Responsive image
博碩士論文 etd-0128110-161738 詳細資訊
Title page for etd-0128110-161738
論文名稱
Title
半導體晶背(BG)廢水回收再利用之技術可行性評估
Recycling of Back Grinding Wastewater from Semi-Conductor Industry: a Feasibility Study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-12-11
繳交日期
Date of Submission
2010-01-28
關鍵字
Keywords
超過濾、回收再利用、砂濾、混凝、晶背研磨廢水
water reuse, sand filtration, ultra-filtration (UF), back grinding (BG), coagulation
統計
Statistics
本論文已被瀏覽 5763 次,被下載 0
The thesis/dissertation has been browsed 5763 times, has been downloaded 0 times.
中文摘要
晶背研磨(back grinding, BG)廢水主要是由超純水與細顆粒所組成,因此若將其處理並回收再利用,應具有相當程度的經濟效益。本研究採物化處理之方式,進行適合BG廢水回收再利用之前處理技術探討,評估廢水再利用之可行性。在化學處理部分,選定以混凝之瓶杯試驗針對固體物之去除,藉由批次試驗得知,以多元氯化鋁(poly aluminum chloride, PAC)及氯化鐵(FeCl3)為混凝劑,或PAC配合助凝劑之添加,皆能有效降低濁度及懸浮固體物。由研究結果可知,在考量成本效益,本研究採低加藥量及不調整廢液之酸鹼值,使水樣為中性(pH 7)之下,以PAC 2.2 mg/L及陽性助凝劑(polymer) 0.5 mg/L為加藥量,BG廢液之濁度去除率達98%。另砂濾之測試,藉此比較BG廢水採直接砂濾,或混凝砂濾後之實驗結果可知,直接利用砂濾過濾無法有效去除濁度與SS,而經過混凝後再以砂濾系統進行過濾,濁度去除率可提升至99%,由此可知BG廢液具「高濁度細粒徑」之特性。關於正壓式螺旋膜與負壓式中空纖維膜組之超過濾(ultrafiltration-UF)薄膜系統之結果顯示,使用二種UF膜後,濁度去除率皆可達99.9%以上。在UF膜的通量比較上,實驗組優於對照組,正壓膜於40分鐘內實驗組及對照組通量分別為87.7 L/m2-min及81.5 L/m2-min,負壓膜則為16.0 L/m2-min及15.0 L/m2-min,故有效的前處理方式可有效減緩薄膜處理之負荷。BG廢水水質再利用評估結果可知,經由UF膜處理後已能符合於冷卻水使用,倘若需符合製程純水之標準,則需再以逆滲透程序進行處理。
Abstract
Back grinding (BG) wastewater consists mainly of high-purity water and high concentrations of inorganic particles. If the BG wastewater could be treated and recycled efficiently, it should be sort of economic benefit. In this study, appropriate pre-treatment technologies are evaluated to obtain the feasible recycle system. From the chemical coagulation experiment, the addition of PAC or FeCl3, both of them can obviously reduce the turbidity and suspended solid concentrations (SS). In addition, polymer can advance the sedimentation process. Considering the cost of practical operation, the turbidity of BG waste water could be removed up to 97% by using polyaluminum chloride as the coagulant (2.2 mg/L) and polymer as the coagulant aid (0.5 mg/L) in the pH=7 condition . In sand filtration experiment, the turbidity and SS can’t be effectively removed if the coagulation isn’t used on BG wastewater. It demonstrates that BG wastewater contains high concentration of nano-scale particles. The rate of removable turbidity can reach 99% under applying coagulation, sedimentation, and sand filtration. In ultra-filtration experiment, both of spiral-wound (SW) and hollow-fiber (HF) can remove more than 99.9% of turbidity. For the flux of behavior, the performance of pre-treatment water is better than non-treatment water. Thus, it reveals that appropriate pre-treatment can lower the load of membrane filtration system. For the obtained recycle water, the grade of standard can achieve the grade of the cooling tower required.
