Responsive image
博碩士論文 etd-0127110-122019 詳細資訊
Title page for etd-0127110-122019
論文名稱
Title
微渠道內單相/兩相流及熱傳之實驗研究
An Experimental Study of Single / Two Phase Flow and Heat Transfer in Microchannels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-13
繳交日期
Date of Submission
2010-01-27
關鍵字
Keywords
沸騰曲線、次冷流動沸騰、疏水性、親水性、μPIV / μLIF、微渠道
μPIV / μLIF, hydrophilic, hydrophobic, subcooled flow boiling, boiling curve, Microchannel
統計
Statistics
本論文已被瀏覽 5722 次,被下載 1787
The thesis/dissertation has been browsed 5722 times, has been downloaded 1787 times.
中文摘要
本論文以實驗方式探討在不具相變化及具有相變化條件下,微渠道內流/熱場特性,並與傳統結果相比較。本論文主要分成三個部份進行實驗及分析討論。第一部份利用ArF準分子雷射在一高分子聚合物(PMMA)上加工製造出一單一微渠道,並以微質點影像測速儀(μPIV)對微渠道內的流體進行二維流場的拍攝及探討微渠道內是否具有壁邊滑動速度的現象。第二部份則以SU-8微機電製程技術配合PDMS翻模技術製造出一含有20根平行微渠道的微散熱裝置,並利用紫外光臭氧機的照射,使原本為疏水性的PDMS微渠道表面性質發生改變而形成親水性,並以μPIV/μLIF系統來量測此微渠道內流/熱場情況,進而探討在微渠道內此二種表面特性(親、疏水性)對流/熱場(不具相變化)所造成的影響。第三部份則探討流體在75根平行微渠道內具有相變化的次冷流動沸騰現象(如: 沸騰起始點、沸騰曲線圖及相對應的流場圖、汽泡脫離直徑及汽泡脫離頻率),並嘗試以下列三種不同方法:
(1) 在微渠道二側壁邊以等距離增加三種不同開孔角度(θ = 60°、90°及120°)的孔穴。
(2) 在原本為Cu的加熱表面上均勻濺鍍上一層厚度為2 μm 的鑽石薄膜。
(3) 在流體(去離子水)中加入1 vol. % 的多壁奈米碳管 (MCNT) 。
來提高此微渠道的極限熱通量(CHF) 及對流熱傳係數,以期能提高微渠道的散熱效率。
本論文主要目地是希望能以所得的研究成果發展出一高效率的微冷卻技術,並能實際應用在微電子零件冷卻裝置上,以解決目前電子零件發熱功率急速增加的散熱問題。
Abstract
An experimental investigation was carried to examine the flow/ thermal field characteristics with/without phase change in the microchannels and compared with the traditional results. There are three parts in this study. The first part investigated the 2-D flow field measured by the micro particle image velocimetry (μPIV) in a single PMMA microchannel fabricated by an ArF excimer laser. The slip boundary condition in the microchannel wall was also discussed. The second part studied the influence of surface condition (hydrophilic vs hydrophobic) on the flow/thermal field in a micro cooling device which included twenty parallel microchannels, which was fabricated by SU-8 microfabrication technique and replicated by the PDMS replica technique. The UV/ozone device was used to change the PDMS microchannels’ surface condition from hydrophobic to hydrophilic and the μPIV/μLIF system was also used to measure the velocity and temperature distribution. The third part investigated the two-phase subcooled flow boiling phenomena (onset of nucleate boiling, boiling curve, flow patterns, bubble departure diameter and frequency) in the seventy-five parallel microchannels fabricated by SU-8 microfabrication technique, and aimed to raise the critical heat flux (CHF) and heat transfer coefficient to enhance the cooling efficiency. Three major methods were used in this study, as follows:
(1) To add the cavity angle of θ = 60°, 90°, and 120° on the microchannel side walls.
(2) To coat 2 μm diamond film on the Cu heated surface.
(3) To add 1 vol. % Multi-walled Carbon Nanotube (MCNT) into the working medium (deionized water).
The goal of this paper is to develop a high heat flux cooling technique and apply the experimental results to solve the cooling problem resulting from the exceedingly high heat flux from the electronic component.
