Responsive image
博碩士論文 etd-0126110-120920 詳細資訊
Title page for etd-0126110-120920
論文名稱
Title
阿拉伯芥醣類水解酶家族九特性之研究
Characterization of Arabidopsis Glycoside Hydrolases Family 9 Genes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-11
繳交日期
Date of Submission
2010-01-26
關鍵字
Keywords
生物反應器、纖維素、生質能源
Pichia pastoris, glycosylation, cellulase, cellulose, biofuel
統計
Statistics
本論文已被瀏覽 5654 次,被下載 1414
The thesis/dissertation has been browsed 5654 times, has been downloaded 1414 times.
中文摘要
聚合醣分解為可發酵的單糖,是生質酒精發酵的首要步驟。為了增進經濟效益,減少能源作物與人類爭糧的爭議,酒精生產原料目前著眼在含量多、取得成本低、利用率低的植物纖維素上。本論文的目的在找出有效分解纖維素的酵素,以提供生產酒精的原料。從纖維素之結構與其在酵素作用下之分解過程來看,酵素至少包含三種主要之纖維酶:內切型纖維素水解酶 (Endo-β-1,4-gulcanase, E.C. 3. 2. 1. 4.)主要作用於纖維素分子內部,隨機水解其中之β-1,4 glucosidic bonds,並將長鏈纖維素分子切斷,產生大量具有還原性末端之小分子纖維素。外切型纖維素水解酶 (Exo-β-1,4-gulcanase, cellobiohydrolases, E.C. 3.2.1.91)將內切型纖維素水解酶作用產生的還原端 (reducing ends) 或非還端(non-reducing ends) 水解成纖維雙糖 (cellubiose),最後由β-葡萄糖苷酶 (β-glucosidase, E.C. 3.2.1.21)將纖維雙醣水解成葡萄糖。數種微生物被研究能夠藉由內切型纖維素水解酶和β-葡萄糖苷酶來分解纖維素,但是在植物中內切型纖維素水解酶的主要功能和特徵仍然不暸解,只有少數研究討論到其涉及細胞壁代謝的功能。阿拉伯芥 (Arabidopsis) 內切型纖維素水解酶家族九25個基因中,具代表性的12個被轉殖入Pichia pastoris中表現蛋白質,期望能產生具有活性的內切型纖維素水解酶,應用在生質能源上。但是內切型纖維素水解酶活性測試結果顯示重組蛋白缺乏酵素的活性,進一步利用dot blot偵測蛋白質的表現,發現有些重組蛋白有被分泌到細胞外,有些則被留在細胞內。探討缺乏酵素活性的可能原因為蛋白質產生不正確折疊或糖基化。未來,我們可以測試其他的生物反應器。或者利用基因工程修改阿拉伯芥的內切型纖維素水解酶會是另一種生產具功能的纖維素酶與具經濟效率的方法,能夠適應工業規模酒精生成。另一方面,我們想了解阿拉伯芥內切型纖維素水解酶家族九在不同組織間的表現情形。利用半定量PCR方法測試12個選定之阿拉伯芥內切型纖維素水解酶,At1g75680基因的表現,在所有組織中皆可偵測到,At4g39000和At3g43860專一表現在花和花序中,而At1g65610在根部和嫩芽的表現量較多。其它基因在不同組織間則沒有顯著之表現差異。
Abstract
Generation of alcohol for biofuels from fermentation of sugar or starch has several economic disadvantages such as high cost of sugar processing and land usage competing with staple food. The solution may reside in hydrolysis of cellulose from crop waste such as stalks of rice and corn or non-crop plants such as weeds or wood. Our goal is to identify cellulases that can degrade cellulosic biomass more efficiently. Studies of microbial Family 9 glycoside hydrolase (GH9) proteins, including both endo-glucanases (EC 3.2.1.4) and cellobiohydrolases (EC 3.2.1.91), have shown that they function through an inverting mechanism to cleave the 1, 4-β-glucosidic bond between two unsubstituted Glc units. The main function of plant glycoside hydrolases are involved in polysaccharide metabolism of cell wall during cell growth. Twelve Arabidopsis thaliana (Columbia) endo-1,4-β-glucanases that belong to the GH9, were cloned and expressed in Pichia pastoris in order to produce cellulases to facilitate efficient bio-alcohol production. The recombinant proteins do not show in vitro endo-1, 4-β-glucanase activity, but we can detect the recombinant proteins expression in supernatant or in pellet. The lack of enzymatic activity from recombinant proteins is probably due to improper folding or glycosylation, or fast degradation resulted from the above reasons. Other bioreactor will be tested in the future. Genetic engineering to modify Arabidopsis thaliana (Columbia) endo-β-1, 4-glucanases is another approach to produce functional cellulases with economic efficiency that can be adapted to industrial scale for alcohol generation. On the other hand, we use semi-quantitative PCR method to study the Arabidopsis GH9 genes expression level in different tissue. At4g39000 and At3g43860 were found only in flowers and inflorescence, and At1g65610 expression in roots and shoots of the amount of more. Other genes in different tissues, was no found significant difference.
