Responsive image
博碩士論文 etd-0126114-120142 詳細資訊
Title page for etd-0126114-120142
論文名稱
Title
來自珊瑚之化合物在疼痛上的抗神經發炎作用
The anti-neuroinflammatory effects of coral-derived compounds in nociception
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-04
繳交日期
Date of Submission
2014-02-26
關鍵字
Keywords
珊瑚化合物、止痛、神經性病變、神經發炎、脊髓
analgesia, neuropathy, neuroinflammation, spinal cord, coral-derived compound
統計
Statistics
本論文已被瀏覽 5762 次,被下載 0
The thesis/dissertation has been browsed 5762 times, has been downloaded 0 times.
中文摘要
目前,臨床止痛藥物和鴉片類麻醉藥品仍無法有效減輕慢性疼痛症狀,而相關機制也還有待釐清。本研究中,我們尋找對於慢性疼痛具有療效的海洋天然物,並探討可能的細胞學作用機轉。相較於加巴噴丁(gabapentin),椎管(intrathecal)給予珊瑚化合物穗花珊瑚醇,能更有效減弱慢性束縛損傷(chronic constriction injury, CCI)所誘發之神經病變性的痛覺過敏,並抑制脊髓的神經發炎性反應,包括微膠細胞(microglia)和星狀細胞(astrocyte)的活化,以及腫瘤壞死因子-α (tumor necrosis factor-α, TNF-α)的增量表現。另外,我們也發現周邊注射具有抗發炎活性的珊瑚化合物sinularin,能明顯地抑制鹿角菜膠(carrageenan)所導致神經源性疼痛行為與脊髓的神經發炎性反應,同時也引起第一型乙型轉化生長因子(transforming growth factor-β1, TGF-β1)的增量表現。此外,我們成功建立一新型的斑馬魚發炎模式,可加速抗發炎藥物的開發。最後透過大鼠模式,我們證實脊髓內的一個抑制腫瘤基因的抗神經發炎作用,以及其對於神經病變性疼痛的形成和維持具有重要的影響。綜和以上研究結果,我們發現兩個具有鎮痛療效的化合物,以及釐清一個抑制腫瘤基因在慢性疼痛治療上的角色。
Abstract
Up to the present, clinical analgesics and opiates have not been able to alleviate symptoms of chronic pain effectively and the cellular mechanisms of this disorder are still under investigation. In the present study, we first evaluated the anti-nociceptive effects and cellular mechanisms of two marine-derived anti-inflammatory compounds in two standard chronic pain models. Compared with gabapentin, one of the coral-derived compounds, lemnalol, effectively attenuated nociceptive sensitization and inhibited spinal neuroinflammation (comprising astrocyte and microglia activation, and tumor necrosis factor-α upregulation) in chronic constriction injury (CCI)-induced neuropathy. The other compound, sinularin, significantly inhibited nociception and spinal neuroinflammation, and upregulated spinal transforming growth factor-β1 in carrageenan-induced neurogenic pain. Second, we successfully established a novel inflammatory zebrafish model for accelerating the discovery of anti-inflammatory drugs. Third, we demonstrated that a spinal tumor suppressor gene plays an important role in anti-neuroinflammation and in the development/maintenance of neuropathic pain. Based on our findings, we identified two potential therapeutic agents and a role for a tumor suppressor gene in treating chronic pain.
目次 Table of Contents
Table of Contents..............................................................................................................................i
List of Figures..................................................................................................................................ii
List of Tables...................................................................................................................................iv
List of abbreviations..........................................................................................................................v
中文摘要.........................................................................................................................................vi
Abstract.........................................................................................................................................vii
General Introduction.........................................................................................................................1
General Methods and Materials.........................................................................................................6
Part I. The therapeutic effects of lemnalol on CCI-induced neuropathic pain behavior and spinal neuroinflammation...........................................................................................................................20
Introduction....................................................................................................................................21
Results..........................................................................................................................................22
Discussion.....................................................................................................................................33
Part II. The beneficial effects of sinularin on carrageenan-induced inflammatory pain behavior and spinal neuroinflammation...........................................................................................................................37
Introduction....................................................................................................................................38
Results..........................................................................................................................................40
Discussion.....................................................................................................................................52
Part III. A beneficial role for a tumor suppressor gene in neuropathic pain.............................................56
Introduction....................................................................................................................................57
Results..........................................................................................................................................59
Discussion.....................................................................................................................................75
Part IV. Establishment of carrageenan-injected adult zebrafish as an novel in vivo inflammatory edema model............................................................................................................................................80
Introduction....................................................................................................................................81
Results..........................................................................................................................................83
Discussion.....................................................................................................................................94
Summary.......................................................................................................................................99
References...................................................................................................................................102
Autobiography...............................................................................................................................118
參考文獻 References
1. Sprintz, M.; Tasciotti, E.; Allegri, M.; Grattoni, A.; Driver, L.C.; Ferrari, M., Nanomedicine: Ushering in a new era of pain management. Eur J Pain Suppl 2011, 5, 317-322.
2. Gaskin, D.J.; Richard, P., The economic costs of pain in the United States. J Pain 2012, 13, 715-724.
3. Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D., Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur J Pain 2006, 10, 287-333.
4. Bouhassira, D.; Lantéri-Minet, M.; Attal, N.; Laurent, B.; Touboul, C., Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 2008, 136, 380-387.
5. Chen, J., History of pain theories. Neurosci Bull 2011, 27, 343-350.
6. Liu, T.; Gao, Y.J.; Ji, R.R., Emerging role of toll-like receptors in the control of pain and itch. Neurosci Bull 2012, 28, 131-144.
7. Melnikova, I., Pain market. Nat Rev Drug Discov 2010, 9, 589-590.
8. Klotz, U., Ziconotide--a novel neuron-specific calcium channel blocker for the intrathecal treatment of severe chronic pain--a short review. Int J Clin Pharmacol Ther 2006, 44, 478-483.
