Responsive image
博碩士論文 etd-0125105-225049 詳細資訊
Title page for etd-0125105-225049
論文名稱
Title
高性能鎂/碳纖/聚二醚酮夾層及奈米粉體強化聚二醚酮複材之製備與特性分析
Fabrication and Characterization on High Performance Mg/Carbon-Fiber/PEEK Laminates and Nanoparticle/PEEK Nanocomposites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
200
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-01-12
繳交日期
Date of Submission
2005-01-25
關鍵字
Keywords
鎂/碳纖/聚二醚酮夾層複材、聚二醚酮、聚二醚酮奈米複材、碳纖維、鎂合金
carbon fiber, Mg/CF/PEEK laminated composites, Mg alloy, PEEK nanocomposites, PEEK
統計
Statistics
本論文已被瀏覽 5742 次,被下載 2747
The thesis/dissertation has been browsed 5742 times, has been downloaded 2747 times.
中文摘要
鎂合金由於俱低密度 (1.7-1.8 g/cm3) 的特性,故可做為輕量化金屬結構材料方面之應用,因此在這幾年廣獲青睞。眾所周知,碳纖維 (CF) 強化聚二醚酮 (PEEK) 高分子複合材料 (CF/PEEK) 在其縱向俱有超高之比強度與比剛性;故Mg/CF/PEEK複合材料將是製備一高比強度及比剛性複合材料之另一方式。本研究第一部分將以三明治堆疊方式利用AZ31鎂薄板與CF/PEEK預浸布在真空熱壓機中壓製低密度及高性能鎂基夾層複合材料。為獲致良好的界面接著性能,在熱壓前鎂板需利用CrO3行表面處理。真空熱壓製得之Mg/CF/PEEK鎂基夾層複合材料俱低密度 (1.7 g/cm3) 之特性,且在縱向之彈性模數及最大抗拉強度分別高達75 GPa及932 MPa。而不論是縱向及橫向之彈性模數及最大抗拉強度更高達90至100%的理論值,顯示其界面接著及負荷傳遞是非常有效且充分。在Mg/CF/PEEK鎂基夾層複合材料之撓曲及剝離性質方面,在縱向撓曲模數及應力也分別高達54.6 GPa及960 MPa,顯示此鎂基夾層複合材料俱有很高的抗彎曲特性。再者,在縱向及橫向之剝離強度也分別達2.75及4.85 N/mm,優於環氧乙烷接著之鋁基碳纖維強化夾層複合材料。
高分子奈米複合材料由於俱多樣化及超高性能之特性,在過去這十年來也吸引眾多注目的眼光;眾所周知,高分子奈米複合材料可利用溶膠-凝膠法製得。PEEK因俱耐溶劑特性,因此,無法利用溶膠-凝膠法製備PEEK奈米複合材料。本研究第二部分將利用熱壓成型法在400oC真空熱壓機中製備PEEK奈米複合材料,並利用15及30 奈米大小的氧化矽及氧化鋁作為強化相,此強化相之重量分率在2.5至10%之間。經實驗證實,氧化矽及氧化鋁含量在5至7.5 之重量百分率時,PEEK奈米複合材料之硬度、彈性模數,及最大抗拉強度可提高百分之20至50,但其斷裂伸度則下降。在無任何的奈米粉體表面改質下,氧化矽及氧化鋁奈米粉體在PEEK基材中之分散還算均勻;且經X-ray繞射證實,氧化矽及氧化鋁奈米粉體與PEEK高分子間並無明顯的化學反應產生。氧化矽及氧化鋁奈米粉體的添加對PEEK高分子結晶性及熱穩定性的影響則利用示差掃瞄卡計 (DSC) 及熱重分析儀 (TGA) 檢測之,實驗證實經氧化矽及氧化鋁奈米粉體強化之PEEK奈米複合材料的結晶度會稍微下降,而熱裂解溫度則會較諸純PEEK提高約40oC。
Abstract
Magnesium alloys have attracted considerable attention owing to its low density of ~1.7 g/cm3. On the other hand, the carbon fiber (CF) reinforced polyether ether ketone (PEEK) polymer composites possess extraordinary specific strength and stiffness along the longitudinal (or fiber) direction. It follows that the combination of Mg/CF/PEEK would offer an alternative in forming a high specific strength and stiffness composite. In the first part of this study, the low density and high performance Mg-based laminated composites were fabricated by means of sandwiching the AZ31 Mg foils with the carbon-fiber/PEEK prepreg through hot pressing. Proper surface treatments of AZ31 sheet using CrO3 base etchants are necessary in order to achieve good interface bonding characteristics. The resulting Mg base laminated composite, with a low density of 1.7 g/cm3, exhibits high modulus of 75 GPa and tensile strength of 932 MPa along the longitudinal direction. The experimentally measured tensile modulus and strength data along both the longitudinal and transverse direction are within 90-100% of the theoretical predictions by rule of mixtures, suggesting that the bonding between layers and the load transfer efficiency are satisfactory. The flexural stress and modulus along the longitudinal direction are 960 MPa and 54.6 GPa, respectively, suggesting a sufficiently high resistance against bending deflection. The peel strengths are about 2.75 and 4.85 N/mm along the longitudinal and transverse directions, respectively, superior to that of the epoxy-resin-adhered and carbon-fiber-reinforced aluminum laminated composites.
