Responsive image
博碩士論文 etd-0126111-151124 詳細資訊
Title page for etd-0126111-151124
論文名稱
Title
台灣西南沿岸與河口微量元素物種變化及其控制因子
Distribution and Partitioning of Trace Elements in Estuaries and Coasts off Southwestern Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-29
繳交日期
Date of Submission
2011-01-26
關鍵字
Keywords
懸浮顆粒物質、吸附作用、物種、河口、微量金屬
suspended particulate matter, speciation, trace metals, adsorption, estuary
統計
Statistics
本論文已被瀏覽 5726 次,被下載 1670
The thesis/dissertation has been browsed 5726 times, has been downloaded 1670 times.
中文摘要
本研究於不同季節,採集台灣西南部不同水文背景之主要河口(曾文溪、二仁溪、高屏溪)及沿岸地區的水樣,分析水體中溶解態、顆粒態微量金屬(鎘、銅、鎳、鉛)濃度及物種,以瞭解不同水文特性的河口中微量金屬於溶液與顆粒間分布及其控制因子的差異,並探討顆粒態有機物質和鐵錳(氫)氧化物在微量元素分布行為中所佔的重要性。
微量元素物種分析,使用雙管柱(Chelex-100和AG MP-1樹脂)的離子交換法分析溶解態物種組成,依實驗操作上的定義分為易反應(Chelex, labile)物種、有機鍵結(AG MP-1, organic)物種及穩定的inert物種。依連續萃取法分析顆粒態物種組成,利用不同的萃取液,將顆粒態分成表面吸附相、鐵錳氧化物相/有機物相及礦物晶格相。
研究結果顯示曾文溪河口溶解態微量金屬分布有季節性變化,溼季時溶解態微量金屬於河口呈保守型分布及其濃度低於乾季,乾季時上河口溶解態微量金屬濃度分布受污染源輸入河川影響。高屏溪河口溶解態微量金屬分布行為沒有季節性變化,溼季時較高的河川逕流量造成溶解態微量金屬濃度的稀釋效應;二仁溪河口溶解態微量金屬濃度較曾文溪及二仁溪河口高,反映此區域受到較高程度的污染。
顆粒態微量金屬物種中,鎘、鉛以表面吸附相為主要存在型態,鎘與錳間相似物種及空間變化,顯示錳氧化物對於鎘的分布有重要的影響。銅的鐵錳氧化物相/有機物相物種百分比約為25 %,有機碳並非為影響銅之分布行為的主要因子,還有其他因素(硫化物)影響銅的分布。鎳則主要存在於晶格相,其分布受懸浮顆粒特性控制,但二仁溪水中顆粒態鎳物種組成以表面吸附相為主,是因為高非晶格相來源輸入所造成的結果。在不同的季節間曾文溪及高屏溪水中顆粒態金屬物種組成有明顯差異,溼季時曾文溪及高屏溪水中顆粒上各金屬晶格相物種百分比高於乾季,推測為底部沉積物再懸浮作用所造成的結果,顯示台灣西南河口水體中微量金屬的分布主要受水文特性變化的影響。
Abstract
Water samples were collected along salinity gradients during different seasons from three estuaries (Tseng-Wen, Gao-Ping, Er-Ren) and coasts in/off southwestern Taiwan. In order to assess the partitioning of trace metals between solution and particle, the concentrations of dissolve and particulate trace metals (Cd, Cu, Ni, Pb) along with their chemical affinity fractions, were determined. This study investigated the variations in distribution and partitioning of the different metals in estuarine waters, and examined the effects of oxides and particulate organic matter on the partitioning of trace metals in waters from different estuaries.
Fractionation of dissolved trace metal species was based on ion exchange (Chelex-100 and AG MP-1 resins) separation techniques. The fractions obtained were operationally defined as labile (Chelex), organic (AG MP-1) and inert. Particles were extracted to three phases (surface adsorbed phases, Fe–Mn oxide/organic phases and refractory phases) using sequential extraction techniques.
Seasonally variable distributions of dissolved trace metals were found in the Tseng-Wen estuary. The behavior of trace metals was mainly influenced by anthropogenic input during the dry season in the upper Tseng-Wen estuary, while mixing processes controlled the distribution of trace metals during the wet season. The dilution effect was a major factor in the metal distribution in the Gao-Ping estuary due to high river discharge. The higher concentration of metals in the Er-Ren estuary, in contrast to other estuaries indicated that the Er-Ren estuary has serious pollution concerns.