9. Finnerup, N.B.; Sindrup, S.H.; Jensen, T.S., The evidence for pharmacological treatment of neuropathic pain. Pain 2010, 150, 573-581.
10. Maroon, J.C.; Bost, J.W.; Maroon, A., Natural anti-inflammatory agents for pain relief. Surg Neurol Int 2010, 1, 80.
11. Kulmatycki, K.M.; Jamali, F., Drug disease interactions: Role of inflammatory mediators in pain and variability in analgesic drug response. J Pharm Pharm Sci 2007, 10, 554-566.
12. Myers, R.R.; Campana, W.M.; Shubayev, V.I., The role of neuroinflammation in neuropathic pain: Mechanisms and therapeutic targets. Drug Discov Today 2006, 11, 8-20.
13. Lu, Y.; Zhao, L.X.; Cao, D.L.; Gao, Y.J., Spinal injection of docosahexaenoic acid attenuates carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the spinal cord. Neuroscience 2013, 241, 22-31.
14. Costigan, M.; Scholz, J.; Woolf, C.J., Neuropathic pain: A maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009, 32, 1-32.
15. Kidd, B.L.; Urban, L.A., Mechanisms of inflammatory pain. Br J Anaesth 2001, 87, 3-11.
16. Streit, W.J.; Mrak, R.E.; Griffin, W.S., Microglia and neuroinflammation: A pathological perspective. J Neuroinflammation 2004, 1, 14.
17. Milligan, E.D.; Watkins, L.R., Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 2009, 10, 23-36.
18. Marchand, F.; Perretti, M.; McMahon, S.B., Role of the immune system in chronic pain. Nat Rev Neurosci 2005, 6, 521-532.
19. Jha, M.K.; Jeon, S.; Suk, K., Glia as a link between neuroinflammation and neuropathic pain. Immune Netw 2012, 12, 41-47.
20. Carson, M.J.; Thrash, J.C.; Walter, B., The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 2006, 6, 237-245.
21. Clarke, C.B.; Suter, M.R.; Gosselin, R.D., Glial cells and chronic pain: From the laboratory to clinical hope. Rev Med Suisse 2013, 9, 1342-1345.
22. Garman, R.H., Histology of the central nervous system. Toxicol Pathol 2011, 39, 22-35.
23. Sofroniew, M.V.; Vinters, H.V., Astrocytes: Biology and pathology. Acta Neuropathol 2010, 119, 7-35.
24. Svensson, M.; Eriksson, P.; Persson, J.K.; Molander, C.; Arvidsson, J.; Aldskogius, H., The response of central glia to peripheral nerve injury. Brain Res Bull 1993, 30, 499-506.
25. Giulian, D.; Li, J.; Leara, B.; Keenen, C., Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 1994, 25, 227-233.
26. Kreutzberg, G.W., Microglia: A sensor for pathological events in the CNS. Trends Neurosci 1996, 19, 312-318.
27. Milligan, E.D.; Sloane, E.M.; Watkins, L.R., Glia in pathological pain: A role for fractalkine. J Neuroimmunol 2008, 198, 113-120.
28. Vitkovic, L.; Bockaert, J.; Jacque, C., "Inflammatory" cytokines: Neuromodulators in normal brain? J Neurochem 2000, 74, 457-471.
29. Jean, Y.H.; Chen, W.F.; Sung, C.S.; Duh, C.Y.; Huang, S.Y.; Lin, C.S.; Tai, M.H.; Tzeng, S.F.; Wen, Z.H., Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br J Pharmacol 2009, 158, 713-725.
30. Sweitzer, S.M.; Schubert, P.; DeLeo, J.A., Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther 2001, 297, 1210-1217.
31. Ledeboer, A.; Sloane, E.M.; Milligan, E.D.; Frank, M.G.; Mahony, J.H.; Maier, S.F.; Watkins, L.R., Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005, 115, 71-83.
32. Newman, D.J.; Cragg, G.M.; Snader, K.M., Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 2003, 66, 1022-1037.
33. Abad, M.J.; Bedoya, L.M.; Bermejo, P., Natural marine anti-inflammatory products. Mini Rev Med Chem 2008, 8, 740-754.
34. D'Orazio, N.; Gammone, M.A.; Gemello, E.; De Girolamo, M.; Cusenza, S.; Riccioni, G., Marine bioactives: Pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 2012, 10, 812-833.
35. Hu, G.P.; Yuan, J.; Sun, L.; She, Z.G.; Wu, J.H.; Lan, X.J.; Zhu, X.; Lin, Y.C.; Chen, S.P., Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar Drugs 2011, 9, 514-525.
36. Gerwick, W.H.; Moore, B.S., Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 2012, 19, 85-98.
37. Olivera, B.M.; Gray, W.R.; Zeikus, R.; McIntosh, J.M.; Varga, J.; Rivier, J.; de Santos, V.; Cruz, L.J., Peptide neurotoxins from fish-hunting cone snails. Science 1985, 230, 1338-1343.
38. Jean, Y.H.; Chen, W.F.; Duh, C.Y.; Huang, S.Y.; Hsu, C.H.; Lin, C.S.; Sung, C.S.; Chen, I.M.; Wen, Z.H., Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur J Pharmacol 2008, 578, 323-331.
39. Wen, Z.H.; Chao, C.H.; Wu, M.H.; Sheu, J.H., A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur J Med Chem 2010, 45, 5998-6004.
40. Song, M.S.; Salmena, L.; Pandolfi, P.P., The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012, 13, 283-296.
41. Chalhoub, N.; Baker, S.J., PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 2009, 4, 127-150.
42. Knobbe, C.B.; Lapin, V.; Suzuki, A.; Mak, T.W., The roles of PTEN in development, physiology and tumorigenesis in mouse models: A tissue-by-tissue survey. Oncogene 2008, 27, 5398-5415.