目次 Table of Contents
ACKNOWLEDGMENTS(謝誌)…………………………...…….……..i
摘要……………………………………………………………..………..ii
ABSTRACT………………………………………………………….…iv
TABLE OF CONTENTS………………………………...…………….vi
LIST OF TABLES………………………………………….…………...x
LIST OF FIGURES…………………………………………………….xi
NOMENCLATURE………………………………………….………...xv
CHAPTER
1. INTRODUCTION…………………………………………….1
1.1 Literature Review……………………………………….1
1.1.1 μPIV ……………………………………….....2
1.1.2 μLIF………………………………………...…5
1.1.3 Flow Field Measurement in Microchannel…...6
1.1.4 Single-Phase Heat Transfer in Microchannel..10
1.1.5 Two-Phase Heat Transfer in Microchannel….13
1.2 The Objective of This Study…………………………..19
1.3 Thesis Scope…………………………………………..19
2. EXPERMIEMTAL APPARATUS AND PROCEDURES...22
2.1 Microchannel Fabrication Process…………………….22
2.1.1 Excimer Laser Fabrication…………………..22
2.1.2 SU-8 Fabrication…………………………….23
2.2 Single-Phase Flow Loop and Test Section for Velocity Measurement…………………………………………..24
2.2.1 Single-Phase Test Section for Velocity Measurement………………...………………24
2.2.2 Single-Phase Flow Loop for Velocity Measurement…………...……………………25
2.3 Single-Phase Flow Loop and Test Section for Temperature Measurement ………………..…………..26
2.3.1 Single-Phase Test Section for Temperature Measurement………………...………………26
2.3.2 Single-Phase Flow Loop for Temperature Measurement………………...………………28
2.4 Two-Phase Flow Loop and Test Section………………29
2.4.1 Two-phase Test Section……………………29
2.4.2 Two-Phase Flow Loop………………….…..31
2.5 μPIV/ μLIF System……………………………………32
3. DATA REDUCTION AND UNCERTAINTY……………...46
3.1 Single-Phase…………………………………………...46
3.1.1 Flow Field Analysis……………….................46
3.1.2 Single-Phase Heat transfer Coefficient…………………………………...48
3.2 Two-Phase ……………………………………...……..50
3.2.1 Effect Heat Flux (qeff) and Channel Wall Heat Flux (qch)…………………………………….51
3.2.2 Average Two-Phase Heat Transfer Coefficient……………...……………………53
3.2.3 Two-Phase Pressure Drop and Friction Factor
……………………………………………….54
3.3 Uncertainty Analysis…………………………………..55
4. FLOW FIELD MEASUREMENT IN A SINGLE MICROCHANNEL………………………………………….58
4.1 No-Slip/Slip Boundary Condition in Marco/Micro Channel…….………………………………………….58
4.2 Flow Field Measurement………………...……………60
4.3 Slip Velocity and Slip Length………………...……….62
5. CONVECTIVE HEAT TRANSFER IN PARALLEL LIQUID MICROCHANNELS WITH HYDROPHOBIC AND HYDROPHILIC SURFACE…………………..……..70
5.1 Hydrophobic and Hydrophilic…………………...……71
5.2 Flow / Velocity Field………………………………...72
5.3 Slip Velocity vs Hydrophobic Surface……………….73
5.4 μLIF / Temperature Visualization……………………74
5.5 Local Heat Transfer Coefficient Distribution and Thermal Entry Length…………………………………75
5.6 vs Pe and Compared with Those of Previous Studies…………………………………………………76
6. SUBCOOLED CONVECTIVE BOILING IN STRUCTURED SURFACE MICROCHANNELS………..92
6.1 Bubble Ebullition Cycle……………………………..92
6.2 Flow Pattern and Morphology………………………94
6.3 Boiling Curve/ Two Phase Heat Transfer Coefficient…96
6.4 Effect of Geometry and Flow Parameter on CHF……..98
6.5 Enhancement Performance Ratio…………………..101
6.6 Comparison with Existing Data…………………….102
7. SUMMARY…………………………………………………116
7.1 Conclusions…………………………………………..116
7.1.1 Flow Field Measurement in a Single Microchannel………………………..……...116
7.1.2 Convective Heat Transfer in Parallel Liquid Microchannels with Hydrophobic and Hydrophilic Surface………………………..117
7.1.3 Subcooled Convective Boiling in Structured Surface Microchannels……….…………….118
7.2 Recommendation for Future Work………………….119
REFERENCES…………………………………...……………121
APPNDIX A……………………………………………………137
PUBLICATION LIST…………………………………………148
參考文獻 References
1. S. -S. Hsieh, C. Y. Lin, C. F. Huang, and H. H. Tsai, “Liquid Flow in a Microchannel,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 436-445.
2. R. J. Adrian, “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annual Review Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
3. C. D. Meinhart, A. K. Prasad, and R. J. Adrian, “A Parallel Digital Processor for Particle Image Velocimetry,” Measurement Science Technology, Vol. 4, 1993, pp. 619-626.
4. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV Measurements of Microchannel Flow,” Experiments in Fluids, Vol. 27, 1999, pp. 414-419.
5. S. W. Stone, C. D. Meinhart, and S. T. Wereley, “A Microfluidic-Based Nanoscope,” Experiments in Fluids, Vol. 33, 2002, pp. 613-619.
6. S. Devasenathipathy, J. G. Santiago, S. T. Wereley, C. D. Meinhart, and K. Tabehara, “Particle Imaging Techniques for Microfabricated Fluidic Systems,” Experiments in Fluids, Vol. 34, 2003, pp. 504-514.
7. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A Particle Image Velocimetry System for Microfluids, Experiments in Fluids,” Vol. 25, 1998, pp. 316-319.
8. P. H. Paul, M. G. Garguilo, and D. J. Rakestraw, “Imaging of Pressure and Electrokinetically Driven Flows Through Open Capillaries,” Analytical Chemistry, Vol. 70, 1998, pp. 2459-2467.
9. G. Han, and K. S. Breuer, “Infrared PIV for Measurement of Fluid and Solid Motion Inside Opaque Silicon Microdevices,” 4th International Symposium on Particle Image Velocimetry, Gottingen, Germany, September 17-19, 2001, Paper 1146.
10. J. D. Tian, and H. H. Qiu, “Eliminating Background Noise Effect in Micro-Resolution Particle Image Velocity,” Applied Optics, Vol. 41, 2002, pp. 6849-6857.
11. O. Chetelat, and K. C. Kim, “Design of a Particle Image Velocimetry Objective Maximizing the Image Signal-to-Noise Ratio,” Measurement Science and Technology, Vol. 13, 2002, pp. 667-682.
12. S. T. Wereley, L. Gui, and C. D. Meinhart, “Advanced Algorithms for Microscale Particle Image Velocimetry,” AIAA Journal, Vol. 40, 2002, pp. 1047-1055.
13. C. J. Bourdon, M. G. Olsen, and A. D. Gorby, “Validation of an Analytical Solution for Depth of Correlation in Microscopic Particle Image Velocity,” Measurement Science and Technology, Vol. 15, 2004, pp. 318-327.
14. S. Gaskey, P. Vacus, R. David, and J. Villermaus, “A Method for the Study of Turbulent Mixing Using Fluorescence Spectroscopy,” Experiments in Fluids, Vol. 9, 1990, pp. 137-147.
15. P. E. Dimotakis, R. C. Miake-Lye, and D. A. Papantoniou, “Structure and Dynamics of Round Turbulent Jets,” Physics of Fluids A, Vol. 6, 1983, pp. 3185-3192.
16. M. M. Koochesfahani, and P. E. Dimotakis, “Laser Induced Fluorescence Measurements of Mixed Fluid Concentration in a Liquid Plane Shear Layer,” AIAA Journal, Vol. 23, 1985, pp. 1700-1707.
17. B. M. Cetegen, and N. Mohamad, “Experiments on Liquid Mixing and Reaction in a Vortex,” Journal of Fluid Mechanics, Vol. 249, 1993, pp. 391-414.
18. J. Sakakibara, K. Hishida, and M. Maeda, “Measurements of Thermally Stratified Pipe Flow Using Image-Processing Techniques,” Experiments in Fluids, Vol. 16, 1993, pp. 82-96.
19. M. C. J. Coolen, R. N. Kieft, C. C. M. Rindt, and A. A. V. Steenhoven, “Application of 2-D LIF Temperature Measurements in Water Using a Nd: YAG Laser,” Experiments in Fluids, Vol. 27, 1999, pp. 420-426.
20. I. Houcine, H. Vivier, E. Plasari, R. David, and J. Villermaux, “Planar Laser Induced Fluorescence Technique for Measurements of Concentration Fields in Continuous Stirred Reactors,” Experiments in Fluids, Vol. 22, 1996, pp. 95-102.
21. F. Guillard, R. Fritzon, J. Revstedt, C. Tragardh, M. Alden, and L. Fuchs, “Mixing in a Confined Turbulent Impinging Jet Using Planar Laser-Induced Fluorescence,” Experiments in Fluids, Vol. 25, 1998, pp. 143-150.
22. J. Sakakibara, and R. J. Adrian, “Whole-Field Measurement of Temperature in Water Using Two-Color Laser-induced Fluorescence,” Experiments in Fluids, Vol. 26, 1999, pp. 7-15.
23. D. B. Tuckerman, “Heat Transfer Microstructures for Integrated Circuits,” 1984, UCRL 53515 Report, Lawrence Livemore National Laboratory, USA.