目次 Table of Contents
Acknowledgements.................................................i
摘要.............................................................................ii
Abstract................................................. .....................iii
Contents............................................... .....................iv
Index of tables..................................... .....................vi
Index of figures.................................... .....................vii
Chapter 1: Introduction...........................................1
World wide demands of Biofuels.........................1
Purpose................................................ ....................3
Composition of cell walls and cellulose structure....................................................................3
Structural and functional analysis of cellulases.................................................................4
Functional roles of cellulase in plant...................6
Gene expression pattern of Arabidopsis GH9...7
Phylogenetic analysis and modular structure
of GH9 proteins of Arabidopsis............................8
The Pichia pastoris protein expression system.......................................................................8
Chapter 2:Materials and methods.....................11
Plant materials and growth conditions................11
Phylogeny analysis..................................................11
RNA extraction and reverse transcription............11
Cloning twelve Arabidopsis GH9 genes.............12
Transformation into P. pastoris by electroporation.........................................................13
Identification of positive Pichia recombinants...13
Expression of recombinant proteins from
P. pastoris strains....................................................14
Determination of endo-glucanase activity...........14
Semi- quantitative PCR..........................................15
Chapter 3:Results................................................16
Phylogenetic analysis of family 9 glucanases...16
Expression of recombinant proteins....................16
Determination of endo-glucanase activity...........18
Detection of recombinant proteins.......................18
Expression patterns of Arabidopsis GH9 genes
in different tissues...................................................19
Chapter 4:Discussion..........................................20
Expression of twelve Arabidopsis GH9 proteins
in Pichia Pastoris.....................................................20
Factors affecting expression level........................21
Factors affecting secretion of recombinant
proteins......................................................................22
Expression patterns of Arabidopsis GH9 genes
in different tissues...................................................23
Chapter 5:Conclusions.......................................24
Chapter 6:Tables and figures............................25
Appendix A. Features of expression vector
pPICZαA.....................................................................56
References...............................................................57
參考文獻 References
Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10, 411-421.
Beguin, P. (1990). Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44, 219-248.
Boraston, A.B., Bolam, D.N., Gilbert, H.J., and Davies, G.J. (2004). Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769-781.
Bothast, R.J., and Schlicher, M.A. (2005). Biotechnological processes for conversion of
corn into ethanol. Appl. Microbiol. Biotechnol. 67, 19-25.
Brummell, D.A., Hall, B.D., and Bennett, A.B. (1999). Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol. Biol. 40,
615-622.
Brummell, D.A., Catala, C., Lashbrook, C.C., and Bennett, A.B. (1997). A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and
plasma membranes of higher plants. Proc. Natl. Acad. Sci. USA 94, 4794-4799.
Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009). The Carbohydrate-Active EnZymes Database (CAZy): an
expert resource for Glycogenomics. Nucleic Acids Research 37, D233-D238.
Carpita, N.C. (1996). Structure and Biogenesis of the Cell Walls of Grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445-476.
Carpita, N.C., and Gibeaut, D.M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1-30.
Cereghino, J.L., and Cregg, J.M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45-66.
Christoffersen, R.E., Tucker, M. L., and Laties, G. G. (1984). Cellulase gene expression in ripening avocado fruit: The accumulation of cellulase mRNA and protein as demonstrated by cDNA hybridization and immunodetection. Plant Mol. Biol. 3, 385-391.
Conde, R., Cueva, R., Pablo, G., Polaina, J., and Larriba, G. (2004). A search for hyperglycosylation signals in yeast glycoproteins. J. Biol. Chem. 279, 43789-43798.
Cosgrove, D.J. (1997). Assembly and enlargement of the primary cell wall in plants. Annu. Rev. Cell Dev. Biol. 13, 171-201.
Cosgrove, D.J. (1999). Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. 50, 391-417.
Cregg, J.M., Cereghino, J.L., Shi, J., and Higgins, D.R. (2000). Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23-52.
Dai, Z., Hooker, B.S., Anderson, D.B., and Thomas, S.R. (2000). Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco:biochemical
characteristics and physiological effects. Transgenic Res. 9, 43-54.
del Campillo, E., Abdel‐Aziz, A., Crawford, D., and Patterson, S. E. (2004). Root cap specific expression of an endo-beta-1,4-D-glucanase (cellulase): a new marker to study root development in Arabidopsis. Plant Molecular Biology 56, 309-323.
Ding, S.Y., and Himmel, M.E. (2006). The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem. 54, 597-606.