43. Suzuki, A.; Nakano, T.; Mak, T.W.; Sasaki, T., Portrait of PTEN: Messages from mutant mice. Cancer Sci 2008, 99, 209-213.
44. Shi, Y.; Paluch, B.E.; Wang, X.; Jiang, X., PTEN at a glance. J Cell Sci 2012, 125, 4687-4692.
45. Ciuffreda, L.; Di Sanza, C.; Incani, U.C.; Milella, M., The mTOR pathway: A new target in cancer therapy. Curr Cancer Drug Targets 2010, 10, 484-495.
46. Populo, H.; Lopes, J.M.; Soares, P., The mTOR signalling pathway in human cancer. Int J Mol Sci 2012, 13, 1886-1918.
47. Kim, W.Y.; Snider, W.D., Neuroscience. Overcoming inhibitions. Science 2008, 322, 869-872.
48. Park, K.K.; Liu, K.; Hu, Y.; Smith, P.D.; Wang, C.; Cai, B.; Xu, B.; Connolly, L.; Kramvis, I.; Sahin, M.; He, Z., Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008, 322, 963-966.
49. Shi, G.D.; OuYang, Y.P.; Shi, J.G.; Liu, Y.; Yuan, W.; Jia, L.S., PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun 2011, 404, 941-945.
50. Li, D.; Zhang, Y.; Xie, Y.; Xiang, J.; Zhu, Y.; Yang, J., Enhanced tumor suppression by adenoviral PTEN gene therapy combined with cisplatin chemotherapy in small-cell lung cancer. Cancer Gene Ther 2013, 20, 251-259.
51. Saito, Y.; Swanson, X.; Mhashilkar, A.M.; Oida, Y.; Schrock, R.; Branch, C.D.; Chada, S.; Zumstein, L.; Ramesh, R., Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Ther 2003, 10, 1961-1969.
52. Hang, Y.; Zheng, Y.C.; Cao, Y.; Li, Q.S.; Sui, Y.J., Suppression of gastric cancer growth by adenovirus-mediated transfer of the PTEN gene. World J Gastroenterol 2005, 11, 2224-2229.
53. Wang, C.R.; Shiau, A.L.; Chen, S.Y.; Lin, L.L.; Tai, M.H.; Shieh, G.S.; Lin, P.R.; Yo, Y.T.; Lee, C.H.; Kuo, S.M.; Liu, M.F.; Jou, I.M.; Yang, C.Y.; Shen, P.C.; Lee, H.L.; Wu, C.L., Amelioration of collagen-induced arthritis in rats by adenovirus-mediated PTEN gene transfer. Arthritis Rheum 2008, 58, 1650-1656.
54. Park, K.K.; Liu, K.; Hu, Y.; Kanter, J.L.; He, Z., PTEN/mTOR and axon regeneration. Exp Neurol 2010, 223, 45-50.
55. Liu, K.; Lu, Y.; Lee, J.K.; Samara, R.; Willenberg, R.; Sears-Kraxberger, I.; Tedeschi, A.; Park, K.K.; Jin, D.; Cai, B.; Xu, B.; Connolly, L.; Steward, O.; Zheng, B.; He, Z., PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010, 13, 1075-1081.
56. Sonoda, Y.; Mukai, H.; Matsuo, K.; Takahashi, M.; Ono, Y.; Maeda, K.; Akiyama, H.; Kawamata, T., Accumulation of tumor-suppressor PTEN in Alzheimer neurofibrillary tangles. Neurosci Lett 2010, 471, 20-24.
57. Diaz-Ruiz, O.; Zapata, A.; Shan, L.; Zhang, Y.; Tomac, A.C.; Malik, N.; de la Cruz, F.; Backman, C.M., Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons. PLoS One 2009, 4, e7027.
58. Liu, G.; Detloff, M.R.; Miller, K.N.; Santi, L.; Houle, J.D., Exercise modulates micrornas that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol 2012, 233, 447-456.
59. Walker, C.L.; Walker, M.J.; Liu, N.K.; Risberg, E.C.; Gao, X.; Chen, J.; Xu, X.M., Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS One 2012, 7, e30012.
60. Liu, G.; Keeler, B.E.; Zhukareva, V.; Houle, J.D., Cycling exercise affects the expression of apoptosis-associated micrornas after spinal cord injury in rats. Exp Neurol 2010, 226, 200-206.
61. Fraser, M.M.; Zhu, X.; Kwon, C.H.; Uhlmann, E.J.; Gutmann, D.H.; Baker, S.J., Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res 2004, 64, 7773-7779.
62. Ferraguti, F.; Corti, C.; Valerio, E.; Mion, S.; Xuereb, J., Activated astrocytes in areas of kainate-induced neuronal injury upregulate the expression of the metabotropic glutamate receptors 2/3 and 5. Exp Brain Res 2001, 137, 1-11.
63. Zhang, W.; Sun, X.F.; Bo, J.H.; Zhang, J.; Liu, X.J.; Wu, L.P.; Ma, Z.L.; Gu, X.P., Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice. Pharmacol Biochem Behav 2013, 111, 64-70.
64. Geranton, S.M.; Jimenez-Diaz, L.; Torsney, C.; Tochiki, K.K.; Stuart, S.A.; Leith, J.L.; Lumb, B.M.; Hunt, S.P., A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 2009, 29, 15017-15027.
65. Asante, C.O.; Wallace, V.C.; Dickenson, A.H., Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain 2010, 11, 1356-1367.
66. Lieschke, G.J.; Currie, P.D., Animal models of human disease: Zebrafish swim into view. Nat Rev Genet 2007, 8, 353-367.
67. Novoa, B.; Figueras, A., Zebrafish: Model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol 2012, 946, 253-275.
68. d'Alencon, C.; Pena, O.; Wittmann, C.; Gallardo, V.; Jones, R.; Loosli, F.; Liebel, U.; Grabher, C.; Allende, M., A high-throughput chemically induced inflammation assay in zebrafish. BMC Biol 2010, 8, 151.