24. P. Wu, and W. A., Little, “Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators,” Cryogenics, 1983, pp. 273-278.
25. J. Pfhaler, J. Harley, H. Bau, and J. N. Zemel, “Gas and Liquid Flow in Small Channels,” Micromechnical Sensors, Actuators, and Systems, DSC 32, 1991, pp. 49-60.
26. W. Urbanek, J. N. Zemel, and H. H. Bau, “An Investigation of The Temperature Dependence of Poiseeuille Numbers in Microchannel Flow,” Journal of Micromechanics and Microengineering, Vol. 3, 1993, pp. 206-208.
27. P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics - A Review,” Journal of Micromechanics and Microengineering, Vol. 3, 1993, pp. 168-182.
28. M. Elwenspoek, T. S. Kannerubj, R. Miyake, and J. H. Fluitman, “Towards Integrated Microliquid Handling Systems,” Journal of Micromechanics and Microengineering, Vol. 4, 1994, pp. 227-245.
29. X. F. Peng, G. P. Peterson, and B. X. Wong, “Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels,” Experimental Heat Transfer, Vol. 7, 1995, pp. 249-264.
30. X. F. Peng, and G. P. Peterson, “Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structure,” International Journal of Heat and Mass Transfer, Vol. 39, 1996, pp. 2599-2608.
31. G. M. Mala, D. Li, and J. D. Dale, “Heat Transfer and Fluid Flow in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 40, 1997, pp. 3079-3088.
32. C. M. Ho, and Y. C. Tai, “Micro-Electro-Mechanical Systems (MEMS) and Fluid Flow,” Annual Review Fluid Mechanics, Vol. 30, 1998, pp. 579-612.
33. G. M. Mala, and D. Li, “Flow Characteristics of Water in Microtubes,” International Journal of Heat and Fluid Flow, Vol. 20, 1999, pp. 142-148.
34. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV Measurements of a Microchannel Flow,” Experiments in Fluids, Vol. 27, 1999, pp. 414-419.
35. W. Qu, G. M. Mala, and D. Li, “Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels,” International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 353-364.
36. B. Xu, K. T. Ooi, N. T. Wong, and W. K. Choi, “Experimental Investigation of Flow Friction for Liquid Flow in Micro Channels,” International Communications in Heat and Mass Transfer, Vol. 27, 2000, pp. 1165-1176.
37. H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, J. Michelser, and C. H. Westergard, “Micro PIV Measurements in Micro Cell Sorters and Mixing Structures with Three-Dimensional Flow Behavior,” 4th International Symposium on Particle Image Velocimetry, Gottingen, Germany, September 17-19, 2001.
38. N. Churaev, V. Sobolev, and A. Somov, ‘‘Slippage of Liquids over Lyophobic Solid Surfaces,’’ Journal of Colloid and Interface Science, Vol. 97, 1984, pp.574-581.
39. Y. Zhu , and S. Granick, ‘‘Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces,’’ Physical Review Letters, Vol. 87, 2001,096105(4pp).
40. R. Pit, H. Hervet, and L. Leger, ‘‘Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces,’’ Physical Review Letters, Vol. 85, 2000, pp.980-983.
41. J. Judy, D. Maynes, and S. W. Webb, “Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 3477-3489.
42. K. C. Toh, X. Y. Chen, and J. C. Chai, “Numerical Computation of Fluid Flow and Heat Transfer in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 5133-5141.
43. M. Gad-el-Hak, The MEMS Handbook, CRC Press, New York, 2002.
44. G. E. Karniadakis, and A. Beskok, Microflows: Fundamentals and Simulations, Spinger- Verlag, New York, 2002.
45. Y. Zohar, Heat Convection in Micro Ducts, Kluwer Academic Publishers, Boston, 2003.
46. D. B. Tuckerman, and R. F. Pease, “High Performance Heat Sinking for VLSI,” IEEE Electronic Device Letters, EDL-2, 1981, pp. 126-129.
47. S. -S. Hsieh, H. H. Tsai, C. Y. Lin, C. F. Huang, and C. M. Chien, “Gas Flow in a Long Microchannel,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 3877-3887.
48. G. P. Celata, “Single-Phase Heat Transfer and Fluid Flow in Micropipes,” Heat Transfer Engineering, Vol. 25, 2004, pp. 13-22.
49. G. H. M. Mala, and D. Li, “Flow Characteristics in Microtubes,” International Journal of Heat and Fluid Flow, Vol. 20, 1999, pp. 142-148.