According to the results of particulate metal fractions obtained, Cd and Pb existed predominantly in the surface adsorbed phase. The speciation and spatial distribution of Cd were similar to those of Mn, indicating that the formation of authigenic Mn oxides affected the distribution of Cd in estuaries. The percentage of oxide /organic phase for Cu accounted for 25% of total particulate Cu, but dose not correlate well with particulate organic carbon, implying that organic carbon is not the only factor controlling particulate Cu distribution. Ni was present mainly in lattice phase, except in the Er-Ren estuary where anthropogenic Ni loading was high. In the Tseng-Wen and Gao-Ping estuaries, the percentages of lattice phase of all metals determined in this study during the wet season were higher than those during the dry season. These seasonal variations are probably resulted from different flushing times in dry/wet seasons, which control the extent of geochemical processes for trace elements.
目次 Table of Contents
致謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖目錄 viii
表目錄 x

第一章 前言 1
第二章 材料與方法
2.1 研究區域 6
2.2 採樣方法 12
2.3 實驗方法與樣品分析 14
第三章 結果與討論
3.1 水文化學參數 21
3.2 鐵及錳在河口水中的濃度變化 42
3.3 溶解態微量元素分布及物種組成 52
3.4 顆粒態微量元素分布及物種組成 66
3.5 微量金屬之分布係數 78
3.6 顆粒態微量元素物種變化的控制機制 82
3.7 微量元素變化及分布的控制機制 86
第四章 結論 90
參考文獻
中文部分 92
英文部分 93

圖目錄

圖 2-1 曾文溪(a)2009年2月及7月採樣位置圖(b)2月(c) 7月各採樣點與出海口的距離及鹽度 8
圖 2-2 二仁溪(a) 2009年2月採樣位置圖(b)各採樣點與出海口的距離及鹽度 9
圖 2-3 高屏溪 (a) 2009年3月(b)7月採樣位置圖(c)3月(d)7月採樣點的鹽度及與出海口的距離 10
圖 2-4 OR3-1367及OR3-1420航次之採樣站位 11
圖 3-1 曾文溪、二仁溪、高屏溪流量資料及台南氣象站、高雄氣象站雨量資料 25
圖 3-2 曾文溪流域的曾文溪橋及二溪大橋測站流量資料關係 26
圖 3-3 (a)曾文溪流量測站(b)二仁溪流量測站(c)高屏溪溪流量測站位置圖 27
圖 3-4 曾文溪、高屏溪、二仁溪水體pH值分布 29
圖 3-5 曾文溪、二仁溪、高屏溪水體DO濃度分布及DO飽和度 30
圖 3-6 曾文溪、高屏溪、二仁溪水體DOC濃度分布 32
圖 3-7 曾文溪、高屏溪、二仁溪水體總溶解態無機氮濃度分布 36
圖 3-8 曾文溪、高屏溪、二仁溪水體磷酸鹽濃度分布 37
圖 3-9 曾文溪、高屏溪、二仁溪水體矽酸鹽濃度分布 38
圖 3-10 曾文溪、高屏溪、二仁溪水體懸浮顆粒物質濃度分布 40
圖 3-11 曾文溪、高屏溪、二仁溪水體顆粒有機碳濃度分布 41
圖 3-12 溶解態及顆粒態鐵於曾文溪、二仁溪、高屏溪河口之分布47
圖 3-13 溶解態及顆粒態錳於曾文溪、二仁溪、高屏溪河口之分布49
圖 3-14 溶解態鎘於曾文溪、高屏溪、二仁溪之濃度分布 62
圖 3-15 溶解態銅於曾文溪、高屏溪、二仁溪之濃度分布 63
圖 3-16 溶解態鎳於曾文溪、高屏溪、二仁溪之濃度分布 64
圖 3-17 溶解態鉛於曾文溪、高屏溪、二仁溪之濃度分布 65
圖 3-18 顆粒態鎘於曾文溪、高屏溪、二仁溪之濃度分布 73
圖 3-19 顆粒態銅於曾文溪、高屏溪、二仁溪之濃度分布 74
圖 3-20 顆粒態鎳於曾文溪、高屏溪、二仁溪之濃度分布 75
圖 3-21 顆粒態鉛於曾文溪、高屏溪、二仁溪之濃度分布 76
圖 3-22 各元素分布係數與鹽度之關係圖 80
圖 3-23 各元素分布係數與懸浮顆粒濃度之關係圖 81
圖 3-24 表面吸附相鎘與錳濃度之關係 84
圖 3-25 鐵錳氧化物相/有機相銅與POC濃度之關係 85

表目錄

表 1 標準品(CASS-4, SLEW-3, SLRS-4)回收率 20
表 2 沉積物標準品(MESS-3)之回收率 20
表 3 2009年5月及11月台南及高雄氣象站月累積雨量資料;2009年5月及11月曾文溪橋測站、阿蓮測站、里嶺大橋測站月平均流量資 53
表 4 OR3-1367(2009/5)及OR3-1420(2009/11)航次之曾文溪出海口(C1)、二仁溪出海口(E1)、高屏溪出海口(G1)測站水體總溶解態鎘、銅、鎳濃度 53
表 5 各元素顆粒物種組成之平均百分比 77
參考文獻 References
中文部分:
葉曉倩,2000年,二仁溪河口地區重金屬物種之研究:採用交錯流動過濾系統進行分離。國立中山海洋資源研究所碩士論文,共122頁。
許惠真,2008年,南台灣曾文溪河口水化學影響因素。國立成功大學地球科學研究所碩士論文,共100頁。
何壯怡,2008年,高屏近岸海域微量金屬之分佈與控制機制。國立中山大學海洋地質及化學研究所碩士論文,共130頁。
經濟部水利署網站(http://www.wra.gov.tw/default.asp)
中央氣象局網站(http://www.cwb.gov.tw)