69. Chakraborty, C.; Hsu, C.H.; Wen, Z.H.; Lin, C.S.; Agoramoorthy, G., Zebrafish: A complete animal model for in vivo drug discovery and development. Curr Drug Metab 2009, 10, 116-124.
70. Hsu, C.H.; Wen, Z.H.; Lin, C.S.; Chakraborty, C., The zebrafish model: Use in studying cellular mechanisms for a spectrum of clinical disease entities. Curr Neurovasc Res 2007, 4, 111-120.
71. Renshaw, S.; Ingham, P., Zebrafish models of the immune response: Taking it on the chin. BMC Biol 2010, 8, 148.
72. Zhang, Y.; Yeh, J.R., In vivo chemical screening for modulators of hematopoiesis and hematological diseases. Adv Hematol 2012, 2012, 851674.
73. Mathias, J.R.; Saxena, M.T.; Mumm, J.S., Advances in zebrafish chemical screening technologies. Future Med Chem 2012, 4, 1811-1822.
74. Brown, S.B.; Tucker, C.S.; Ford, C.; Lee, Y.; Dunbar, D.R.; Mullins, J.J., Class III antiarrhythmic methanesulfonanilides inhibit leukocyte recruitment in zebrafish. J Leukoc Biol 2007, 82, 79-84.
75. Pase, L.; Nowell, C.J.; Lieschke, G.J., In vivo real-time visualization of leukocytes and intracellular hydrogen peroxide levels during a zebrafish acute inflammation assay. Methods Enzymol 2012, 506, 135-156.
76. Park, K.H.; Cho, K.H., A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. Fish Shellfish Immunol 2011, 31, 904-910.
77. Fleming, A.; Jankowski, J.; Goldsmith, P., In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: A feasibility study. Inflamm Bowel Dis 2010, 16, 1162-1172.
78. Loynes, C.A.; Martin, J.S.; Robertson, A.; Trushell, D.M.I.; Ingham, P.W.; Whyte, M.K.B.; Renshaw, S.A., Pivotal advance: Pharmacological manipulation of inflammation resolution during spontaneously resolving tissue neutrophilia in the zebrafish. J Leukoc Biol 2010, 87, 203-212.
79. Mathew, L.K.; Sengupta, S.; Kawakami, A.; Andreasen, E.A.; Lohr, C.V.; Loynes, C.A.; Renshaw, S.A.; Peterson, R.T.; Tanguay, R.L., Unraveling tissue regeneration pathways using chemical genetics. J Biol Chem 2007, 282, 35202-35210.
80. Renshaw, S.A.; Loynes, C.A.; Trushell, D.M.; Ingham, P.W.; Whyte, M.B., The molecular controls of resolution of inflammation: What can we learn from zebrafish? Eur Respir Rev 2006, 15, 168-169.
81. Oehlers, S.H.; Flores, M.V.; Hall, C.J.; Okuda, K.S.; Sison, J.O.; Crosier, K.E.; Crosier, P.S., Chemically induced intestinal damage models in zebrafish larvae. Zebrafish 2013, 10, 184-193.
82. Tai, C.J.; Su, J.H.; Huang, M.S.; Wen, Z.H.; Dai, C.F.; Sheu, J.H., Bioactive eunicellin-based diterpenoids from the soft coral Cladiella krempfi. Mar Drugs 2011, 9, 2036-2045.
83. Su, J.H.; Wen, Z.H., Bioactive cembrane-based diterpenoids from the soft coral Sinularia triangular. Mar Drugs 2011, 9, 944-951.
84. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J., Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193, 265-275.
85. Westerfield, M., The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. ed.; University of Oregon: Eugene, OR, USA, 2000.
86. Bennett, G.J.; Xie, Y.K., A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87-107.
87. Lin, Y.C.; Huang, S.Y.; Jean, Y.H.; Chen, W.F.; Sung, C.S.; Kao, E.S.; Wang, H.M.; Chakraborty, C.; Duh, C.Y.; Wen, Z.H., Intrathecal lemnalol, a natural marine compound obtained from Formosan soft coral, attenuates nociceptive responses and the activity of spinal glial cells in neuropathic rats. Behav Pharmacol 2011, 22, 739-750.
88. Yaksh, T.L.; Rudy, T.A., Chronic catheterization of the spinal subarachnoid space. Physiol Behav 1976, 17, 1031-1036.
89. Hains, B.C.; Waxman, S.G., Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J Neurosci 2006, 26, 4308-4317.
90. Basso, D.M.; Beattie, M.S.; Bresnahan, J.C., A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995, 12, 1-21.
91. Winter, C.A.; Risley, E.A.; Nuss, G.W., Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 1962, 111, 544-547.
92. Rowland, M.; Tozer, T.N., Assessment of auc. In Clinical pharmacokinetics: Concepts and applications, Third ed.; Balado, D., Ed. Lippincott Williams and Wilkins: Philadelphia, 1995; pp 469-470.
93. Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C.; Joris, J., A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988, 32, 77-88.
94. Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L., Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53, 55-63.
95. Bardin, L.; Malfetes, N.; Newman-Tancredi, A.; Depoortere, R., Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: Relevance to human stress-associated painful pathologies. Behav Brain Res 2009, 205, 360-366.
96. Flatters, S.J.; Bennett, G.J., Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 2004, 109, 150-161.
97. Wen, Z.H.; Tang, C.C.; Chang, Y.C.; Huang, S.Y.; Hsieh, S.P.; Lee, C.H.; Huang, G.S.; Ng, H.F.; Neoh, C.A.; Hsieh, C.S.; Chen, W.F.; Jean, Y.H., Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: Association with changes of mitogen-activated protein kinase in chondrocytes. Osteoarthritis Cartilage 2010, 18, 1192-1202.