50. S. -S. Hsieh, C. Y. Lin, C. F. Huang, and H. H. Tsai, “Liquid Flow in a Microchannel,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 436-445.
51. B. X. Wang, and X. F. Peng, “Experimental Investigation a Liquid Forced Convection Heat Transfer Through Microchannel,” International Journal of Heat and Mass Transfer, Vol. 37, 1994, pp. 73-82.
52. W. Qu, G. M. Mala, and D. Li, “Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels,” International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 3925-3936.
53. G. P. Celata, M. Cumo, M. Guglielmi, and G. Zummo, “Experimental Investigation of Hydraulic and Single Phase Heat Transfer in 0.130 mm Capillary Tube,” Microscale Thermal Physical Engineering, Vol. 6, 2002, pp. 85-97.
54. H. Herwig, and O. Hausner, “Critical View on New Results in Micro-Fluid Mechanics: An Example,” International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 935-937.
55. C. P. Tso, and S. P. Mahulikar, “Experimental Verification of the Role of Brinkman Number in Microchannels Using Local Parameters,” International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 1837-1849.
56. T. M. Adams, S. I. Abdel-Khalik, S. M. Jeter, and Z. H. Qureshi, “An Experimental Investigation of Single-Phase Forced Convection in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 41, 1998, pp. 851-857.
57. B. Xu, K. T. Ooi, N. T. Wong, and W. K. Choi, “Experimental Investigation of Flow Friction for Liquid Flow in Microchannels,” International Communication in Heat and Mass Transfer, Vol. 27, 2000, pp. 1165-1176.
58. J. Judy, D. Maynes, and B. W. Webb, “Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 3477-3489.
59. D. Brutin, and L. Tadrist, “Experimental Friction Factor of a Liquid Flow in Microtubes,” Physics of Fluids, Vol. 15, 2003, pp. 653-661.
60. G. L. Morini, “Single-Phase Convective Heat Transfer in Microchannels - A Review of Experimental Results,” International Journal of Thermal Sciences, Vol. 43, 2004, pp. 631-651.
61. F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley and Sons, New York, 1993.
62. X. F. Peng, G. P. Peterson, and B. X. Wang, ”Heat Transfer Characteristics of Water Flow Through Microchannels,” Experimental Heat Transfer, Vol. 7, 1994, pp. 265-283.
63. X. F. Peng, and G. P. Peterson, ”Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures,” International Journal of Heat and Mass Transfer, Vol. 39, 1996, pp. 2599-2608.
64. H. Y. Wu, and P. Cheng, “An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions,” International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 2547-2556.
65. L. Zhuo, W. Q. Tao, and Y. L. He, “A Numerical Study of Laminar Convective Heat Transfer in Microchannels with Non-Circular Cross-Section,” International Journal of Thermal Sciences, Vol. 45, 2006, pp 1140-1148.
66. P. X. Jiang, M. H. Fan, G. S. Si, and Z. P. Ren, “Thermal-Hydraulic Performance of Small Scale Micro-Channel and Porous-Media Heat-Exchanges,” International Journal of Heat and Mass Transfer, Vol. 44, 2001, pp. 1039-1051.
67. S. Shen, J. L. Xu, J. J. Zhou, and Y. Chen, “Flow and Heat Transfer in Microchannels with Rough Wall Surface,” Energy Conversion and Management, Vol. 47, 2006, pp. 1311-1325.
68. G. Hetsroni, A. Mosyak, E. Pogrebnyak, and L. P. Yarin, “Heat Transfer in Micro-Channels: Comparison of Experiments with Theory and Numerical Results,” International Journal Heat and Mass Transfer, Vol. 48, 2005, pp. 5580-5601.
69. Y. Mishan, A. Mosyak, E. Pogrebnyak, and G. Hetsroni, “Effect of Developing Flow and Thermal Regime on Momentum and Heat transfer in Micro-Scale Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 3100-3114.
70. R. Dowlati, and M. Kawaji, Two-Phase Flow and Boiling Heat Transfer in Tube Bundles, Handbook of Phase Change: Boiling and Condensation, Taylor& Francis, Ann Arbor, 1999 (Chapter 12).
71. T. H. Hwang, and S. C. Yao, “Cross Flow Heat Transfer in Tube Bundles at Low Reynolds Numbers,” Journal of Heat Transfer, Vol. 108, 1986, pp. 697-700.
72. K. Cornwell, “The Influence of Bubbly Flow on Boiling from a Tube in a Bundle,” International Journal of Heat and Mass Transfer, Vol. 33, 1990, pp. 2579-2584.
