Responsive image
博碩士論文 etd-0127111-064740 詳細資訊
Title page for etd-0127111-064740
論文名稱
Title
有向圖上的凸集特性研究
A study of convexity in directed graphs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-19
繳交日期
Date of Submission
2011-01-27
關鍵字
Keywords
可定向凸集數、凸集譜、強凸集譜、凸集數、凸集譜比值、凸集譜差集、凸集
convexity spectrum ratio, difference of convexity spectra, strong convexity spectrum, convexity spectrum, convex set, orientable convexity number, convexity number
統計
Statistics
本論文已被瀏覽 5729 次,被下載 717
The thesis/dissertation has been browsed 5729 times, has been downloaded 717 times.
中文摘要
圖形的凸集特性在圖論中是一個廣泛討論的問題,而在2002年,G. Chartrand 等人研究了有向圖上的凸集數問題。在此篇論文中,我們延伸他們的概念並且研究在有向圖中的凸集特性相關問題。

對一連通有向圖D中,令S為頂點集V(D)的一子集。若對S內任意兩頂點x,y,每條最短x-y有向路徑及最短y-x有向路徑上的頂點皆落在S內,則稱S為D的一個凸子集。且D的最大凸子集且為真子集的集合大小即為D的凸集數,記為con(D)。對任意的整數n, m, k,除了k ≠ 4,我們架構了一個強連通有向圖D,使得D的點數為n,邊數為m,且凸集數為k。

對於一無向圖G,我們定義G的圖形凸集譜為S_{C}(G)={con(D)| D 為 G 的一個定向圖},且圖形的強凸集譜為
S_{SC}(G)={con(D)| D 為G 的一個強連通定向圖
}。則我們知道S_{SC}(G) ⊆ S_{C}(G)。我們證明了對於任意整數a, n,當n ≠ 4,1 ≤ a
≤ n-2,且a ≠ 2時,存在一 n 個點的二連通無向圖
G,滿足S_C(G)=S_{SC}(G)={a,n-1}。我們也知道不存在滿足
S_{SC}(G)={n-1} 的連通圖
G。我們分別刻劃了完全圖,輪圖,及完全二佈圖的圖形凸集譜及強凸集譜,
我們發現這三類圖的凸集譜及強凸集譜的特性完全不同。

對於一連通圖G,我們定義其圖形凸集譜差集為D_{CS}(G)=S_{C}(G)-
S_{SC}(G),其圖形凸集譜差集數dcs(G)
為圖形凸集譜差集的集合大小。我們知道0 ≤ dcs(G) ≤ ⌊
點數/2⌋。對於完全二佈圖,當每個分佈至少包含四個點以
上時,其圖形凸集譜差集數為⌊
點數/2⌋-2。對於點數大於4以上的輪圖,其圖形凸集譜差集數為
0。

對於一系列 n 個點的簡單圖 G_n 來說,我們定義凸集譜比值為
r_C(G_n)= liminflimits_{n to infty} frac{|S_{C}(G_n)|}{n-1}。
我們知道對任意的正偶數 t,存在一系列 n 個點的簡單圖
G_n,使得
r_C(G_n)=1/t。對於連通圖的一延展圖(subdivision),我們也給了一個公式來計算其凸集譜比值。
Abstract
Convexity in graphs has been widely discussed in graph theory and G.
Chartrand et al. introduced the convexity number of oriented graphs
in 2002. In this thesis, we follow the notions addressed by them and
develop an extension in some related topics of convexity in directed
graphs.

Let D be a connected oriented graph. A set S subseteq V(D)
is convex in D if, for every pair of vertices x, yin S,
the vertex set of every x-y geodesic (x-y shortest directed
path) and y-x geodesic in D is contained in S. The convexity number con(D) of a nontrivial oriented graph D is
the maximum cardinality of a proper convex set of D. We show that
for every possible triple n, m, k of integers except for k=4,
there exists a strongly connected digraph D of order n, size
m, and con(D)=k.

Let G be a graph. We define
the convexity spectrum S_{C}(G)={con(D): D is an
orientation of G} and the strong convexity spectrum
S_{SC}(G)={con(D): D is a strongly connected orientation of
G}. Then S_{SC}(G) ⊆ S_{C}(G). We show that for any
n ≠ 4, 1 ≤ a ≤ n-2 and a n ≠ 2, there exists a
2-connected graph G with n vertices such that
S_C(G)=S_{SC}(G)={a,n-1}, and there is no connected graph G of
order n ≥ 3 with S_{SC}(G)={n-1}. We also characterizes the
convexity spectrum and the strong convexity spectrum of complete
graphs, complete bipartite graphs, and wheel graphs. Those convexity
spectra are of different kinds.

Let the difference of convexity spectra D_{CS}(G)=S_{C}(G)-
S_{SC}(G) and the difference number of convexity spectra
dcs(G) be the cardinality of D_{CS}(G) for a graph G. We show
that 0 ≤ dcs(G) ≤ ⌊|V(G)|/2⌋,
dcs(K_{r,s})=⌊(r+s)/2⌋-2 for 4 ≤ r ≤ s,
and dcs(W_{1,n-1})= 0 for n ≥ 5.