98. Kobayashi, K.; Imaizumi, R.; Sumichika, H.; Tanaka, H.; Goda, M.; Fukunari, A.; Komatsu, H., Sodium iodoacetate-induced experimental osteoarthritis and associated pain model in rats. J Vet Med Sci 2003, 65, 1195-1199.
99. Chen, W.F.; Sung, C.S.; Jean, Y.H.; Su, T.M.; Wang, H.C.; Ho, J.T.; Huang, S.Y.; Lin, C.S.; Wen, Z.H., Suppressive effects of intrathecal granulocyte colony-stimulating factor on excessive release of excitatory amino acids in the spinal cerebrospinal fluid of rats with cord ischemia: Role of glutamate transporters. Neuroscience 2010, 165, 1217-1232.
100. Chen, N.F.; Huang, S.Y.; Chen, W.F.; Chen, C.H.; Lu, C.H.; Chen, C.L.; Yang, S.N.; Wang, H.M.; Wen, Z.H., TGF-b1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain. J Pain 2013, 14, 1671-1685.
101. Sung, B.; Lim, G.; Mao, J., Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003, 23, 2899-2910.
102. Huang, S.Y.; Chen, N.F.; Chen, W.F.; Hung, H.C.; Lee, H.P.; Lin, Y.Y.; Wang, H.M.; Sung, P.J.; Sheu, J.H.; Wen, Z.H., Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs 2012, 10, 1899-1919.
103. Kuo, H.M.; Lin, C.Y.; Lam, H.C.; Lin, P.R.; Chan, H.H.; Tseng, J.C.; Sun, C.K.; Hsu, T.F.; Wu, C.C.; Yang, C.Y.; Hsu, C.M.; Tai, M.H., PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling. Atherosclerosis 2012, 221, 341-349.
104. Kung, M.L.; Tsai, H.E.; Hu, T.H.; Kuo, H.M.; Liu, L.F.; Chen, S.C.; Lin, P.R.; Ma, Y.L.; Wang, E.M.; Liu, G.S.; Liu, J.K.; Tai, M.H., Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun 2012, 425, 169-176.
105. Kikuchi, H.; Manda, T.; Kobayashi, K.; Yamada, Y.; Iguchi, K., Anti-tumor activity of lemnalol isolated from the soft coral Lemnalia tenuis Verseveldt. Chem Pharm Bull 1983, 31, 1086-1088.
106. Duh, C.Y.; El-Gamal, A.A.; Song, P.Y.; Wang, S.K.; Dai, C.F., Steroids and sesquiterpenoids from the soft corals Dendronephthya gigantea and Lemnalia cervicorni. J Nat Prod 2004, 67, 1650-1653.
107. Scholz, J.; Woolf, C.J., The neuropathic pain triad: Neurons, immune cells and glia. Nat Neurosci 2007, 10, 1361-1368.
108. Winkelstein, B.A.; Rutkowski, M.D.; Sweitzer, S.M.; Pahl, J.L.; DeLeo, J.A., Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J Comp Neurol 2001, 439, 127-139.
109. Watkins, L.R.; Maier, S.F., Glia: A novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003, 2, 973-985.
110. Uceyler, N.; Schafers, M.; Sommer, C., Mode of action of cytokines on nociceptive neurons. Exp Brain Res 2009, 196, 67-78.
111. Xu, J.T.; Xin, W.J.; Zang, Y.; Wu, C.Y.; Liu, X.G., The role of tumor necrosis factor-alpha in the neuropathic pain induced by lumbar 5 ventral root transection in rat. Pain 2006, 123, 306-321.
112. Stuesse, S.L.; Crisp, T.; McBurney, D.L.; Schechter, J.B.; Lovell, J.A.; Cruce, W.L., Neuropathic pain in aged rats: Behavioral responses and astrocytic activation. Exp Brain Res 2001, 137, 219-227.
113. Stuesse, S.L.; Cruce, W.L.; Lovell, J.A.; McBurney, D.L.; Crisp, T., Microglial proliferation in the spinal cord of aged rats with a sciatic nerve injury. Neurosci Lett 2000, 287, 121-124.
114. DeLeo, J.A.; Colburn, R.W.; Rickman, A.J., Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res 1997, 759, 50-57.
115. Xu, L.; Huang, Y.; Yu, X.; Yue, J.; Yang, N.; Zuo, P., The influence of p38 mitogen-activated protein kinase inhibitor on synthesis of inflammatory cytokine tumor necrosis factor alpha in spinal cord of rats with chronic constriction injury. Anesth Analg 2007, 105, 1838-1844, table of contents.
116. Bridges, D.; Thompson, S.W.; Rice, A.S., Mechanisms of neuropathic pain. Br J Anaesth 2001, 87, 12-26.
117. Toda, S.; Sakai, A.; Ikeda, Y.; Sakamoto, A.; Suzuki, H., A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain. Mol Pain 2011, 7, 2.
118. Garrison, C.J.; Dougherty, P.M.; Kajander, K.C.; Carlton, S.M., Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res 1991, 565, 1-7.
119. Colburn, R.W.; DeLeo, J.A.; Rickman, A.J.; Yeager, M.P.; Kwon, P.; Hickey, W.F., Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmunol 1997, 79, 163-175.
120. Colburn, R.W.; Rickman, A.J.; DeLeo, J.A., The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol 1999, 157, 289-304.
121. Coyle, D.E., Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 1998, 23, 75-83.
122. Raghavendra, V.; Tanga, F.; DeLeo, J.A., Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther 2003, 306, 624-630.
123. Padi, S.S.; Kulkarni, S.K., Minocycline prevents the development of neuropathic pain, but not acute pain: Possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 2008, 601, 79-87.
124. Ji, R.R.; Suter, M.R., P38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 2007, 3, 33.
125. Tawfik, V.L.; Nutile-McMenemy, N.; Lacroix-Fralish, M.L.; Deleo, J.A., Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun 2007, 21, 238-246.
