Responsive image
博碩士論文 etd-0129108-110429 詳細資訊
Title page for etd-0129108-110429
論文名稱
Title
使用聚焦離子束技術提高氮化鎵發光二極體光輸出效率之研究
A Study of Gallium Nitride Light Emitting Diode Optical Output Power Enhancement Based on Focused Ion Beam Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
222
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-21
繳交日期
Date of Submission
2008-01-29
關鍵字
Keywords
聚焦離子束
focused ion beam
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
應用聚焦離子束( FIB )技術在細微加工已愈來愈受歡迎。他在細微加工方面的應用具有超越當代光蝕刻或其他細微加工技術之優勢,例如製程不需要光罩,可在各種材料進行微雕和進行任意的幾何形狀微雕。當對LED/空氣的介面進行修改,例如雕刻微透鏡陣列,在發光二極體大角度的入射光將可以被取出而不會發生全反射,因為入射角在介面等效上小於全反射的臨界角。 我們利用聚焦離子束分別在氮化鎵的正面( P型GaN)和背面(藍寶石基板)製作微透鏡的結構。微透鏡的幾何形狀,在微雕過程可例用電腦控制離子束直寫及停留時間的方式進行調變。我們已經使用這項技術,甚至創造一個其他傳統的蝕刻法無法創造的精密菲涅爾微透鏡陣列。此外,對於乾蝕刻高度敏感的電阻型P型GaN層。我們使用氣體輔助聚焦離子束蝕刻法,藉著化學反應的參與不僅能提高蝕刻速率,減低使用的離子束密度,透過調變離子束電流,離子束在掃描點停留的時間和更新時間得以提供近乎零傷害的蝕刻 。我們的研究重點放在直寫雕刻和不需要光罩微顯影的蝕刻技術,得以顯現聚焦離子束技術的獨特,並提供一個重要的選擇。
Abstract
The application of focused ion beam (FIB) technology in microfabrication has become increasingly popular. Its use in microfabrication has advantages over contemporary photolithography or other micromachining technologies, such as the ability to process without masks and being accommodating for a variety of materials and geometries. With the surface modification of the LED/air interface, like microlens array, the light emitting at large angle can be extracted because the incident angle at the interface will be less than the critical angle without total internal reflection. A microlens feature has been fabricated on GaN LED top surface (p-GaN layer) and back side (sapphire substrate) by scanning a focused Ga ion beam. The lens shape can be modulated by using computer-controlled beam direct writing and dwell time during milling process. We have used this technique even to create a sophisticated lens surface of Fresnel microlens array which can't be created with the conventional etching methods. In addition, the resistivity of p-GaN layer is highly sensitive to the
process-induced damages during surface texturing, it is difficult to apply dry etching to p-GaN layer. Our method of using gas-assisted focused ion beam
etching (GAFIBE) can enhance the etching rate by the assistance of chemical reaction with minimized ion dose density to provide nearly damage-free etching by varying the beam current, pixel dwell time and refresh time. Our study emphasis on direct milling and maskless techniques which can distinguish the FIB technology from the contemporary photolithography process and provide a vital alternative to it.