Ferrarese, L., Trainotti, L., Gattolin, S., and Casadoro, G. (1998). Secretion, purification and activity of two recombinant pepper endo-beta-1,4-glucanases
expressed in the yeast Pichia pastoris. FEBS Lett. 422, 23-26.
Ferrarese, L., Trainotti, L., Moretto, P., Polverno de Laureto, P. R. S., Rascio, N., and Casadoro, G. (1995). Differential ethylene‐inducible expression of cellulase in pepper plants. Plant Mol. Biol. 29, 735-747.
Fry, S.C. (1995). Polysaccharide-Modifying Enzymes in the Plant-Cell Wall. Annu. Rev. Plant Physiol. 46, 497-520.
Fry, S.C. (2004). Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 161, 641-675.
Gellissen, G. (2000). Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54, 741-750.
Gilad, R., Rabinovich, L., Yaron, S., Bayer, E.A., Lamed, R., Gilbert, H.J., and Shoham, Y. (2003). CelI, a noncellulosomal family 9 enzyme from Clostridium
thermocellum, is a processive endoglucanase that degrades crystalline cellulose. J. Bacteriol. 185, 391-398.
Henrissat, B. (1991). A Classification of Glycosyl Hydrolases Based on Amino-Acid-Sequence Similarities. Biochemical Journal 280, 309-316.
Henrissat, B., and Bairoch, A. (1993). New Families in the Classification of Glycosyl Hydrolases Based on Amino-Acid-Sequence Similarities. Biochemical Journal 293, 781-788.
Henrissat, B., Coutinho, P.M., and Davies, G.J. (2001). A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol. Biol. 47, 55-72.
Hilden, L., and Johansson, G. (2004). Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol. Lett. 26, 1683-1693.
Hitzeman, R.A., Hagie, F.E., Levine, H.L., Goeddel, D.V., Ammerer, G., and Hall, B.D. (1981). Expression of a human gene for interferon in yeast. Nature 293,
717-722.
Hood, E.E., Love, R., Lane, J., Bray, J., Clough, R., Pappu, K., Drees, C., Hood, K.R., Yoon, S., Ahmad, A., and Howard, J.A. (2007). Subcellular targeting is a key
condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol. J. 5, 709-719.
Jung, H., Wilson, D.B., and Walker, L.P. (2003). Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic
domains to bacterial microcrystalline cellulose. Biotechnol. Bioeng. 84, 151-159.
Kost, T.A., Condreay, J.P., and Jarvis, D.L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567-575.
Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-1245.
Lane, D.R., Wiedemeier, A., Peng, L., Hofte, H., Vernhettes, S., Desprez, T., Hocart, C.H., Birch, R.J., Baskin, T.I., Burn, J.E., Arioli, T., Betzner, A.S., and Williamson, R.E. (2001). Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-beta-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol. 126, 278-288.
Libertini, E., Li, Y., and McQueen-Mason, S.J. (2004). Phylogenetic analysis of the plant endo-beta-1,4-glucanase gene family. J. Mol. Evol. 58, 506-515.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506-577, table of contents.
Master, E.R., Rudsander, U.J., Zhou, W., Henriksson, H., Divne, C., Denman, S., Wilson, D.B., and Teeri, T.T. (2004). Recombinant expression and enzymatic
characterization of PttCel9A, a KOR homologue from Populus tremula xtremuloides. Biochemistry 43, 10080-10089.
Minic, Z., and Jouanin, L. (2006). Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol. Biochem. 44, 435-449.
Molhoj, M., Ulvskov, P., and Dal Degan, F. (2001a). Characterization of a functional soluble form of a Brassica napus membrane-anchored endo-1,4-beta-glucanase heterologously expressed in Pichia pastoris. Plant Physiol. 127, 674-684.
Molhoj, M., Pagant, S., and Hofte, H. (2002). Towards understanding the role of membrane-bound endo-beta-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol. 43, 1399-1406.
Molhoj, M., Jorgensen, B., Ulvskov, P., and Borkhardt, B. (2001b). Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored
endo-1,4-beta-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells. Plant Mol. Biol. 46, 263-275.
Nakamura, S., and Hayashi, T. (1993). Purification and properties of an extracellular endo‐1,4‐beta‐glucanase from suspension‐cultured poplar cells. Plant Cell Physiol. 34, 1009-1013.
Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., and Hofte, H. (1998). A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563-5576.
O'Neill, M.A., Ishii, T., Albersheim, P., and Darvill, A.G. (2004). Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol. 55, 109-139.
Ohmiya, Y., Nakai, T., Park, Y.W., Aoyama, T., Oka, A., Sakai, F., and Hayashi, T. (2003). The role of PopCel1 and PopCel2 in poplar leaf growth and cellulose
biosynthesis. Plant J. 33, 1087-1097.
