................... 46
2.4 ATP 回復 Fe3O4 奈米粒子與 ATP-FL 之系統消光之檢測步驟 ....................... 47
2.4.1 標準樣品配製 ................................................................................................ 47
2.4.2 真實血球樣品之ATP 檢測 .......................................................................... 47
三、結果與討論 ............................................................................................................ 48
3.1 利用磁性氧化鐵奈米粒子結合三磷酸腺苷螢光試劑檢測三磷酸腺苷 ............. 48
3.2 最佳化條件探討 ..................................................................................................... 50
3.2.1 反應 pH 值探討 .......................................................................................... 50
3.2.2 緩衝溶液種類探討 ....................................................................................... 50
3.2.3 緩衝溶液濃度探討 ....................................................................................... 54
3.2.4 Fe3O4 奈米粒子用量探討 ............................................................................ 54
3.2.5 反應時間探討 ............................................................................................... 57
3.2.6 ATP-FL 螢光試劑濃度探討 ......................................................................... 57
3.3 消光機構探討 ......................................................................................................... 60
3.4 選擇性探討 ............................................................................................................. 62
3.5 ATP 標準品定量 ..................................................................................................... 64
3.6 血球樣品中 ATP 濃度定量 .................................................................................. 64
四、結論 ........................................................................................................................ 67
五、參考文獻 ................................................................................................................ 68
參考文獻 References
[1] Burnstock, G., “Historical review: ATP as a neurotransmitter. ”Trends in pharmacological sciences 2006, 27, 166-176.
[2] Gorman, M. W.; Feigl, E. O.; Buffington, C. W., “Human plasma ATP concentration. ”Clinical chemistry 2007, 53, 318-325.
[3] Sirard, A. S. M.; Gupta, A. R. R.; Russell, A. T. P.; Watkins, A. J. J.; Green, A. P. F.; Johnston, A. K. P., “Microstructural bronze characterisation by time of flight neutron diffraction. ”Mol Phys 2003, 101, 2529-2532.
[4] Tsuda, M.; Shigemoto-Mogami, Y.; Koizumi, S.; Mizokoshi, A.; Kohsaka, S.; Salter, M. W.; Inoue, K., “P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. ”Nature 2003, 424, 778-783.
[5] Rapaport, E., “Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. ”Journal of cellular physiology 1983, 114, 279-283.
[6] Rapaport, E.; Fontaine, J., “Generation of extracellular ATP in blood and its mediated inhibition of host weight loss in tumor-bearing mice. ”Biochemical pharmacology 1989, 38, 4261-4266.
[7] Pearson, R. A.; Dale, N.; Llaudet, E.; Mobbs, P., “ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. ”Neuron 2005, 46, 731-744.
[8] Finger, T. E.; Danilova, V.; Barrows, J.; Bartel, D. L.; Vigers, A. J.; Stone, L.; Hellekant, G.; Kinnamon, S. C., “ATP signaling is crucial for communication from taste buds to gustatory nerves. ”Science's STKE 2005, 310, 1495.
[9] Cockayne, D. A.; Hamilton, S. G.; Zhu, Q. M.; Dunn, P. M.; Zhong, Y.; Novakovic, S.; Malmberg, A. B.; Cain, G.; Berson, A.; Kassotakis, L., “Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X 3-deficient mice. ”Nature 2000, 407, 1011-1015.
[10] Gorman, M. W.; Marble, D. R.; Ogimoto, K.; Feigl, E. O., “Measurement of adenine nucleotides in plasma. ”Luminescence 2003, 18, 173-181.
[11] Gao, H.; Xi, M.; Xu, L.; Sun, W., “Sensitive determination of ATP using a carbon paste electrode modified with a carboxyl functionalized ionic liquid. ”Microchimica Acta 2011, 174, 115-122.
[12] Masson, J. F.; Kranz, C.; Mizaikoff, B.; Gauda, E. B., “Amperometric ATP microbiosensors for the analysis of chemosensitivity at rat carotid bodies. ”Analytical Chemistry 2008, 80, 3991-3998.
[13] Bogomolova, A.; Aldissi, M., “Real-time aptamer quantum dot fluorescent flow sensor. ”Biosensors and Bioelectronics 2011, 26, 4099-4103.
[14] Liu, F.; Zhang, J.; Chen, R.; Chen, L.; Deng, L., “Highly Effective Colorimetric and Visual Detection of ATP by a DNAzyme–Aptamer Sensor. ”Chemistry & Biodiversity 2011, 8, 311-316.
[15] He, Y.; Wang, Z.-G.; Tang, H.-W.; Pang, D.-W., “Low background signal platform for the detection of ATP: When a molecular aptamer beacon meets graphene oxide. ”Biosensors and Bioelectronics 2011, 29, 76-81.
[16] Zhou, Z.; Du, Y.; Dong, S., “Double Strand DNA-Templated Formation of Copper Nanoparticles as Fluorescent Probe for Label-Free Aptamer Sensor. ”Analytical Chemistry 2011.
[17] Thomas, K. G.; Kamat, P. V., “Chromophore-functionalized gold nanoparticles. ”Accounts of Chemical Research 2003, 36, 888-898.
[18] Truong, K.; Ikura, M., “The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. ”Current opinion in structural biology 2001, 11, 573-578.
[19] Shang, L.; Dong, S., “Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. ”Analytical Chemistry 2009, 81, 1465-1470.
[20] Barazzouk, S.; Kamat, P. V.; Hotchandani, S., “Photoinduced electron transfer between chlorophyll a and gold nanoparticles. ”The Journal of Physical Chemistry B 2005, 109, 716-723.
[21] Cunliffe, J. M.; Sunahara, R. K.; Kennedy, R. T., “Detection of G protein coupled receptor mediated adenylyl cyclase activity by capillary electrophoresis using fluorescently labeled ATP. ”Analytical Chemistry 2007, 79, 7534-7539.
[22] Vinogradov, S. V.; Kohli, E.; Zeman, A. D., “Cross-linked polymeric nanogel formulations of 5'-triphosphates of nucleoside analogues: role of the cellular membrane in drug release. ”Molecular pharmaceutics 2005, 2, 449-461.
[23] Boaz, H.; Rollefson, G., “The quenching of fluorescence. Deviations from the Stern-Volmer law. ”Journal of the American Chemical Society 1950, 72, 3435-3443.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code