Polymer nanocomposites have attracted considerable attention during the past decade due to their versatile and extra-ordinary performances. The polymer nanocomposites can be prepared by the well-known sol-gel method. It is well known that PEEK is a good solvent resistant polymer. Hence, it is impossible to fabricate the PEEK nanocomposite by means of sol-gel method. In the second part of this study, the PEEK nanocomposites filled with nano-sized silica or alumina measuring 15-30 nm to 2.5-10 weight percent were fabricated by vacuum hot press molding at 400oC. The resulting nanocomposites with 5-7.5 wt% SiO2 or Al2O3 nanoparticles exhibit the optimum improvement of hardness, elastic modulus, and tensile strength by 20-50%, with the sacrifice of tensile ductility. With no surface modification for the inorganic nanoparticles, the spatial distribution of the nanopartilces appears to be reasonably uniform. There seems no apparent chemical reaction or new phase formation between the nanoparticle and matrix interface. The crystallinity degree and thermal stability of the PEEK resin with the addition of nanopartilces were examined by X-ray diffraction, differential scanning calorimetry, and thermogravity analyzer, and it is found that a slight decrease in crystallinity fraction and a higher degradation temperature would result in as compared with the prestine PEEK.
目次 Table of Contents
TABLE OF CONTENTS………………………………………………………………………i
LIST OF TABLES…………………………………………………………………………......v
LIST OF FIGURES…………………………………………………………………….…...viii
ABSTRACT………………………………………………………………………….………xv
中文提要……………………………………………………………………………..…..…xvii
致謝…………………………………………………………………………………...……..xix
CHAPTER 1 Background and Research Motive…………..………………………………..1
1.1 Light-weight magnesium based alloys……………………………………………..1
1.1.1 Characteristics of magnesium alloys…...….………………………………..1
1.1.2 The properties of AZ31 magnesium alloy………………………………..…4
1.2 Thermoplastic high temperature polymer PEEK…………………………………..6
1.2.1 The properties of PEEK…………………………………………………….6
1.2.2 Applications of PEEK……………………………………………………....8
1.3 Introduction to polymer matrix composites (PMC)…………………………..…..10
1.3.1 Polymer matrix composites………………………………………………..10
1.3.2 High performance carbon-fiber/PEEK (CF/PEEK) composite……………12
1.4 Particulate filled polymer composites…………………………………………….15
1.4.1 Characteristics of particulate filled composites……………………………15
1.4.2 Characteristics of nanoparticulate-reinforced polymer composites…….…19
1.4.3 Silica nanoparticle reinforced polymer composites…………………….…22
1.4.4 Effect of the incorporation of nanofillers on the crystallization of polymer chains……………………………………………………………………....25
1.5 Laminated composites…………………………………………………………….27
1.6 Motive of research………………………………………………………………...30
CHAPTER 2 Experimental Methods……………………………………………………....34
2.1 Materials…………………..………………………………………………………34
2.2 Mg/CF/PEEK laminated composites……………………………………………..34
2.2.1 Preparation of Mg/CF/PEEK laminated composites……………………...34
2.2.2 Tensile tests of Mg/CF/PEEK laminated composites…………………..…35
2.2.3 Flexural and T-Peel tests of Mg/CF/PEEK laminated composites..............35
2.2.4 Identification for interface bonding between Mg sheet and APC-2 prepreg