73. J. T. Hsu, A Parametric Study of Boiling Heat Transfer in a Horizontal Tube Bundle, Ph.D. Dissertation, University of Wisconsin-Milwaukee, Milwaukee, WI, 1987.
74. M. K. Jensen, and J. T. Hsu, “A Parametric Study of Boiling Heat Transfer in a Horizontal Tube Bundle,“ Journal of Heat Transfer, Vol. 110, 1988, pp. 976-981.
75. G. D. Mandrusiak, and V. P. Carey, “Convective Boiling in Vertical Channels with Different Offset Strip Fin Geometries,” Journal of Heat Transfer, Vol. 111, 1989, pp. 697-700.
76. G. D. McGills, and V. P. Carey, “Subcooled Convective Boiling of Binary Mixtures Over an Array of Heated Elements,” Journal of Thermophysics and Heat Transfer, Vol. 7, 1993, pp. 346-351.
77. A. Gupta, J. S. Saini, and H. K. Varma, “Boiling Heat Transfer in Small Horizontal Tube Bundles at Low Cross-Flow Velocities,” International Journal of Heat and Mass Transfer, Vol. 38, 1995, pp. 599-605.
78. D. Copeland, “Single-Phase and Boiling Cooling of Small Pin Fin Arrays by Multiple Nozzle Jet Impingement,” Journal of Electronic Packaging, Vol. 118, 1996, pp. 21-26.
79. R. Dowlati, M. Kawaji, and A. M. C. Chan, “Two-Phase Crossflow and Boiling Heat Transfer in Horizontal Tube Bundles,” Journal of Heat Transfer, Vol. 118, 1996, pp. 124-131.
80. L. D. Huang, and L. C. Witte, “Highly Subcooled Boiling in Crossflow,” Journal of Heat Transfer, Vol. 123, 2001, pp. 1080-1085.
81. N. H. Kim, J. P. Cho, and B. Youn, “Forced Convective Boiling of Pure Refrigerants in a Bundle of Enhanced Tubes Having Pores and Connecting Gaps,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 2449-2463.
82. A. Gupta, “Enhancement of Boiling Heat Transfer in a 5 x 3 Tube Bundle,” International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3763-3772.
83. S. C. Yao, and T. H. Hwang, “Critical Heat Flux on Horizontal Tubes in an Upward Crossflow of Freon-113,” International Journal of Heat and Mass Transfer, Vol. 32, 1989, pp. 95-103.
84. G. D. McGills, V. P. Carey, and B. D. Strom, “Geometry-Effects on Critical Heat-Flux for Subcooled Convective Boiling from an Array of Heated Elements,” Journal of Heat Transfer, Vol. 113, 1991, pp. 463-471.
85. S. Dykas, and M. K. Jensen, “Critical Heat Flux on a Tube in a Horizontal Tube Bundle,” Experimental Thermal Fluid Science, Vol. 5, 1992, pp. 34-39.
86. K. M. Leroux, and M. K. Jensen, “Critical Heat Flux in Horizontal Tube Bundles in Vertical Crossflow of R-113,” Journal of Heat Transfer, Vol. 114, 1992, pp. 79-184.
87. M. K. Jensen, and H. Tang, “Correlations for the CHF Condition in Two Phase Crossflow Through Multitube Bundles,” Journal of Heat Transfer, Vol. 116, 1994, pp. 780-783.
88. K. Ishihara, J. W. Palen, and J. Taborek, “Critical Review of Correlations for Predicting Two-Phase Flow Pressure Drop across Tube Banks,” Heat Transfer Engineering, Vol. 1, 1980, pp. 23-32.
89. G. D. Mandrusiak, and V. P. Carey, “Pressure-Drop Characteristics of 2-Phase Flow in a Vertical Channel with Offset Strip Fins,” Experimental Thermal Fluid Science, Vol. 1, 1988, pp. 41-50.
90. D. S. Schrage, J. T. Hsu, and M. K. Jensen, “Two-Phase Pressure Drop in Vertical Crossflow across a Horizontal Tube Bundle,” American Institute of Chemical Engineers, Vol. 34, 1988, pp. 107-115.
91. G. P. Xu, K. W. Tou, and C. P. Tso, “Two-Phase Void Fraction and Pressure Drop in Horizontal Cross Flow across a Tube Bundle,” Journal of Fluids Engineer, Vol. 120, 1998, pp. 140-145.
92. I. D. R. Grant, and D. Chisholm, “Two-Phase Flow on the Shell-Side of a Segmentally Baffled Shell-and-Tube Heat Exchanger,” Journal of Heat Transfer, Vol. 101, 1979, pp. 38-42.