The convexity spectrum ratio of a sequence of simple graphs
G_n of order n is r_C(G_n)= liminflimits_{n to infty}
frac{|S_{C}(G_n)|}{n-1}. We show that for every even integer t,
there exists a sequence of graphs G_n such that r_C(G_n)=1/t and
a formula for r_C(G) in subdivisions of G.
目次 Table of Contents
誌謝 i
Acknowledgements ii
摘要 iii
Abstract iv
Contents v
List of Figures vi
1 Introduction 1
1.1 Motivation and skeleton . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Convexity number of graphs . . . . . . . . . . . . . . . . . . . 4
1.4 Convexity number of product graphs . . . . . . . . . . . . . . 5
1.5 Ployconvex graphs . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 H-convex graphs . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Bounds of the convexity number . . . . . . . . . . . . . . . . . 12
1.8 Forcing convexity number of graphs . . . . . . . . . . . . . . . 15
1.9 Computational complexity . . . . . . . . . . . . . . . . . . . . 15
1.10 Convexity number of digraphs . . . . . . . . . . . . . . . . . . 15
1.11 Digraphs with prescribed order and convexity number . . . . . 16
1.12 Orientable convexity numbers . . . . . . . . . . . . . . . . . . 17
2 Convexity spectra of graphs 20
2.1 Constructing graphs with specific convexity spectra . . . . . . 20
2.2 Convexity spectra of complete graphs . . . . . . . . . . . . . . 24
2.3 Constructing strongly connected oriented graphs with fixed
order, size, and convexity number . . . . . . . . . . . . . . . . 28
3 The differences of convexity spectra of graphs 34
3.1 General properties of convexity numbers and bounds for dcs(G) 34
3.2 Complete bipartite graphs K_{r,s} with dcs(K_{r,s}) = ⌊(r+s)/2⌋-2 . . 35
3.3 Wheel graphs W_{1,n−1} with dcs(W_{1,n−1}) = 0 . . . . . . . . . . . 42
3.4 Convexity spectrum ratio . . . . . . . . . . . . . . . . . . . . . 49
Bibliography 53
Index 56
參考文獻 References
[1] Fred Buckley and Frank Harary. Distance in graphs. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1990.
[2] Sergio R. Canoy, Jr., Gilbert B. Cagaanan, and Severino V. Gervacio. Convexity, geodetic, and hull numbers of the join of graphs. Util. Math., 71:143–159, 2006.
[3] Sergio R. Canoy, Jr. and Rolito G. Eballe. Convex hulls of subsets in the join, composition and Cartesian product of graphs. Util. Math., 70:109–117, 2006.
[4] Sergio R. Canoy, Jr. and I. J. L. Garces. Convex sets under some graph operations. Graphs Combin., 18(4):787–793, 2002. Graph theory and discrete geometry (Manila, 2001).
[5] Sergio R. Canoy, Jr. and Ladznar Laja. Convex sets in the corona and conjunction of graphs. In Proceedings of the Thirty-Seventh Southeastern International Conference on Combinatorics, Graph Theory and Computing, volume 180, pages 207–217, 2006.
[6] Gary Chartrand, John Frederick Fink, and Ping Zhang. Convexity in oriented graphs. Discrete Appl. Math., 116(1-2):115–126, 2002.
[7] Gary Chartrand and Linda Lesniak. Graphs & digraphs. Chapman & Hall, London, third edition, 1996.
[8] Gary Chartrand, Curtiss E. Wall, and Ping Zhang. The convexity number of a graph. Graphs Combin., 18(2):209–217, 2002.
[9] Gary Chartrand and Ping Zhang. Convex sets in graphs. In Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999), volume 136, pages 19–32, 1999.
[10] Gary Chartrand and Ping Zhang. The forcing convexity number of a graph. Czechoslovak Math. J., 51(126)(4):847–858, 2001.
[11] Gary Chartrand and Ping Zhang. H-convex graphs. Math. Bohem., 126(1):209–220, 2001.
[12] Mitre C. Dourado, F’abio Protti, Dieter Rautenbach, and Jayme L. Szwarcfiter. On the convexity number of graphs. preprint, 2009, available at http://www.tu-ilmenau.de/fakmn/fileadmin/template/ifm/Preprints/Rautenbach/09 14 Rautenbach.pdf.
[13] P. Erd‥os and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463–470, 1935.
[14] Alastair Farrugia. Orientable convexity, geodetic and hull numbers in graphs. Discrete Appl. Math., 148(3):256–262, 2005.
[15] Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series of Books in the Mathematical
Sciences.
[16] John Gimbel. Some remarks on the convexity number of a graph. Graphs Combin., 19(3):357–361, 2003.
[17] Frank Harary and Juhani Nieminen. Convexity in graphs. J. Differential Geom., 16(2):185–190, 1981.
[18] Wilfried Imrich and Sandi Klavˇzar. Product graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. Structure and recognition, With a foreword by Peter
Winkler.
[19] Daniel C. Isaksen and Beth Robinson. Triangle-free polyconvex graphs. Ars Combin., 64:259–263, 2002.
[20] Byung Kee Kim. A lower bound for the convexity number of some graphs. J. Appl. Math. Comput., 14(1-2):185–191, 2004.
[21] David. W. Matula. The employee party problem. Not. A.M.S., 19:A– 382, 1972.
[22] Karl Menger. ‥Uber regul‥are Baumkurven. Math. Ann., 96(1):572–582, 1927.
[23] Ignacio M. Pelayo. On convexity in graphs. online, March 13, 2004, available at http://www-ma3.upc.es/users/pelayo/research/Definitions.pdf.
[24] Robert J. Serfling. Approximation theorems of mathematical statistics. John Wiley & Sons Inc., New York, 1980. Wiley Series in Probability and Mathematical Statistics.
[25] Li-Da Tong, Pei-Lan Yen, and Alastair Farrugia. The convexity spectra of graphs. Discrete Appl. Math., 156(10):1838–1845, 2008.
[26] Douglas B.West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, second edition, 2001.
[27] Pei-Lan Yen. The convexity spectra and the strong convexity spectra of graphs. Master’s thesis, National Sun Yat-sen University, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code