……………………………………………………………………………..36
2.3 Nanoparticle/PEEK composites…………………………………………………..37
2.3.1 Preparation of nanoparticle/PEEK composites…………………………....37
2.3.2 Room temperature tensile tests of nanoparticle/PEEK composites……….37
2.3.3 Microhardness tests of nanoparticle/PEEK composites…………………...38
2.3.4 SEM energy dispersive spectrometry (EDS) and X-ray diffraction……….38
2.3.5 TEM observations on nanoparticle/PEEK composites…………………....38
2.3.6 Thermal analysis of nanoparticle/PEEK composites…………………...…38
CHAPTER 3 Experimental Results……………………………………………………..…40
3.1 Mg/CF/PEEK laminated composites……………..………..……………………..40
3.1.1 Fabrication of Mg/CF/PEEK laminated composites………………………40
3.1.2 Room temperature tensile properties…………….…….………………...44
3.1.3 Elevated temperature tensile properties…………………………………...45
3.1.4 SEM observations…………………………………………………………46
3.1.5 Room temperature flexural and peel properties………………………...…49
3.1.5.1 Room temperature flexual properties........................................................49
3.1.5.2 Room temperature peeling properties…………….…………………...51
3.1.6 Characterization on interface bonding between Mg sheet and APC-2 prepreg………...………………………………………………….…….....52
3.2 PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates………..54
3.2.1 Microhardness measurements……………………………………………..54
3.2.2 Room temperature tensile properties……………………………………....54
3.2.3 SEM observations………………………………………………………....56
3.2.4 TEM observations…………………………………………………………57
3.2.5 X-ray diffraction analysis………………………………………………….58
3.2.6 DSC analysis on nonisothermal crystallization…………………………....58
3.2.7 TGA measurements………………………………………………………..64
CHAPTER 4 Discussions…………………………………………………………………..66
4.1 Rule of mixtures on the Mg/CF/PEEK laminated composites……………………66
4.1.1 ROM on room temperature tensile properties……………………………..66
4.1.2 Comparison with previous results on ARALL and CARALL…………….67
4.2 The effect of temperature on UTS of Mg/CF/PEEK laminated composites……...68
4.3 Comparison on the flexural properties of the Mg/CF/PEEK laminated composites with those of the CF/PEEK composites…………………………………………..70
4.4 ROM on the micro-hardness, Young’s modulus, and UTS predications of the PEEK/nano-particle……………………………………………………………….71
4.5 The tribology characteristics of the PEEK composites filled with nanoparticles...73
4.6 The effect of inorganic nano fillers on the tensile properties of PEEK………...…73
4.7 The effect of inorganic fillers on the crystallization of PEEK molecular chains....76
4.8 Closing remarks ……………………………………………………...………...…78
CHAPTER 5 Conclusions………………………………………………………………….80
5.1 Conclusions on Mg/CF/PEEK laminated composites…………………………….80
5.2 Conclusions on PEEK composites reinforced by nano-sized SiO2 and Al2O3 particulates……………………………………………………………………….81
REFERENCES……………………………………………………………………………….84
TABLES……………………………………………………………………………………...94
FIGURES…………………………………………………………………………………...120
參考文獻 References
References

1. I. J. Polmear, Light Alloys 3rd ed., Edward Arnold, London (1995) 17.
2. G. V. Raynor, The Physical Metallurgy of Magnesium and Its Alloys, Pergamon Press, London, (1957) 1.
3. K. G. Kgeider, ed., Composite Materials, Vol. 4, L. Broutman and R. Krock, eds., Metal- Matrix Composites, Academic Press, Inc., New York, 1974.