目次 Table of Contents
Acknowledgment………………......………....................I
Abstract…………………………………………..…..…....II
Table of Contents……………………..………..…..........III
Figure Captions………………………………..………...XIII

Chapter 1
Introduction of light emitting diodes…………………….1
1.1Emission of light by semiconductor diode…......….2
1.2LED Application-Outdoor jumbo TV screen………..6
1.3LED Application-LED traffic lights…….......…………7
1.4LED Application-LED in architecture……..……….10
1.5LED in General Lighting……………………………..13
1.6Advantages of LED in General Lighting…………..16
1.7Disadvantages of LED Lighting…………………...18

Chapter 2
The Modeling of Light Extraction Efficiency……..…….20
2.1 Light-Emitting Diode extraction efficiency………20
2.1.1 Theoretical Modeling………….………….……...22
2.2 Theoretical aspects of External quantum efficiency improvement by surface texture ……………………..26
2.2.1 Assessment of light extraction for surface-textured reflectors in light-emitting diodes …………...31
2.2.2 Geometrical optics derivation….............….…….34
2.2.3 Statistical Mechanical Derivation………………..38
2.3 Chip shaping as a means of improving the extraction efficiency…........……………………..…….…40

Chapter 3
LED Packaging……...………………………..………....43

3.1 The Flip-Chip LEDs………………....………..……43
3.1.1 Device construction…………………....….…..…44
3.2 LED Packaging for Fiber Optics………….………47
3.2.1 Package design…………………………....…….49

Chapter 4
Experimental Techniques- Focused Ion Beam Technology……........................................................……51
4.1 Low energy FIB system……………………..……..54
4.1.1 The liquid metal ion source…………...………..56
4.1.2 The ion column………………..........…….…..…..58
4.2. Ion optics…………………………………...…...….59
4.2.1 Electrostatic lenses……………………...………59
4.3. Impact of Coulomb Interactions…….……..……..60
4.3.1 Space charge……………………………………..62
4.3.2. The Monte Carol simulation…………………….64
4.4. Global space charge compensation…….………67
4.5 Development of focused ion beam direct-micromachining…...........................................................68
4.6 Focused Ion beam sputtering…………………….68
4.6.1 Raster and serpentine scans………............…..71
4.6.2 Uniform ion flux for smooth milling……………..74
4.6.3 Uniform ion flux in scanning direction…………..75
4.6.4 Uniform ion flux along and across scanning lines….................................................................................77
4.7 The use of gas sources…………………...………80
4.7.1 Focused ion beam induced surface chemistry……....................................................................87

4.7.2 Gas-assisted etching of sapphire substrate using focused ion beam ………………….......………..97
4.7.2.1 Etching rate/enhancement obtained by different ion beam parameters ….……………………………….98
(A) Effect of beam current density on etching rate/enhancement…........................................................99
(B) Effect of beam overlap on etching rate/enhancement…..........................................……...100
(C) Effect of beam dwelling time on etching rate/enhancement…......................................................102
4.7.2.2 Factors affecting etching rate……….………..103
4.7.2.3 Microlesn array fabrication on sapphire substrate……...........................................................…...105
4.7.3 Development of Gas-Assisted Focused Ion Beam Etching of Indium-Tin Oxide Film……………107
4.7.3.1 Difficulties on ITO etching ………….....…….107
4.7.3.2 XeF2 and I2 gas-assisted focused ion beam etching ……...............................................................….109
4.7.3.3 Etching rate/enhancement obtained by different ion beam parameters………….…….……………… 110
(A) Effect of ion current density on etching rate/enhancement….....................................................110
(B) Effect beam dwelling time on etching rate/enhancement….................................................….114
(C) Effect of beam overlap on etching rate/enhancement……..............................................…116
(D) Surface morphology check……………..……….119
4.7.3.4 Dependence of other properties on ITO etching between XeF2 and I2 gasses………………………122

Chapter 5
Microlens fabrication on sapphire substrate of GaN Glue Light LED……………………………………….…123
5.1 Dimension of planoconvex microlens profile………………….............................................…...123
5.2 Dimension of Fresnel microlens profile…………………....................................…...…….124
5.3 Difficult in the sapphire etching…….….………...126
5.3.1 Wet chemical etching of sapphire.……….……127
5.3.2 High rate sapphire etching by BCl3-based inductively coupled plasma…..……………………….129