However, due to its high particle-containing characteristics, the commonly used reverse-osmoses (RO) membrane filtration technology can not be directly applied for purification process because the fouling/clogging problem would cause the frequent membrane replacement. In this lab-scale feasibility study, pre-treatment technologies (e.g., sand filtration, chemical coagulation, ultra-filtration) were applied to reduce the turbidity and particle concentrations of the BG wastewater (collected from a semiconductor manufacturing plant) before RO filtration unit. The BG wastewater contained turbidity and suspended solid concentrations of 3,200 NTU and 96 mg/L, respectively. The measured pH and conductivity of the BG wastewater were in the ranges of 6.8 to 7.2 and 14 to 18 μS/cm, respectively. Moreover, the particle sizes of the solids varied from 300 to 700 nm. Thus, applying conventional sand filtration along could not effectively remove the nano-scale particles. Results from the chemical coagulation experiment reveal that the turbidity and particles of the BG wastewater could be significantly removed (up to 95% of turbidity and particle removal) by the coagulation/sedimentation process using polyaluminum chloride as the coagulant (2.2 mg/L) and polymer as the coagulant aid (0.5 mg/L). Results also indicate that up to 99% of turbidity and particle removal could be obtained with the application of ultra-filtration unit after the coagulation/sedimentation process. Results from this study indicate that applying appropriate pre-treatment technologies (coagulation and ultra-filtration) would lower the fouling rate and extend the life of RO membrane used for BG wastewater purification.
目次 Table of Contents
目錄
謝誌 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
表目錄 X
第一章 前言 1
1-1研究緣起 1
1-2 研究目的與內容 2
第二章 文獻回顧 3
2-1半導體廢水之種類 3
2-2 晶背研磨製程 4
2-3 研磨廢水特性 6
2-4 國內外研磨廢水處理技術概況 7
2-5 廢水回收再利用之相關案例 11
2-6 研磨廢水前處理之方式 14
2-6-1 混凝程序 14
2-6-2 混凝劑的種類 16
2-6-3 砂濾過濾 20
2-6-4 薄膜分離技術之發展 21
2-7 薄膜種類與材質 22
2-7-1薄膜種類 22
2-7-2 薄膜材質 26
2-8 薄膜過濾機制 27
2-8-1 薄膜分離程序 27
2-8-2 正負壓之驅動方式 28
2-8-3 薄膜組件之形式 28
第三章 研究方法與材料設備 30
3-1 研究架構 30
3-2 研究方法與儀器設備 32
3-2-1 廢水來源 32
3-2-2 瓶杯試驗 32
3-2-3 砂濾試驗 34
3-2-4 薄膜系統 36
3-2-5 儀器設備 40
3-3 分析參數 41
3-3-1 水質參數分析 41
3-3-2 界達電位與粒徑分析 41
3-3-3 薄膜過濾通量 41
3-3-4 水中總有機碳分析 42
3-3-5 電子顯微鏡觀測 43
第四章 結果與討論 44
4-1晶背研磨廢水特性 44
4-1-1晶背研磨廢水粒徑特性 46
4-1-2 電子顯微鏡之觀測 47
4-1-3 界達電位分析 49
4-2晶背研磨廢水化學混凝處理 51
4-2-1 多元氯化鋁及氯化鐵混凝實驗 51
4-2-2 陽離子高分子聚合物膠凝實驗 53
4-2-3 陰離子高分子聚合物膠凝實驗 56
4-3 晶背研磨廢水化學混凝後砂濾處理 58