4. Y. Kojima, Materials Science Forum, 350-351 (2000) 3.
5. I. J. Polmear, Materials Science and Technology, 10 (1994) 1.
6. I. J. Polmear, Materials Transactions, JIM, 37 (1996) 12.
7. S. Kamado and Y. Kojima, Materia Japan, 38 (1999) 285.
8. H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe, and K. Higashi, Materials Transactions. JIM, 40 (1999) 809.
9. H. Watanabe, T. Mukai, and K. Higashi, Scripta Materialia, 40 (1999) 209.
10. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Scripta Materialia, 41 (1999) 209.
11. H. Somekawa, M. Kohzu, S. Tanabe, and K. Higashi, Materials Science Forum, 350-351 (2001) 177.
12. M. Mabuchi, T. Asahina, H. Iwasaki, and K. Higashi, Materials Science and Technology, 13 (1997) 825.
13. K. Kubota, M. Mabuchi, and H. Higashi, Journal of Materials Science, 34 (1999) 2255.
14. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, Acta Materialia, 47 (1999) 2047.
15. H. HaferKamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jashik, and V. Kaese, Materials Science Forum, 350-351 (2000) 31.
16. M. Gupta. L. Lu, M. O. Lai, and H. H. Lee, Materials Research Bulletin, 34 (1999) 1201.
17. W. C. Harrigan Jr., Materials Science and Engineering, A244 (1998) 75.
18. D. J. Towle and C. M. Friend, Materials Science and Technology, 9 (1993) 35.
19. S. Lim and T. Choh, Journal of Japan Light Metals, 42 (1992) 772
20. H. Watanabe, T. Mukai, T. G. Nieh, and K. Higashi, Scripta Materialia, 42 (2000) 249.
21. J. M. Wu, and Z. Z. Li, J. Alloys Compound, 2999 (2000) 9.
22. G. J. Fan, M. X. Quan, Z. Q. Hu, J. Echert, and L. Schultz, Scripta Materialia, 41 (1999) 1147.
23. S. Hwang and C. Nishimura, Scripta Materialia, 44 (2001) 2457.
24. T. Mukai, H. Watanabe, and K. Higashi, Materials Science Forum, 350-351 (2000) 159.
25. H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu, and K. Higashi, Materials Science Forum, 350-351 (2000) 171.
26. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Scripta Materialia, 45 (2001) 89.
27. M. Mabuchi, K. Kubota, and K. Higashi, Mater. Trans., JIM, 36 (1995) 1249.
28. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, Scripta Materialia, 36 (1997) 681.
29. T. Mohri, M. Mabuchi, H. Iwasaki, T. Aizawa, and K. Higashi, Materials Science and Engineering, A290 (2000) 139.
30. W. Bleck, JOM, 48 (7) (1996) 26.
31. G. Marron and P. Teracher, JOM, 48 (7) (1996) 16.
32. A. A. Lou, JOM, 54 (2) (2002) 42.
33. W. H. Bonner, U. S. Patent 3065205, 1962.
34. T. E. Attwood, P. C. Dawson, J. L. Freeman, L. R. J. Hoy, J. B. Rose, and P. A. Staniland, Polymer, 22 (1981) 1096.
35. P. C. Dwason and D. J. Blundell, Polymer, 21 (1980) 577.
36. M. T. Bishop, F. E. Karasz, P. S. Russo, and K. H. Langley, Macromolecules, 18 (1985) 86.
37. C. Bailly, D. J. Williams, and F. E. Krantz, W. T. Macknight, Polymer, 28 (1987) 1009.
38. S. L. Gao and J. K. Kim, Composites, 31A (2000) 517.
39. D. J. Kemmish and J. H. Hay, Polymer, 26 (1985) 905.
40. G. Mensitieri, D. Nobile, A. Apicella, and L. Nicolais, Polymer Engineering and Science, 29 (1959) 1786.
41. G. Mensiteri, A. Apialla, J. M. Kenny, and L. Nicolais, J. Applied Polymer Scince, 37 (1989) 381.
42. P. Cebe, S. Y. Chung, and S.D. Hong, J. Applied Polymer Science, 33 (1987) 487.
43. M. F. Sonnenschein, J. Applied Polymer Science, 72 (1999) 175.
44. M. F. Sonnenschein, J. Applied Polymer Science, 74 (1999) 1146.
45. O. Petillo, G. Peluso, L. Ambrosio, L. Nicolais, W. J. Kao, and J. M. Anderson, J. Biomedical Materials Research, 28 (1994) 635.