英文部分:
Beckett, R., Le, N. P., 1990. The role of organic matter and ionic composition in determining the surface charge of suspended particles in natural waters. Colloids and Surfaces 44: 35-49.
Benoit, G., Oktaymarshall, S. D., Cantu, A., Hood, E. M., Coleman, C. H., Corapcioglu, M. O., Santschi, P. H., 1994. Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in 6 Texas estuaries. Marine Chemistry 45(4): 307-336.
Benoit, G., Rozan, T. F., 1999. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochimica Et Cosmochimica Acta 63(1): 113-127.
Bewers, J. M., Yeats, P. A., 1989. Transport of river-derived trace metals through the coastal zone. Netherlands Journal of Sea Research 23(4): 359-368.
Bilinski, H., Kozar, S., Plavsic, M., Kwokal, Z., Branica, M., 1991. Trace metal adsorption on inorganic solid phases under estuarine conditions. Marine Chemistry 32(2-4): 225-233.
Catts, J. G., Langmuir, D., 1986. Adsorption of Cu, Pb and Zn by δMnO2: applicability of the site binding-surface complexation model. Applied Geochemistry 1(2): 255-264.
Davis, A. P., Upadhyaya, M., 1996. Desorption of cadmium from goethite (a-FeOOH). Water Research 30(8): 1894-1904.
Davison, W., 1993. Iron and manganese in lakes. Earth-Science Reviews 34(2): 119-163.
Donat, J. R., Lao, K. A., Bruland, K. W., 1994. Speciation of dissolved copper and nickel in South San-Francisco Bay: a multi-method approach. Analytica Chimica Acta 284(3): 547-571.
Elbaz-Poulichet, F., Holliger, P., Wei, W. H., Martin, J. M., 1984. Lead cycling in estuaries, illustrate by the Gironde estuary, France. Nature 308(5958): 409-414.
Hatje, V., Birch, G. F., Hill, D. M., 2001. Spatial and temporal variability of particulate trace metals in Port Jackson Estuary, Australia. Estuarine Coastal and Shelf Science 53(1): 63-77.
Honeyman, B. D., Santschi, P. H., 1988. Metals in aquatic systems. Environmetal Science and Technology 22(8): 862-871.
Jiann, K. T., Presley, B. J., 2002. Preservation and determination of trace metal partitioning in river water by a two-column ion exchange method. Analytical Chemistry 74(18): 4716-4724.
Jiann, K. T., Wen, L. S., Santschi, P. H., 2005. Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry 96(3-4): 293-313.
Landing, W., Lewis, B., 1991. Analysis of marine particulate and colloidal material for transition metals. In: Hurd, D.C., Spencer, D.W, (Eds), Marine Particles: Analysis and Characterization, AGU Geophysical Monograph Series. AGU, Washington, DC, pp. 263-272.
Morse, J. W., Presley, B. J., Taylor, R. J., Benoit, G., Santschi, P., 1993. Trace metal chemistry of Galveston Bay: water, sediments and biota Marine Environmental Research 36(1): 1-37.
Nimmo, M., Vandenberg, C. M. G., Brown, J., 1989. The chemical speciation of dissolved nickel, copper, vanadium and iron in Liverpool Bay, Irish sea. Estuarine Coastal and Shelf Science 29(1): 57-74.