126. Zhuang, Z.Y.; Gerner, P.; Woolf, C.J.; Ji, R.R., ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 2005, 114, 149-159.
127. Zhuang, Z.Y.; Wen, Y.R.; Zhang, D.R.; Borsello, T.; Bonny, C.; Strichartz, G.R.; Decosterd, I.; Ji, R.R., A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: Respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci 2006, 26, 3551-3560.
128. Youn, D.H.; Wang, H.; Jeong, S.J., Exogenous tumor necrosis factor-alpha rapidly alters synaptic and sensory transmission in the adult rat spinal cord dorsal horn. J Neurosci Res 2008, 86, 2867-2875.
129. Weinheimer, A.J.; Matson, J.A.; Hossain, M.B.; van der Helm, D., Marine anticancer agents: Sinularin and dihydrosinularin, new cembranolides from the soft coral, Sinularia flexibilis. Tetrahedron Lett 1977, 18, 2923-2926.
130. Kazlauskas, R.; Murphy, P.T.; Wells, R.J.; Schonholzer, P.; Coll, J.C., Cembranoid constituents from an Australian collection of the soft coral Sinularia flexibilis. Aust J Chem 1978, 31, 1817.
131. Buckle, P.J.; Baldo, B.A.; Taylor, K.M., The anti-inflammatory activity of marine natural products--6-n-tridecylsalicylic acid, flexibilide and dendalone 3-hydroxybutyrate. Agents Actions 1980, 10, 361-367.
132. Aceret, T.L.; Brown, L.; Miller, J.; Coll, J.C.; Sammarco, P.W., Cardiac and vascular responses of isolated rat tissues treated with diterpenes from Sinularia flexibilis (Coelenterata: Octocorallia). Toxicon 1996, 34, 1165-1171.
133. Aceret, T.L.; Coll, J.C.; Uchio, Y.; Sammarco, P.W., Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1998, 120, 121-126.
134. Salvemini, D.; Wang, Z.Q.; Wyatt, P.S.; Bourdon, D.M.; Marino, M.H.; Manning, P.T.; Currie, M.G., Nitric oxide: A key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 1996, 118, 829-838.
135. Seibert, K.; Zhang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Perkins, W.; Lee, L.; Isakson, P., Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A 1994, 91, 12013-12017.
136. Sekiguchi, F.; Mita, Y.; Kamanaka, Y.; Kawao, N.; Matsuya, H.; Taga, C.; Kawabata, A., The potent inducible nitric oxide synthase inhibitor ONO-1714 inhibits neuronal NOS and exerts antinociception in rats. Neurosci Lett 2004, 365, 111-115.
137. Caraci, F.; Battaglia, G.; Busceti, C.; Biagioni, F.; Mastroiacovo, F.; Bosco, P.; Drago, F.; Nicoletti, F.; Sortino, M.A.; Copani, A., TGF-beta 1 protects against abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiol Dis 2008, 30, 234-242.
138. Lai, Y.L.; Smith, P.M.; Lamm, W.J.; Hildebrandt, J., Sampling and analysis of cerebrospinal fluid for chronic studies in awake rats. J Appl Physiol 1983, 54, 1754-1757.
139. Coruzzi, G.; Adami, M.; Guaita, E.; de Esch, I.J.; Leurs, R., Antiinflammatory and antinociceptive effects of the selective histamine H4-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. Eur J Pharmacol 2007, 563, 240-244.
140. Bukhari, I.A.; Khan, R.A.; Gilani, A.U.; Shah, A.J.; Hussain, J.; Ahmad, V.U., The analgesic, anti-inflammatory and calcium antagonist potential of Tanacetum artemisioides. Arch Pharm Res 2007, 30, 303-312.
141. Xu, Q.; Fitzsimmons, B.; Steinauer, J.; O'Neill, A.; Newton, A.C.; Hua, X.Y.; Yaksh, T.L., Spinal phosphinositide 3-kinase-Akt-mammalian target of rapamycin signaling cascades in inflammation-induced hyperalgesia. J Neurosci 2011, 31, 2113-2124.
142. D'Agostino, G.; La Rana, G.; Russo, R.; Sasso, O.; Iacono, A.; Esposito, E.; Raso, G.M.; Cuzzocrea, S.; Lo Verme, J.; Piomelli, D.; Meli, R.; Calignano, A., Acute intracerebroventricular administration of palmitoylethanolamide, an endogenous peroxisome proliferator-activated receptor-alpha agonist, modulates carrageenan-induced paw edema in mice. J Pharmacol Exp Ther 2007, 322, 1137-1143.
143. Tao, F.; Tao, Y.X.; Mao, P.; Zhao, C.; Li, D.; Liaw, W.J.; Raja, S.N.; Johns, R.A., Intact carrageenan-induced thermal hyperalgesia in mice lacking inducible nitric oxide synthase. Neuroscience 2003, 120, 847-854.
144. Rittner, H.L.; Machelska, H.; Stein, C., Leukocytes in the regulation of pain and analgesia. J Leukoc Biol 2005, 78, 1215-1222.
145. Boughton-Smith, N.K.; Deakin, A.M.; Follenfant, R.L.; Whittle, B.J.; Garland, L.G., Role of oxygen radicals and arachidonic acid metabolites in the reverse passive arthus reaction and carrageenin paw oedema in the rat. Br J Pharmacol 1993, 110, 896-902.
146. Cunha, T.M.; Verri, W.A., Jr.; Schivo, I.R.; Napimoga, M.H.; Parada, C.A.; Poole, S.; Teixeira, M.M.; Ferreira, S.H.; Cunha, F.Q., Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 2008, 83, 824-832.
147. Imai, K.; Takeshita, A.; Hanazawa, S., TGF-beta inhibits lipopolysaccharide-stimulated activity of c-Jun N-terminal kinase in mouse macrophages. FEBS Lett 1999, 456, 375-378.