46. C. Morrison, R. Macnair, C. Macdonald, A. Wykman, I. Goldie, and M. H. Grant Biomaterials, 16 (13) (1995) 987.
47. J. L. Dewez, A. Doren, Y. J. Schneider. R. Legras, and P. Rouxhelt, in Interface in New Materials, Elsevier Applied Science, London, (1991) 84.
48. W. S. Ramsey, W. Hertl, E. D. Nowlan, and N. J. Binkowshi, In Vitro, 20 (1984) 802.
49. I. S. Ertel, B. D. Ratner, and T. A. Horbelt, J. Biomedical Materials Research, 24 (1990) 1637.
50. C. Henneuse, B. Goret, and M. B. Jecqueline, Polymer, 39 (4) (1998) 835.
51. C. Henneuse, B. Goret, and M. B. Jecqueline, Polymer, 39 (22) (1998) 1998.
52. M. B. Jacqueline, G. Pantano, and O. Noiset, Polymer, 38 (6) (1997) 1387.
53. M. C. Wijers, M. Jin, M. Wessling, and H. Strathmann, Journal of Membrane Science, 147 (1998) 117.
54. Q. H. Wang, J. f. Xu, W. Shen, and W. Liu, Wear, 196 (1996) 82.
55. Q. H. Wang, Q. Xue, H. Liu, W. Shen, and J. Xu, Wear, 198 (1996) 216.
56. Q. H. Wang, J. F. Xu, W. Shen, and Q. Xue, Wear, 209 (1997) 316.
57. C. Fujimoto, M. Sakurai, and Y. Muranaka, Journal of Microsolumn Separations, 11 (10) (1999) 693.
58. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, Composites Science and Technology, 61 (2001) 1189.
59. D. Hull and T. W. Clyne, An Introduction to Composite Materials, 2nd Edition, Cambridge, 1996.
60. S. Hashemi, A. J. Kinloch, and J. G. Williams, J. Composite Materials, 24 (1990) 918.
61. W. J. Mikols, J. C. Seferis, A. Apicella, and L. Nicolais, Polymer Composites, 3 (1982) 118.
62. A. Apicella, L. Nicolais, and C. Cataldis, Advances in Polymer Science, 66 (1985) 189.
63. A. Apicella, L. Nicolais, and G. Astarita, Polymer, 20 (1979) 1143.
64. H. Shen and G. S. Springer, J. Composite Materials, 11 (1977) 2.
65. R. Bunsell, Long-Term Degradation of Polymer-Matrix Composites, Loncise Encyclopedia of Composite Materials. 2nd ed., Pergamon, New York, 1994.
66. F. N. Cogswell, Thermoplastic Aromatic Polymer Composites, Butterworth-Heienmann, Boston, 1992.
67. C. Ageorges, L. Ye, and M. Hou, Composite, 32A (2001) 839.
68. A Lustiger, F. S. Uralil, and G. M. Newaz, Polymer Composites, 11 (1990) 65.
69. S. Saiello, J, Kenny, and L. Nicoais, J. Materials Science, 25 (1990) 3493.
70. M. Zhang, J. Xu, Z. Zhang, H. Zeng, and X. Xiong, Polymer, 37 (1996) 5151.
71. Y. L. Zou and A. N. Netravali, J. Adhesion Science and Technology, 9 (1995) 1505.
72. H. Kobayashi, E. Hayakawa, T. Kikutani, and A. Takaku, Advanced Composite Materials, 1 (1991) 155.
73. M. J. Folkes, G. Kalay, and A. Ankara, Composites Science and Technology, 46 (1993) 77.
74. Y. Lee and R. S. Porter, Polymer Engineering and Science, 26 (1986) 633.
75. S. L. Gao and J. K. Kim, Composites, 32A (2001) 763.
76. S. L. Gao and J. K. Kim, Composites, 32A (2001) 775.
77. V. Mallik, Composites, 32A (2001) 1167.
78. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Levng, Composites Science and Technology, 61 (2001) 1189.