5.3.3 High rate etching of sapphire wafer using Cl2/BCl3/Ar inductively coupled plasmas………….133
5.3.4 Sapphire etching by a visible range quasi cw laser…….….................................................................…135
5.4 Electrical effects of plasma damage in p-GaN…………..................................................…….……137
5.5 Microlens array fabricated by mold transfer……142
5.6 Microlens array fabricated by PR-reflow and dry-etch……...............................................................………144
5.7 Fresnel microlens arrays fabricated by electron-beam lithography….....................................…………..148
5.8 Fresnel microlens arrays fabricated by gray-level mask etching process...………………………….….150
5.9 Microlens Array on Sapphire Substrate Prepared by Focused Ion Beam to Enhance Electroluminescence of GaN/Sapphire Blue Light Emitting Diode…………..........…………………….….156
5.9.1 Description of experimental setup…......……159
5.9.2 Description of microlens formation by ion beam direct writing...................................................................160
5.9.3 Factors affecting microlens array surface morphology…….........................................................….161
5.9.4 Electrical and optical evaluation………...……163
5.10 Optical output power enhancement of gallium nitride light emitting diodes with microlens array on p-GaN layer and wave-patterned sidewalls by gas-assisted focused ion beam etching….…....……….166
5.10.1 Experimental Set up ………………………….167
(A) Calculation of microlens and wavy pattern size…….………...................................................................................168
5.10.2 Electrical evaluation after gas-assisted focused ion beam etching……………………………………..171
5.10.3 Optical evaluation after gas-assisted focused ion beam etching…………………………………….…173
5.11 Single-step Fabrication of Fresnel Microlens Array on Sapphire Substrate of Flip-Chip Gallium Nitride Light Emitting Diode by Focused Ion Beam……………………………………………...…178
5.11.1 Tested vehicle and ion beam parameter optimization …...….....................................................…179
5.11.2 Verification of Fresnel microlens surface profile ………..........................................................................…...182
(A) Theoretical estimation of the Fresnel microlens geometry…......................................................................182
(B) Result of the Fresnel microlens geometry by surface profiler………………..…………………...…..183
5.11.3 Electrical evaluation ………………………..…185
5.11.4 Optical evaluation about the directional light output……….............................................................…..187
5.11.5 Fresnel microlens array on LED for the coupling efficiency enhancement……….....………...189

Conclusion……………..…………..…………………..192
Reference………………………....………………..…..192
Publications….......................................………………..201
Autobiography…………………..….……………………203
參考文獻 References
(1) S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada & T. Mukai, Jpn. J. Appl. Phys., 34 L797 (1995).
(2) http://electronics.howstuffworks.com/jumbo-tv2.htm.
(3) http://www.howstuffworks.com/question178.htm.
(4) http://www.poynter.org/dg.lts/id.2/aid.74906/column.htm.
(5) http://lightingdesignlab.com/articles/LED_fund/led_advant.htm.
(6) Misha Boroditsky, Eli Yablonovitch, SPIE 3002, pp. 119.
(7) I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, Appl. Phys. Lett. 63, 2174 (1993).
(8) T. Shiga, H. Fujikawa, and Y. Taga, J. Appl. Phys. 93, 19 (2003).
(9)J. Feng, T. Okamoto, and S. Kawata, Appl. Phys. Lett. 87, 2411109 (2005).
(10) T. Tsutsui, M. Yahiro, H. Yokogawa, and K. Kawano, Adv. Mater. (Weinheim, Ger.) 13, 1149 (2001).
(11) J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory, and W. L. Barnes, Appl. Phys. Lett. 77, 3340 (2000).
(12) C. Hubert, C. Fiorini-Debuisschert, I. Hassiaoui, L. Rocha, P. Raimond, and J. M. Nunzi, Appl. Phys. Lett. 87, 191105 (2005).
(13) M. H. Lu and J. C. Sturm, J. Appl. Phys. 91, 595 (2002).
(14) M. Boroditsky, E. Yablonovitch, SPIE 3002, 119 (1995).
(15) Pancove, Optical processes in semiconductors, (Dover Publications, New York, 1975).
(16) Y. Xi and X. Li, J. K. Kim, F. Mont, and Th. Gessmann, J. Vac. Sci. Technol. A 24, 1627 (2006).
(17) I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, Appl. Phys. Lett. 63, 2174 (1996).
(18) M. Krames, M. Ochiai-Holcomb, G. Höfler, C. Carter-Coman, E. Chen, I. Tan, P. Grillot, N. Gardner, H. Chui, J. Huang, S. Stockman, F. Kish, and M. Craford , Appl. Phys. Lett. 75, 2365 (1999).
(19) S. Schad, M. Scherer, M. Seyboth, V. Schwegler, Physica Status Solidi (a) 188, 127 (2001).