148. Chung, S.W.; Kwon, M.Y.; Kang, Y.H.; Chung, H.T.; Lee, S.J.; Kim, H.P.; Perrella, M.A., Transforming growth factor-beta1 suppression of endotoxin-induced heme oxygenase-1 in macrophages involves activation of Smad2 and downregulation of Ets-2. J Cell Physiol 2012, 227, 351-360.
149. Werner, F.; Jain, M.K.; Feinberg, M.W.; Sibinga, N.E.; Pellacani, A.; Wiesel, P.; Chin, M.T.; Topper, J.N.; Perrella, M.A.; Lee, M.E., Transforming growth factor-beta 1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 2000, 275, 36653-36658.
150. Ibrahim, A.Y.; El-Gengaihi, S.E.; Motawea, H.M.; Sleem, A.M., Anti-inflammatory activity of Salvadora persica L. against carrageenan induced paw oedema in rat relevant to inflammatory cytokines. Not Sci Biol 2011, 3, 7.
151. Ronaldson, P.T.; Finch, J.D.; Demarco, K.M.; Quigley, C.E.; Davis, T.P., Inflammatory pain signals an increase in functional expression of organic anion transporting polypeptide 1a4 at the blood-brain barrier. J Pharmacol Exp Ther 2011, 336, 827-839.
152. Ronaldson, P.T.; Demarco, K.M.; Sanchez-Covarrubias, L.; Solinsky, C.M.; Davis, T.P., Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab 2009, 29, 1084-1098.
153. Kuruvilla, A.P.; Shah, R.; Hochwald, G.M.; Liggitt, H.D.; Palladino, M.A.; Thorbecke, G.J., Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A 1991, 88, 2918-2921.
154. Maida, M.; Carroll, A.R.; Coll, J.C., Variability of terpene content in the soft coral Sinularia flexibilis (Coelenterata: Octocorallia), and its ecological implications. J Chem Ecol 1993, 19, 2285-2296.
155. Su, J.H.; Lin, Y.F.; Lu, Y.; Yeh, H.C.; Wang, W.H.; Fan, T.Y.; Sheu, J.H., Oxygenated cembranoids from the cultured and wild-type soft corals Sinularia flexibilis. Chem Pharm Bull 2009, 57, 1189-1192.
156. Zhang, P.; Chen, J.H.; Guo, X.L., New insights into PTEN regulation mechanisms and its potential function in targeted therapies. Biomed Pharmacother 2012, 66, 485-490.
157. Chetram, M.A.; Hinton, C.V., PTEN regulation of ERK1/2 signaling in cancer. J Recept Signal Transduct Res 2012, 32, 190-195.
158. Leung, L.; Cahill, C.M., TNF-alpha and neuropathic pain--a review. J Neuroinflammation 2010, 7, 27.
159. Milligan, E.D.; Twining, C.; Chacur, M.; Biedenkapp, J.; O'Connor, K.; Poole, S.; Tracey, K.; Martin, D.; Maier, S.F.; Watkins, L.R., Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci 2003, 23, 1026-1040.
160. Shi, J.Y.; Liu, G.S.; Liu, L.F.; Kuo, S.M.; Ton, C.H.; Wen, Z.H.; Tee, R.; Chen, C.H.; Huang, H.T.; Chen, C.L.; Chao, D.; Tai, M.H., Glial cell line-derived neurotrophic factor gene transfer exerts protective effect on axons in sciatic nerve following constriction-induced peripheral nerve injury. Hum Gene Ther 2011, 22, 721-731.
161. Oinuma, I.; Ito, Y.; Katoh, H.; Negishi, M., Semaphorin 4D/Plexin-B1 stimulates PTEN activity through R-Ras GTPase-activating protein activity, inducing growth cone collapse in hippocampal neurons. J Biol Chem 2010, 285, 28200-28209.
162. Chiang, G.G.; Abraham, R.T., Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 2005, 280, 25485-25490.
163. Baron, R., Neuropathic pain: A clinical perspective. Handb Exp Pharmacol 2009, 3-30.
164. Maeda, S.; Kawamoto, A.; Yatani, Y.; Shirakawa, H.; Nakagawa, T.; Kaneko, S., Gene transfer of GLT-1, a glial glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats. Mol Pain 2008, 4, 65.
165. Romero, M.I.; Rangappa, N.; Li, L.; Lightfoot, E.; Garry, M.G.; Smith, G.M., Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci 2000, 20, 4435-4445.
166. Adkins, J.R.; Castresana, M.R.; Wang, Z.; Newman, W.H., Rapamycin inhibits release of tumor necrosis factor-alpha from human vascular smooth muscle cells. Am Surg 2004, 70, 384-387; discussion 387-388.
167. Dello Russo, C.; Lisi, L.; Tringali, G.; Navarra, P., Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. Biochem Pharmacol 2009, 78, 1242-1251.
168. Lisi, L.; Navarra, P.; Feinstein, D.; Dello Russo, C., The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes. J Neuroinflammation 2011, 8, 1.
169. Dello Russo, C.; Lisi, L.; Feinstein, D.L.; Navarra, P., mTOR kinase, a key player in the regulation of glial functions: Relevance for the therapy of multiple sclerosis. Glia 2013, 61, 301-311.
170. Norsted Gregory, E.; Codeluppi, S.; Gregory, J.A.; Steinauer, J.; Svensson, C.I., Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience 2010, 169, 1392-1402.
171. Sims, K.; Ahmed, Z.; Gonzalez, A.M.; Read, M.L.; Cooper-Charles, L.; Berry, M.; Logan, A., Targeting adenoviral transgene expression to neurons. Mol Cell Neurosci 2008, 39, 411-417.
172. Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E., Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 2007, 147, 227-235.