79. C. Morrison, R. Macanair, C. MacDonald, A. Wyleman, I. Goldie, and M. H. Grant, Biomaterials, 16 (1995) 987.
80. S. A. Brown, R. X. Hastings. J. J. Mason, and A. Moet, Biomaterials, 11 (1990) 541.
81. D. F. Williams, A. McNamara, and R. M. Turner, J. Materials Science Letters, 6 (1987) 188.
82. W. J. Cantwell, G. Broster, and P. Davies, J. Reinforced Plastics and Composites, 15 (1996) 1161.
83. V. K. Srivastava and P. J. Hogg, J. Materials Science, 33 (1998) 1129.
84. V. K. Srivastava and P. J. Hogg, J. Materials Science, 33 (1998) 1119.
85. K. Tanaka and S. Kawakami, Wear, 79 (1982) 221.
86. B. J. Briscoe, A. K. Pogosian, and D. Tabor, Wear, 27 (1974) 19.
87. B. R. Burroughs, J. H. Kim, and T. A. Blanchet, Tribology Transactions, 42 (1999) 592.
88. K. H. Rao, K. S. E. Forssberg, and W. Forsling, Colloids and Surfaces A; Physicochemical and Engineering Aspects, 133 (1998) 107.
89. J. Luo, J. J. Lannutti, and R. R. Seghi, Dental Materials, 14 (1998) 29.
90. D. W. Sundastorm and Y. D. Lee, J. Applied Polymer Science, 16 (1972) 3159.
91. J. T. Mottram, Materials Design, 13 (1992) 221.
92. D. M. Bigg, Composite, 10 (1979) 95.
93. T. Suzuki, K. Adachi, and T. Kotaka, Polymer Journal, 13 (1981) 385.
94. U. Xin, G. Xu, P. G. Hofstra, and R. C. Bajcar, Journal of Polymer Science: Part B: Polymer Physics, 36 (1998) 2259.
95. J. E. Strangroom, Physics in Technology, 14 (1983) 290.
96. A. F. Sprecher, J. D. Carlson, and H. Conard, Materials Science and Engineering, 95 (1987) 187.
97. H. Block and J. P. Kelly, J. Physica, D 21 (1988) 1661.
98. N. I. Garmayunov and V. A. Murtsovkin, J. Engineering Physics, 43 (1982) 963.
99. S. Fraden, A. J. Hurd, and R. B. Meyer, Physical Review Letters, 63 (1989) 2373.
100. C. Park and R. E. Robertson, Journal of Materials Science, 33 (1998) 3541.
101. S. Schwarzer and A. Roosen, Journal of European Ceramic Society, 19 (1999) 1007.
102. C. W. Nan, J. Applied Physics, 76 (1994) 1155.
103. M. S. Ardi, W. Dick, and D. H. McQueen, Plastics, Rubber and Composites Processing and Applications, 24 (1995) 157.
104. M. Sumita, Y. TsuKumo, K. Miyasaka, and K. Ishikawa, J. Materials Science, 18 (1983) 1758.
105. S. N. Maiti and K. K. Sharma, J. Materials Science, 27 (1992) 4605.
106. Z. Bartczak, A. S. Argogon, R. E. Cohen, and M. Weinberg, Polymer, 40 (1999) 2347.
107. S. Bazhenov, J. X. Li, A. Hiltner, and E. Baer, J. Applied Polymer Science, 52 (1994) 243.
108. I. L. DubniKova, V. G. Oshmyan, and A. Ya. Gorenberg, J. Materials Science, 32 (1997) 1613.
109. J. Jancar, J. Polymer Engineering Science, 30 (1990) 707.
110. J. Jancar and A. T. Dibenedetto, J. Materials Science, 29 (1994) 4651.
111. E. Fekete, S. Z. Molnar, G. M. Kim, G. H. Michler, and B. Pukanszky, J. Macromolecular Science. B, Physics, 13 (1999) 885.