(20) C. Burrus and B. Miller, Opt. Commun., 4, 307 (1971).
(21) M. Abe, IEEE Trans. Electron. Devices, ED-24, 990 (1977).
(22) H. Kressel and M. Ettenberg, Proc. IEEE, 63, 1360 (1975).
(23) F. King, A. Springthome, and O. Szentesi, Int. Electron. Devices Meeting Dig, 480-483 (1974).
(24) R. Abram, R. Allen, and R. Goodfellow, J. Appl. Phys., 46, 3468 (1975).
(25) S. Horiuchi, K. Ikeda, T. Tanaka, and W. Susaki, IEEE Trans. Electron. Devices, ED-24, 986 (1977).
(26) J. G. Ackenhusen, Appl. Opt., 18, 3694 (1979).
(27) L. Giannuzzi, Introduction to focused ion beams-Instrumentation, Theory, Techniques and Practice, (Springer Science + Business Media, 2005).
(28) G. Jansen, Coulomb interactions in particle beams, (Academic Press, New York, 1990).
(29) H. Rose, R. Spehr, Optik 57 339 (1980).
(30) H. Rose, R. Spehr, Advances in Electronics and Electron Physics, Supplement 13C, 475 (1983).
(31) A. Tseng, J. Micromech. Microeng. 14 15 (2004).
(32) L. R. Harriott, R. E. Scotti, K. D. Cummings, and A. F. Ambrose, Appl. Phys. Lett. 48, 1704 (1986).
(33) M. Vasile, R. Nassar, J. Xie, H. Guo, Micron. 30, 235 (1999).
(34) Y. Fu, N. Bryan, Optics Express 12, 3954 (2004).
(35) M. Komuro, N. Watanabe, and H. Hiroshima, Jpn. J. Appl. Phys. 29, 2288 (1990).
(36) M. Komuro and H. Hiroshima, J. Vac. Sci. Technol. B 9, 2656 (1991).
(37) J. Coburn and H. Winters, J. Appl. Phys. 50, 3189 (1978).
(38) U. Gerlack-Meyer, Surf. Sci. 103, 524 (1981).
(39) T. Mayer, R. Barker, J. Vac. Sci. Technol. 21, 757 (1982).
(40) M. Yamada, T. Mitani, Y. Narukawa, S. Shioji and I. Niki: Jpn. J. Appl. Phys. 41, L1431 (2002).
(41) D. Kim, C. Jeong, K. Kim, H. Lee, H. Kim, Y. Sung and G. Yeom: Thin Solid Films 435, 242 (2003).
(42) S. Dolgaev, A. Lyalin, A. Simakin, V. Voronov and G. Shafeev: Appl. Surf. Sci. 109-110, 201 (1997).
(43) Y. Fu, N. Bryan: Opt. Eng. 40, 1433 (2001).
(44) A. Steckl and I. Chyr: J. Vac. Sci. Technol. B 17, 362 (1999).
(45) T. Strk, G. Shedd, J. Vitarelli, D. Griffis and P. Russell: J. Vac. Sci. Technol. B 13, 2565 (1995).
(46) G. Ta'eed, D. Moss, B. Eggleton, D. Freeman, S. Madden, M. Samoc and B. Luther-Davies: Opt. Express 12, 5274 (2004).
(47) H. Katoh: Jpn. J. Appl. Phys. 37, L444 (1998).
(48) Y. Fu, N. Bryan and W. Zhou: Opt. Express 12, 227 (2004).
(49) R. Young, J. Cleaver and H. Ahmed: J. Vac. Sci. Technol. B 11, 234 (1993).
(50) L. Harriott: Jpn. J. Appl. Phys. 33, 7094 (1995).
(51) H. Choi, C. Liu and E. Gu: Appl. Phys. Lett. 84, 2253 (2004).
(52) M. Tsumura, M. Kitajima, K. Funahata, Y. Wakui,. R. Saito, Y. Mikami,. Y. Nagae, and T. Tsukada: SID Symp. Int. Digest of Tech. Pap. 1991, p.215.
(53) Y. Hayashi: Proc. 10th Int. Display Research Conf., 1990, p.60.