93. G. R. Noghrehkar, M. Kawaji, and A. M. C. Chan, “Investigation of Two-Phase Flow Regimes in Tube Bundles under Cross-Flow Conditions,” International Journal of Multiphase Flow, Vol. 25, 1999, pp. 857-874.
94. W. Qu, and I. Mudawar, “Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 2045-2059.
95. L. Wojtan, R. Revellin, and J. R. Thome, “Investigation of Saturated Critical Heat Flux in a Single, Uniformly Heated Microchannel,” Experimental Thermal Fluid Science, Vol. 30, 2006, pp. 765-774.
96. D. Liu, and S. V. Garimella, “Flow Boiling Heat Transfer in Microchannels,” Journal of Heat Transfer, Vol. 129, 2007, pp. 1321-1332.
97. D. E. Maddox, and I. Mudawar, “Single- and Two-Phase Convective Heat Transfer from Smooth and Enhanced Microelectronic Heat Sources in a Rectangular Channel,” Journal of Heat Transfer, Vol. 111, 1989, pp. 1045-1052.
98. I. Mudawar, and D. E. Maddox, “Critical Heat Flux in Subcooled Flow Boiling of Fluorocarbon Liquid on a Simulated Electronic Chip in a Vertical Rectangular Channel,” International Journal of Heat and Mass Transfer, Vol. 32, 1989, pp. 379-394.
99. J. C. Sturgis, and I. Mudawar, “Critical Heat Flux in a Long, Rectangular Channel Subjected to One-Sided Heating-I, Flow Visualization,” International Journal of Heat and Mass Transfer, Vol. 42, 1999, pp.1835-1847.
100. C. P. Tso, K. W. Tou, and G. P. Xu, “Flow Boiling Critical Heat Flux of FC-72 from Flush-Mounted and Protruded Simulated Chips in a Vertical Rectangular Channel,” International Journal of Multiphase Flow, Vol. 26, 2000, pp. 351-365.
101. C. N. Ammerman, and S. M. You, “Enhancing Small-Channel Convective Boiling Performance Using a Microporous Surface Coating,” Transactions of ASME, Vol. 123, 2001, pp. 976-983.
102. H. Zhang, I. Mudawar, and M. M. Hasan, “Experimental Assessment of the Effects of Body Force, Surface Tension Force, and Inertia on Flow Boiling CHF,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 4079-4095.
103. H. Honda, H. Takamastu, and J. J. Wei, “Enhanced Boiling of FC-72 on Silicon Chips with Micro-Pin-Fins and Submicron-Scale Roughness,” Journal of Heat Transfer, Vol. 124, 2002, pp. 383-390.
104. J. J. Wei, and H. Honda, “Effects of Fin Geometry on Boiling Heat Transfer from Silicon Chips with Micro-Pin-Fins Immersed in FC-72,” International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 4059-4070.
105. S. Mukherjee, and I. Mudawar, “Smart Pumpless Loop for Micro Channel Electronic Cooling Using Flat and Enhanced Surfaces,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, 2003, pp. 99-109.
106. H. Honda, and J. J. Wei, “Enhanced Boiling Heat Transfer from Electronic Components by Use of Surface Microstructures,” Experimental Thermal Fluid Science, Vol. 28, 2004, pp. 159-169.
107. T. Chen, and S. V. Garimella, “Flow Boiling Heat Transfer to a Dielectric Coolant in a Microchannel Heat Sink,” IEEE Transactions on Components and Packaging Technologies, Vol. 30, 2007, pp. 24-31.
108. W. Qu, and I. Mudawar, “Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks - I. Experimental Investigation and Assessment of Correlation Methods,” International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 2755-2771.
109. W. Qu, and I. Mudawar, “Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks,” International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 2045-2059.
110. D. Liu, and S. V. Garimella, “Flow Boiling Heat Transfer in Microchannels,” Journal of Heat Transfer, Vol. 129, 2007, pp. 1321-1332.
111. W. R. McGillis, V. P. Carey, and B. D. Strom, “Geometry Effects on Critical Heat Flux for Subcooled Convective Boiling from an Array of Heated Elements,” Journal of Heat Transfer, Vol. 113, 1991, pp. 463-471.
112. M. Kureta, and H. Akimoto, “Critical Heat Flux Correlation for Subcooled Boiling Flow in Narrow Channels,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 4107-4115.
113. C. J. Kuo, and Y. Peles, “Local Measurement of Flow Boiling in Structured Surface Microchannels,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 4513-4526.
114. A. Kosar, C. J. Kuo, and Y. Peles, “Boiling Heat Transfer in Rectangular Microchannels with Reentrant Cavities,” International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 4867-4886.