112. G. M. Kim and D. H. Lee, J. Applied Polymer Science, 82 (2001) 785.
113. S. Iijima, Nature, 354 (1991) 56.
114. E. T. Thostenson, Z. Ren, and T. W. Chou, Composites Science and Technology, 61 (2001) 1899.
115. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265 (1994) 1212.
116. A. Malliars and D. Turner, J. Applied Physics, 42 (1917) 614.
117. M. Narkis, A. Ram, and F. Flashner, J. Applied Polymer Science, 22 (1978) 1163.
118. B. Poulaert and J. Jossi, Polymer, 24 (1983) 841.
119. C. Klason and J. Kubat, J. Polymer Materials, 11 (1985) 47.
120. S. Radlhakrishnan, J. Materials Science Letters, 6 (1987) 145.
121. S. Balabanov and Krezhov, J. Physics. D: Appled Physics, 32 (1999) 2573.
122. M. T. Connor, S. Roy, and T. A. Ezquerra, Physical Review B, 57 (1998) 2286.
123. R. P. Pant, V. K. Sankaranarayanan, V. N. Ojha, D. K. Suri, Journal of Magnetism and Magnetic Materials, 201 (1999) 27.
124. S. Wizel, S. Margel, and A. Gedanken, J. Materials Research, 14 (1999) 3913.
125. K. S. Suslick, S. B. Choe, A. A. Cichowlas, and M. W. Grinstaff, Nature, 353 (1991) 414.
126. S. Wolff, Tire Technology, 15 (1987) 276.
127. P. Cassagnau and F. Melis, Polymer, 44 (2003) 6607.
128. M W. Lee, X. Hu, C. Y. Yue, L. Li, and K. C. Tam, Composites Science and Technology, 63 (2003) 339.
129. P. Musto, G.. Ragosta, G.. Scarinzi, and L. Mascia, Polymer, 45 (2004) 1697.
130. A. Kasseh, A. Ait-Kadi, B. Riedl, and J. F. Pierson, Polymer, 44 (2003) 1367.
131. V. A. Soloukin, W. Posthumus, J. C. M. Brokken-Zijp, J. Loos, and G. de With, Polymer, 43 (2002) 6169.
132. C. S. Tan, C. C. Juan, and T. W. Kuo, Polymer, 45 (2004) 1805.
133. C. C. Chang, K. H. Weu, Y. C. Chang, and W. C. Chen, J. Polym. Res., 10 (2003) 1.
134. W. C. Chen and L. H. Lee, Chemical Materials, 13 (2000) 3320.
135. W. C. Chen and S. J. Lee, Polymer J., 32 (2000) 67.
136. Y. Y. Yu, C. Y. Chen, and W. C. Chen, Polymer, 44 (2003) 593.
137. W. Weng, G. Chen, and D. Wu, Polymer, 44 (2003) 8119.
138. T. D. Fornes and D. R. Paul, Polymer, 44 (2003) 3945.
139. S. H. Kim, S. H. Ahn, and T. Hirai, Polymer, 44 (2003) 5625.
140. A. A. Baker, Materials Science and Engineering, 17 (1975) 177.
141. A. A. Baker, M. B. P. Allery, and S. J. Harris, J. Material Science, 4 (1969) 242.
142. P. W. Jackson, D. M. Braddick, and P. J. Walker, Fiber Science and Technology, 5 (1972) 219.
143. R. T. Pepper and E. G. Kendall, U. S. Patent No. 3,770,488, 1973.
144. R. T. Pepper, J. W. Upp, R. C. Rossi, and E. G. Kendall, Metallurgical Transactions, 2 (1971) 117.
145. G. Korb, J. Korab, and G. Groboth, Composites, 29A (1998) 1563.
146. C. T. Lin and P. W. Kao, Acta Materialia, 44 (3) (1996) 1181.
147. M. F. Amateau, J, Composite Materials, 10 (1976) 279.
148. D. M. Goddard, Metal Progress, 125 (1984) 49.