Ouddane, B., Skiker, M., Fischer, J. C., Wartel, M., 1999. Distribution of iron and manganese in the Seine river estuary: approach with experimental laboratory mixing. Journal of Environmental Monitoring 1(5): 489-496.
Pai, S. C., Yang, C. C., Riley, J. P., 1990. Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolbdenum blue complex. Analytica Chimica Acta 229(1): 115-120.
Pai, S. C., Yang, C. C., Riley, J. P., 1990. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Analytica Chimica Acta 232(2): 345-349.
Pai, S. C., Gong, G. C., Liu, K. K., 1993. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Marine Chemistry 41(4): 343-351.
Pai, S. C., Riley, J. P., 1994. Determination of nitrate in the presence of nitrite in natural waters by flow injection analysis with a non-quantitative on-line cadmium reductor. International Journal of Environmental Analytical Chemistry 57(4): 263-277.
Paucot, H., Wollast, R., 1997. Transport and transformation of trace metals in the Scheldt estuary. Marine Chemistry 58(1-2): 229-244.
Rozan, T. F., Lassman, M. E., Ridge, D. P., Luther, G. W., 2000. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406(6798): 879-882.
Santschi, P. H., Lenhart, J. J., Honeyman, B. D., 1997. Heterogeneous processes affecting trace contaminant distribution in estuaries: The role of natural organic matter. Marine Chemistry 58(1-2): 99-125.
Shiller, A. M., Gieskes, J. M., Price, N. B., 1985. Particulate iron and manganese in the Santa Barbara Basin, California. Geochimica Et Cosmochimica Acta 49(5): 1239-1249.
Sholkovitz, E. R., Boyle, E. A., Price, N. B., 1978. Removal of dissolved humic acids and iron during estuarine mixing. Earth and Planetary Science Letters 40(1): 130-136.
Sigg, L., 1997. Partitioning of metals to suspended particles. In: Allen, H. E., Garrison, W. A., Luther, G. W. (Eds.), Metals in Surface Waters, Ann Arbor Press, Chelsea, Michigan, pp. 217-255.
Sipos, P., Nemeth, T., Kis, V. K., Mohai, I., 2008. Sorption of copper, zinc and lead on soil mineral phases. Chemosphere 73(4): 461-469.
Stumm, W., Morgan, J. J., 1996. Aquatic chemistry. Wiley, New York, NY, 3re ed., 1022 pp.
Sundby, B., Silverberg, N., 1981. Pathways of manganese in an open estuarine system. Geochimica Et Cosmochimica Acta 45(3): 293-307.
Tang, D. G., Warnken, K. W., Santschi, P. H., 2002. Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston bay waters. Marine Chemistry 78(1): 29-45.
Tessier, A., Campbell, P. G. C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7): 844-851.
Tipping, E., Lofts, S., Lawlor, A. J., 1998. Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Science of the Total Environment 210(1-6): 63-77.
Turner, A., 1996. Trace-metal partitioning in estuaries: Importance of salinity and particle concentration. Marine Chemistry 54(1-2): 27-39.
Turner, A., Le Roux, S. M., Millward, G. E., 2008. Adsorption of cadmium to iron and manganese oxides during estuarine mixing. Marine Chemistry 108(1-2): 77-84.
Turner, A., Millward, G. E., 2002. Suspended particles: Their role in estuarine biogeochemical cycles. Estuarine Coastal and Shelf Science 55(6): 857-883.
Turner, A., Nimmo, M., Thuresson, K. A., 1998. Speciation and sorptive behaviour of nickel in an organic-rich estuary (Beaulieu, UK). Marine Chemistry 63(1-2): 105-118.
Warnken, K. W., Santschi, P. H., 2004. Biogeochemical behavior of organic carbon in the Trinity River downstream of a large reservoir lake in Texas, USA. Science of the Total Environment 329(1-3): 131-144.
Warren, L. A., Haack, E. A., 2001. Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews 54(4): 261-320.
Wen, L. S., Warnken, K. W., Santschi, P. H., 2008. The role of organic carbon, iron, and aluminium oxyhydroxides as trace metal carriers: Comparison between the Trinity River and the Trinity River Estuary (Galveston Bay, Texas). Marine Chemistry 112(1-2): 20-37.
Zwolsman, J. J. G., van Eck, G. T. M., 1999. Geochemistry of major elements and trace metals in suspended matter of the Scheldt estuary, southwest Netherlands. Marine Chemistry 66(1-2): 91-111.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code