115. A. Kosar, C. J. Kuo, and Y. Peles, “Reduced Pressure Boiling Heating Transfer in Rectangular Microchannels with Interconnected Reentrant Cavities,” Transactions of the ASME, Vol. 127, 2005, pp. 1106-1114.
116. C. J. Kuo, A. Kosar, Y. Peles, S. Virost, C. Mishra, and M. K. Jensen, “Bubble Dynamics during Boiling in Enhanced Surface Microchannels,” Journal of Microelectromechanical System, Vol. 15, 2006, pp. 1514-1527.
117. A. Kosar, and Y. Peles, “Boiling Heat Transfer in a Hydrofoili-Based Micro Pin Fin Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 1018-1034.
118. B. Schneider, A. Kosar, and Y. Peles, “Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow Inside Microchannels,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 2838-2854.
119. S. Krishnamurthy, and Y. Peles, “Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 1349-1364.
120. S. -S. Hsieh, and C. Y. Lin, “Convective Heat Transfer in Liquid Microchannels with Hydrophobic and Hydrophilic Surface,” International Journal of Heat and Mass Transfer, Vol. 52, 2009, pp. 260-270.
121. M. S. Islam, K. Haga, M. Kaminaga, R. Hino, and M. Monde, “Experimental Analysis of Turbulent Structure on a Fully Developed Rib-Roughened Rectangular Channel with PIV,” Experiments in Fluids, Vol. 33, 2002, pp. 296-306.
122. A. K. Prassad, R. J. Adrian, C. C. Landreth, and P. W. Offutt, “Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation,” Experiments in Fluids, Vol. 13, 1992, pp. 105-116.
123. X. Zhang, H. Gu, and M. Fujii, “Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles,” Journal of Applied Physics, Vol. 100, 2006, 044325(5pp).
124. S. Kline, and F. A. McClintock, “Describing Uncertainties in Single- Sample Experiments,” Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
125. J. G. Collier, Convective Boiling and Condensation, 2nd Edition, McGraw-Hill, New York, 1981, pp. 26-108.
126. R. J. Moffat, “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 104, 1988, pp. 3-17.
127. D. C. Tretheway, and C. D. Meinhart, “Apparent Fluid Slip at Hydrophobic Microchannel Walls,” Physics of Fluids, Vol. 14, 2002, pp. 9-12.
128. K. Watanabe, Yanuar, and H. Mizunuma, “Slip of Newtonian Fluids at Slip Boundary,” JSME International Journal. Series B, Vol. 41, 1998, pp. 525-529.
129. G. P. Celata, M. Cumo, V. Marconi, S. J. McPhail, and G. Zummo, “Microtube Liquid Single-Phase Heat Transfer in Laminar Flow,” International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 3538-3546.
130. D. C. Tretheway, and C. D. Meinhart, “A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Michannels,” Physics of Fluids, Vol. 17, 2005, pp. 103606-103616.
131. P. Tabeling, Introduction to Microfluidics, Oxford University Press, 2005, New York, p. 231.
132. G. L. Morini, “Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts under Constant Axial Heat Flux,” International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 741-755.
133. S. G. Kandlikar, “Heat Transfer Mechanisms during Flow Boiling in Microchannels,” Journal of Heat Transfer, Vol. 126, 2004, pp. 8-16.
134. T. Chen, and S. V. Garimella, “Measurements and High-Speed Visualizations of Flow Boiling of a Dielectric Fluid in a Silicon Micrchannel Heat Sink,” International Journal of Multiphase Flow, Vol. 32, 2006, pp. 957-971.
135. W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic, Handbook of Heat Transfer Fundamentals, 2nd Edition, McGraw-Hill, New York, 1985, pp. 7-94.
136. M. Piasecka, and M. E. Poniewski, “Hysteresis Phenomena at the Onset of Subcooled Nucleate Flow Boiling in Microchannels,” Heat Transfer Engineering, Vol. 25, 2004, pp. 44-51.
137. S. -S. Hsieh, and T. Y. Yang, “Nucleate Pool Boiling from Coated and Spirally Wrapped Tubes in Saturated R-134a and R-600a at Low and Moderate Heat Flux,” Journal of Heat transfer, Vol. 123, 2001, pp. 257-270.
138. M. Y. Wen, and S. -S. Hsieh, “Evaporation Heat Transfer and Enhancement Performance of Rib-Roughened Tube Annuli with Refrigerant 114,” International Journal of Heat and Mass Transfer, Vol. 37, 1994, pp. 425-436.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code