149. H. A. Katzman, J. Materials Science, 22 (1987) 144.
150. F. Wu, J. Zhu, K. Ibe, and T. Oikawa, Composites Science and Technology, 58 (1998) 77.
151. O. O. Popoola, R. C. McCune, and L. Reatherford, U. S. Patent, 5983495, 1999.
152. E. Kung, C. Mercer, S. Allameh, O. Popoola, and W. O. Soboytjo, Metallurgical and Materials Transcations, 32A (2001) 1997.
153. S. S. Zumdahl, Chemical Principles, 4th ed. Houghton Mifflin Company, Boston, USA, (2002) 923.
154. H. L. Lin and J. C. Huang, Materials Transactions, 43 (10) (2002) 2424.
155. G. T. Chuang, Processing-Morphology-Property Relationship of Poly (ether ether ketone) and Its Carbon Fiber Composite, Ph. D. Thesis, National Sun Yat-Sen University, ROC (1995).
156. S. C. Chen and J. C. Huang, Materials Science and Technology, 13 (1997) 143.
157. K. Y. Rhee and J. H. Yang, Composites Science and Technology, 63 (2003) 33.
158. R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds (6th ed.) John Wiley & Sons, Inc. NY, USA, (1998) 92.
159. G. Tsagaropoulos, A. Eisenberg, Macromolecules, 28 (1995) 396.
160. G. Tsagaropoulos, A. Eisenberg, Macromolecules, 28 (1995) 6067.
161. V. Arrighia, I. J. McEwena, H. Qiana, and M. B. Serrano Prietob, Polymer, 44 (2003) 6259.
162. J. Sandlera, P. Wernerb, M. S. P. Shaffera, V. Demchukc, V. Altstadt, and A. H. Windlea, Composites, A 33 (2002) 1033.
163. C. L. Wei, M. Chen, and F. E. Yu, Polymer, 44 (2003) 8185.
164. J. Tang, Y. Wang, H. Liu, and L. A. Belfiore, Polymer, 45 (2004) 2081.
165. A. Inoue, Y. Kawamura, and J. Koike, J. Materials Research, 16 (2001) 1894.
166. L. B. Vogelesang, and J. W. Gunnink, Materials Design, 7(6) (1986) 287.
167. C. T. Lin, P. W. Kao, and F. S. Yang, Composites, 22 (1991) 135.
168. C. T. Lin and P. W. Kao, Materials Science and Engineering, A190 (1995) 65.
169. Aluminum Standards and Data, The Aluminum Association, Inc., Washington, D.C. USA, 1993.
170. R. J. Bucci. L. N. Mueller, L. B. Vogelesang, and J. W. Gunnink, Proc. 33rd Intl. SAMPE Symp., 33 (1988) 1237.
171. W. D. Callister, Jr, Materais Sceience and Engineering, An Introduction (6th ed). John Wiley & Sons, Inc. NY, USA, 2003.
172. A. Yim, R. S. Chahal, and L. E. St. Pierre, J. Colloid Interface Science, 28 (1973) 583.
173. V. M. Litvinov and H. W. Spiess, Makromol Chemistry, 192 (1991) 3005.
174. V. Arrighi, J. S. Higgins, A. N. Burgess, and G. Floudas, Polymer, 39 (1998) 6369.
175. S. Gagliardi, V. Arrighi, R. Feruson, and M. T. F. Telling, Physica B, 301 (2001) 110.
176. V. Arrighi, I. J. McEwena, H. Qiana, and M. B. Serrano Prieto, Polymer, 43 (2002) 6169.
177. S. Vieweg, R. Unger, E. Hempel, and E. Donth, J. Non-Crystal Solids, 235 (1998) 470.
178. J. M. Margolis, Engineering Thermoplastics, Marcel Dekker, Inc. NY, USA, 1985.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code