Ohmiya, Y., Takeda, T., Nakamura, S., Sakai, F., and Hayashi, T. (1995). Purification and properties of a wall‐bound endo‐1,4‐beta‐glucanase from suspension‐cultured poplar cells. Plant Cell Physiol. 36, 607-614.
Park, Y.W., Tominaga, R., Sugiyama, J., Furuta, Y., Tanimoto, E., Samejima, M., Sakai, F., and Hayashi, T. (2003). Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J. 33, 1099-1106.
Porro, D., Sauer, M., Branduardi, P., and Mattanovich, D. (2005). Recombinant protein production in yeasts. Mol. Biotechnol. 31, 245-259.
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Jr., Hallett, J.P., Leak, D.J., Liotta, C.L., Mielenz, J.R.,
Murphy, R., Templer, R., and Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science 311, 484-489.
Ridley, B.L., O'Neill, M.A., and Mohnen, D. (2001). Pectins: structure, biosynthesis,
and oligogalacturonide-related signaling. Phytochemistry 57, 929-967.
Rose, J.K.C., and Bennet, A. B. (1999). Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: Parallels between cell expansion
and fruit ripening. Trends Plant Sci. 4, 176-183.
Sato, S., Kato, T., Kakegawa, K., Ishii, T., Liu, Y.G., Awano, T., Takabe, K., Nishiyama, Y., Kuga, S., Nakamura, Y., Tabata, S., and Shibata, D. (2001). Role
of the putative membrane-bound endo-1,4-beta-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol. 42, 251-263.
Shani, Z., Dekel, M., Tsabary, G., and Shoseyov, O. (1997). Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cel1) from
Arabidopsis thaliana. Plant Mol. Biol. 34, 837-842.
Srisodsuk, M., Lehtio, J., Linder, M., Margolles-Clark, E., Reinikainen, T., and Teeri, T.T. (1997). Trichoderma reesei cellobiohydrolase I with an endoglucanase
cellulose-binding domain: action on bacterial microcrystalline cellulose. J. Biotechnol. 57, 49-57.
Sticklen, M.B. (2008). Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet. 9, 433-443.
Takeda, T., Sakai, F., and Hayashi, T. (2000). A homologue of EGLI encoding endo‐1, 4‐beta-glucanase in elongating pea stems. Biosci. Biotech. Biochem. 64, 636-640.
Tomme, P., Warren, R.A., and Gilkes, N.R. (1995). Cellulose hydrolysis by bacteria and fungi. Adv. Microbiol. Physiol. 37, 1-81.
Tsabary, G., Shani, Z., Roiz, L., Levy, I., Riov, J., and Shoseyov, O. (2003). Abnormal wrinkled' cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1,4-beta-glucanase (cell) antisense. Plant Mol. Biol. 51, 213-224.
Tucker, M.L., Durbin, M. L., Clegg, M. T., and Lewis, L. N. (1987). Avocado cellulase: Nucleotide sequence of a putative full‐length cDNA clone and evidence for a small gene family. Plant Mol. Biol. 9, 197-203.
Urbanowicz, B.R., Catala, C., Irwin, D., Wilson, D.B., Ripoll, D.R., and Rose, J.K. (2007). A tomato endo-beta-1,4-glucanase, SlCel9C1, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). J. Biol. Chem. 282, 12066-12074.
Warren, R.A. (1996). Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol. 50, 183-212.
Weik, R., Francky, A., Striedner, G., Raspor, P., Bayer, K., and Mattanovich, D. (1998). Recombinant expression of alliin lyase from garlic (Allium sativum) in bacteria and yeasts. Planta Med. 64, 387-388.
Wieczorek, K., Hofmann, J., Blochl, A., Szakasits, D., Bohlmann, H., and Grundler, F.M. (2008). Arabidopsis endo-1,4-beta-glucanases are involved in the formation of root syncytia induced by Heterodera schachtii. Plant J. 53, 336-351.
Wildt, S., and Gerngross, T.U. (2005). The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 3, 119-128.
Wu, S.C., Blumer, J.M., Darvill, A.G., and Albersheim, P. (1996). Characterization of an endo‐beta‐1,4‐glucanase gene induced by auxin in elongating pea epicotyls. Plant Physiol. 110, 163-170.
Wyman, C.E. (2007). What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25, 153-157.
Yung, M.H., Schaffer, R., and Putterill, J. (1999). Identification of genes expressed during early Arabidopsis carpel development by mRNA differential display: characterisation of ATCEL2, a novel endo-1,4-beta-D-glucanase gene. Plant J. 17, 203-208.
Zuo, J., Niu, Q.W., Nishizawa, N., Wu, Y., Kost, B., and Chua, N.H. (2000). KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by
polarized targeting and is essential for cytokinesis. Plant Cell 12, 1137-1152.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code