4-4晶背研磨廢水UF處理系統 60
4-4-1 廢水實驗組及對照組之UF處理系統水質比較 61
4-4-2 廢水實驗組及對照組之UF處理系統通量比較 64
4-5晶背研磨廢水回收再利用之評估 67
4-6成本評估 69
第五章 結論與建議 72
5-1 處理程序參數及測試研究 72
5-2 建議 73
參考文獻 74
參考文獻 References
工業污染防治技術服務團,(2002),廢水處理常用化學藥劑手冊,經濟部工業局。
半導體科技,(2005),網址http://ssttpro.acesuppliers.com
江萬豪、吳宏基、黃志彬,(2001),以超過濾薄膜結合混凝前處理回收半導體工業之研磨廢水,第26屆廢水處理技術研討會論文集。
林志朋、詹耀富、涂佳薇、毛利成、溫紹炳、雷大同,(2000),以柱槽溶氣浮選法回收化學機械研磨廢液之二氧化矽奈米級微粒研究,第二十五屆廢水處理研討會論文集,第637-641 頁。
翁韻雅、賴文亮、葉宣顯 (2004),以高分子凝集劑處理高濁度原水之研究,自來水,第23卷,第4期第45-61頁。
翁韻雅,(2003),以高分子凝集劑處理高濁度原水之研究,國立成功大學環境工程研究所論文。
梁美柔譯,(2000),CMP 廢水處理技術,電子月刊,第6卷,第8期,第140-143 頁。
郭曉欣,(2007),超音波對晶背研磨廢水電混凝處理影響之研究,國立雲林科技大學環境與安全衛生工程研究所論文。
陳富政,(2003),利用同步電混凝/電過濾技術處理化學機械研磨廢水,國立中山大學環境工程研究所論文。
曾國祐,(2002),以超過濾處理半導體廠研磨廢水之研究,國立台灣科技大學化學工程研究所論文。
曾國祐、洪銘聰、劉志成,(2002),以超過濾處理半導體廠研磨廢水之研究,第七屆水再生研討會,第156-167 頁。
楊金鐘、楊叢印、蔡秀惠,(1999),半導體業晶圓廠化學機械研磨廢水性質初步探討,第六屆海峽兩岸環境保護研討會,第470-474 頁。
楊金鐘、楊叢印,(2002) ,利用電過濾/電透析同步處理及回收晶圓廠化學機械研磨廢水,環保月刊,第2卷,第8期,第66-75 頁。
經濟部工業局,(2005) http://www.wra.gov.tw。
經濟部工業局,(2006) 台中市福田水資源回收中心放流水再生利用研究,經濟部水利署水利規劃試驗所。
經濟部工業局,(2007)http://www.moeaidb.gov.tw。
經濟部水利署,(2009),楠梓加工出口區廢水回收再利用研磨廢水前處理程序先期研究,國立中山大學環境工程研究所。
黃信仁、劉志成、曾國祐,(2001)以超過濾處理半導體工廠化學機械研磨(CMP)廢水之研究,第26屆廢水處理技術研討會論文集,第30-41頁。
鄧宗禹、黃志彬、邱顯盛,(2002)化學機械研磨廢液之處理與回收,微毫米通訊,第9卷,第1期,第32-41頁。
劉訓瑜、甘其銓、邱顯盛、黃志彬,(2000) 化學機械研磨廢水混擬沉澱效能之評估,第二十五屆廢水處理研討會論文集。
歐陽嶠暉 (2000),下水道工程學,第3版,長松文化興業股份有限公司。
蘇揚根,(2003) 奈米微氣泡浮除技術於半導體工業化學機械研磨廢水處理之應用,國立交通大學環境工程研究所論文。
賴冠麟,(2006) 微波作用對晶背研磨(BG)廢水處理效能之研究,國立雲林科技大學環境與安全衛生工程研究所論文。
羅金生、駱尚廉,(2001)半導體廠化學機械研磨廢水回收,第6屆水再生及再利用研討會論文集。
鐘文仁,(2005) IC封裝製程與CEA應用,全華科技圖書股份有限公司。
蕭宏、張鼎張、羅正忠,(2007) 半導體製程技術導論,學銘圖書有限公司。
Amy, G.L., Collins M.R., Kuo, C.J. and King, P.H. (1987). Comparing GPC and UF on molecular weight characterization of aquatic organic matter. Jour. AWWA, Vol. 79, 43-49.
Alexandrova, L.R., Pugh, J.F., Tiberg and Grigorov, L. (1999). Confirmation of the heterocoagulation. Theory of flotation.Langmuir, Vol.15, No.22, 7464-7471.
Bae, D.S., Cheong, D.S., Han, K.S., and Choi, S.H. (1998). Fabrication and microstructure of TiO2-Al2O3 composite membranes with ultrafine pores. Ceramics International, Vol. 24, 25-30.
Belongia, B.M., Haworth, P.D., Baygents, J.C., and Raghavan, S. (1999). Treatment of alumina and alica chemical mechanical polishing waste by electrodecantation and electrocoagulation. Electrochemical Society , 4124-4130,.
Bourgeous, K.N., Darby, J.L., and Tchobanoglous, G. (2001). Ultrafiltration of wsatewater: effect of particles, mode of operation, and backwash effectiveness. Water Research, Vol.35, No.1, 77-90.