173. Martin, P.; Leibovich, S.J., Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol 2005, 15, 599-607.
174. Renkin, E.M., Cellular aspects of transvascular exchange: A 40-year perspective. Microcirculation 1994, 1, 157-167.
175. Morris, C.J., Carrageenan-induced paw edema in the rat and mouse. In Inflammation protocols, Winyard, P.G.; Willoughby, D.A., Eds. Humana Press: 2003; Vol. 225, pp 115-121.
176. Levy, L., Carrageenan paw edema in the mouse. Life Sci 1969, 8, 601-606.
177. Backhouse, N.; Delporte, C.; Givernau, M.; Cassels, B.K.; Valenzuela, A.; Speisky, H., Anti-inflammatory and antipyretic effects of boldine. Agents Actions 1994, 42, 114-117.
178. Backhouse, N.; Delporte, C.; Negrete, R.; Feliciano, S.A.; Lopez-Perez, J.L., Bioactive phenolic derivatives from Acaena splendens methanol extract. Phytother Res 2002, 16, 562-566.
179. Delporte, C.; Munoz, O.; Rojas, J.; Ferrandiz, M.; Paya, M.; Erazo, S.; Negrete, R.; Maldonado, S.; San, F.A.; Backhouse, N., Pharmaco-toxicological study of Kageneckia oblonga, Rosaceae. Z Naturforsch C 2002, 57, 100-108.
180. Backhouse, N.; Delporte, C.; Negrete, R.; Salinas, P.; Pinto, A.; Aravena, S.; Cassels, B.K., Antiinflammatory and antipyretic activities of Cuscuta chilensis, Cestrum parqui and Psoralea glandulosa. Int J Pharmacogn 1996, 34, 53-57.
181. Nishikori, T.; Irie, K.; Suganuma, T.; Ozaki, M.; Yoshioka, T., Anti-inflammatory potency of fr167653, a p38 mitogen-activated protein kinase inhibitor, in mouse models of acute inflammation. Eur J Pharmacol 2002, 451, 327-333.
182. Chen, Y.L.; Le Vraux, V.; Giroud, J.P.; Chauvelot-Moachon, L., Anti-tumor necrosis factor properties of non-peptide drugs in acute-phase responses. Eur J Pharmacol 1994, 271, 319-327.
183. Rocha, A.C.; Fernandes, E.S.; Quintao, N.L.; Campos, M.M.; Calixto, J.B., Relevance of tumour necrosis factor-alpha for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. Br J Pharmacol 2006, 148, 688-695.
184. McDaniel, J.C.; Massey, K.; Nicolaou, A., Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair Regen 2011, 19, 189-200.
185. Moor, A.N.; Vachon, D.J.; Gould, L.J., Proteolytic activity in wound fluids and tissues derived from chronic venous leg ulcers. Wound Repair Regen 2009, 17, 832-839.
186. Kasuga, K.; Yang, R.; Porter, T.F.; Agrawal, N.; Petasis, N.A.; Irimia, D.; Toner, M.; Serhan, C.N., Rapid appearance of resolvin precursors in inflammatory exudates: Novel mechanisms in resolution. J Immunol 2008, 181, 8677-8687.
187. Tobacman, J.K., Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect 2001, 109, 983-994.
188. Cheng, A.C.; Tu, C.W.; Chen, Y.Y.; Nan, F.H.; Chen, J.C., The immunostimulatory effects of sodium alginate and iota-carrageenan on orange-spotted grouper Epinephelus coicoides and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol 2007, 22, 197-205.
189. Fujiki, K.; Shin, D.H.; Nakao, M.; Yano, T., Protective effect of kappa-carrageenan against bacterial infections in carp Cyprinus carpio. J Fac Agr Kyushu U 1997, 42, 113-119.
190. Fujiki, K.; Shin, D.H.; Nakao, M.; Yano, T., Effects of kappa-carrageenan on the non-specific defense system of carp Cyprinus carpio. Fisheries Sci 1997, 63, 934-938.
191. Chan, C.C., In vivo assays for COX-2. In Inflammation protocols, Winyard, P.G.; Willoughby, D.A., Eds. Humana Press: 2003; Vol. 225, pp 321-328.
192. Phelps, H.A.; Neely, M.N., SalY of the Streptococcus pyogenes lantibiotic locus is required for full virulence and intracellular survival in macrophages. Infect Immun 2007, 75, 4541-4551.
193. Timur, M.; Roberts, R.J., Carrageenin granuloma in the plaice (Pleuronectes platessa); a histopathological study of chronic inflammation in a teleost fish. J Comp Pathol 1977, 87, 89-96.
194. Posadas, I.; Bucci, M.; Roviezzo, F.; Rossi, A.; Parente, L.; Sautebin, L.; Cirino, G., Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 2004, 142, 331-338.
195. Palic, D.; Andreasen, C.B.; Ostojic, J.; Tell, R.M.; Roth, J.A., Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. J Immunol Methods 2007, 319, 87-97.
196. Clay, H.; Davis, J.M.; Beery, D.; Huttenlocher, A.; Lyons, S.E.; Ramakrishnan, L., Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2007, 2, 29-39.
197. Shin, D.H.; Lim, H.S.; Cho, S.K.; Lee, H.Y.; Lee, H.W.; Lee, K.H.; Chung, Y.H.; Cho, S.S.; Ik Cha, C.; Hwang, D.H., Immunocytochemical localization of neuronal and inducible nitric oxide synthase in the retina of zebrafish, Brachydanio rerio. Neurosci Lett 2000, 292, 220-222.
198. Panusa, A.; Selmin, F.; Rossoni, G.; Carini, M.; Cilurzo, F.; Aldini, G., Methylprednisolone-loaded PLGA microspheres: A new formulation for sustained release via intra-articular administration. A comparison study with methylprednisolone acetate in rats. J Pharm Sci 2011, 100, 4580-4586.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.142.146
論文開放下載的時間是 校外不公開

Your IP address is 18.188.142.146
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code