Benefield, L.D., Joseph, J.F., and Weand, B.L. (1982). Process chemistry for water and wastewater treatment. Prentice-Hall inc., N. J.
Cho, Y.S., Jung, S.Y., Kim, J.H., Kim, W.S., Cho, Y.H., and Kim, Y.I. (2001). A method for the removal of the colloidal silica from CMP wastewater. 9th Annual ISESH Conference, San Diego, CA, June 9-13.
Chou, W.L., and Wang, C.Ta. (2009). Study of COD and turbidity removal from real oxide-CMP wastewater by iron electrocoagulation and the evaluation of specific energy consumption. Hazardous Materials, Vol. 168, 1200-1207.
Deng, Y. (1997). Formation of Iron (Ⅲ) hydroxides from homogeneous solutions”, Water Research, Vol. 31, No.6, 1347-1354.
Golden, J.H., Small, R., Pagan, L., Shang, C., and Ragavan, S. (2000). Evaluating and treating CMP wastewater. Semiconductor International, october, 85-98.
Gregory, J., and Duan, J. (2001). Hydrolyzing metal salts as coagulants. Pure and Applied Chemical, Vol.73, NO. 12, 2017-2026.
Seungkwan, H., Praveen, K., Colin, H., Dohee, K. and Jaeweon, C. (2005). Variations in backwash efficiency during colloidal filtration of hollow-fiber microfiltration membranes. Desalination, Vol.173, 257-268.
Hong, S., Oh, S. and Huh, W. (2001). Water recycling from CMP slurry by coagulation, 9th annual ISESH conference, San Diego, CA. June 9-13.
Hong, S., Krishna, P. Hobbs. C, Kim, D. and Cho, J. (2005). Variations in backwash efficiency during colloidal filtration of hollow-fiber microfiltration membranes. Desalination. Vol.173, 257-268.
Krulik, G.A., Kramasz, K. Golden, J.H. Copper CMP wastewater Chemistry and Treatment. http://www.microbar.com/ news/articles/articles/ECcopperCMP1.htm.
Kobya, M., Can, O.T. and Bayramoglu, M. (2003). Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes. Journal of Hazardous Materials. Vol. B100, 163-178.
Lee, S.Y., and Gregory J. (1991). The effect of charge density and molecular mass of cationic polymers of flocculation kinetics in aqueous solution. Water Supply, Vol 19 , 11-17.
Leiknes. (2009). The effect of coupling coagulation and flocculation with membrane filtration in water treatment: A review. Environmental Sciences, Vol. 21, 8-12.
Mulder, M. (1997). Basic principles of membrane technology. Second Edition, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Mark, D.G., and Luna. (2009). Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 347, 64-68.
Tchobanoglous, G., Metcalf., and Eddy. (2004). Wastewater Engineering-Treatment and Reuse. McGraw-Hill Book, 475-499.
Itrs, (2001). International technology roadmap for semiconductor-environmental safety and health. USA: semiconductor International Association.
Jacangelo, J.G., Aieta, E.M., Carns, K.E., Cummings, E.W., and Mallevialle, J.(1989). Assessing hollow-fiber ultrafiltration for particulate Removal. J. AWWA, Vol. 89.
Published. (1999). The history of the industry: A brief history of membrane science. Filtration & Separation, Vol. 36, 28.
Pei, Z.J., (2002). What is back grinding. Kansas State University, http://www.imse.ksu.edu/~zpei/ultrasonic_machining/wafergrinding/tutorial/backgrind.htm.
Rossini, M., Garcia G.J. and Galluzzo, M. (1998) . Optimization of the coagulation-flocculation treatment: influence of rapid mixing parameters. Water Research, Vol. 33 , 1817-1826.
Judd, S.J., and Hillis, P. (2001). Optimisation of combined coagulation and microfiltration for water treatment. Water Research, Vol. 35, No. 12, 2895-2904.
Wu, M., Sun, D. J. and Tay, H. (2004). Process-to-process recycling of high-purity water from semiconductor wafer backgrinding wastes. Resources, Conservation and Recycling, Vol. 41, 119-132.
Yang, Gordon., and Tsai, C.M., (2008). Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process. Membrane Science, Vol. 321, 232-239.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.168.172
論文開放下載的時間是 校外不公開

Your IP address is 3.143.168.172
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code