(54) E. Stupp, U. Mitra, A. Carlson, H. Sorkin, M. Venkatesan, B. Khan, P. Jansse, and M. Stroomer: Proc. 10th Int. Display Research Conf., 1990, p.52.
(55) J. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking: Science 273, 884 (1996).
(56) Y. Yang: MRS Bull. 14, 163 (1997).
(57) T. H. Tsai and Y. F. Wu: J. Electrochem. Soc. 153, C86 (2006).
(58) K. Odagawa, N. Yanagawa, and M. Sadamoto: Trans. IEEJ Fundam. Mater. 123-A, 185 (2003).
(59) Y. Hahn, R. Choi, and J. Hong: J. Appl. Phys. 92, 1189 (2002).
(60) R. Korntner, H. Loeschner, and E. Platzgummer: presented at EFUG 2004, 8th Euro FIB User Group Meeting, 2004.
(61) K. Edinger and T. Kraus: J. Vac. Sci. Technol. B 18, 3190 (2000).
(62) R. Young, J. Cleaver, and H. Ahmed: J. Vac. Sci. Technol. B 11, 234 (1993).
(63) L. Harriott: Jpn. J. Appl. Phys. 33, 7094 (1995).
(64) L. R. Harriott: J. Vac. Sci. Technol. B 11, 2012 (1993).
(65) R. Knizikevičius: Appl. Surf. Sci. 228, 227 (2004).
(66) A. Stanishevsky and J. Melngailis: Mater. Res. Soc. Symp. Proc. 983, 0983 (2007).
(67)M. Komuro, N. Watanabe, and H. Hiroshima: Jpn. J. Appl. Phys. 29, 2288 (1990).
(68) Y. Fu, N. Bryan and O. N. Shing,Optics Express 7, 141 (2000).
(69) W. Harrison, Electronic Structure and the Properties of Solids, (Freeman, San Francisco, 1980).
(70) F. Dwikusuma, D. Saulys, and T. F. Kuech, J. Electrochem. Soc., 149, G603 (2002).
(71) D. Kim, C. Jeong , K. Kim, H. Lee, H. Kim, Y. Sung and G. Yeom, Thin Solid Films 435, 242 (2003).
(72) Y. Sung, H. Kim, Y. Lee, J. Lee, S. Chae, Y. Park and G. Yeom, Mat. Sci. Eng. B82, 50 (2001).
(73) J. Wang, L. Guo, H. Jia, Y. Wang, Z. Xing, W. Li, H. Chen, and J. Zhou, J. Electrochem. Soc., 153, C182 (2006).
(74) S. Dolgaev, A. Lyalin, A. Simakin and G. Shafeev, Appl. Surf. Sci. 96, 491 (1996).
(75) J. Zolper, D. Rieger, A. Baca, S. Pearton, J. Lee, and R. Stall, Appl. Phys. Lett. 69, 538 (1996).
(76) J. Hove, R. Hickman, J. Klaassen, P. Chow, and P. Ruden, Appl. Phys. Lett. 70, 282 (1997).
(77) S. Sze, Physics of Semiconductor Devices (Wiley Interscience, New York, 1981).
(78) X. Cao, S. Pearton, A. Zhang, G. Dang, F. Ren, R. Shul, L. Zhang, R. Hickman and J. Hove, Appl. Phys. Lett. 75, 25 (1999).
(79) M. Eisner, J. Schwider, Opt. Eng. 35, . 2979 (1996).
(80) L. Erdmann, D. Efferenn, Opt. Eng. 36, 1094 (1997).
(81) Y. Kim, J. Kim, J. Choe, Y. Roh, H. Jeon, J. Woo, IEEE Photon Technol. Lett. 12, 507 (2000).
(82) E. Strzelecka, G. Robinson, M. Peters, F. Peters and L. Coldren, Electron. Lett. 31, 724 (1995).
(83) M. Motamedi, Opt. Eng. 33, 3505 (1994).
(84) T. Kim, J. Khim, S. Chae, T. Kim, H. Kim, Y. Lee, G. Yeom, A Digest of the IEEE LEOS Summer Topical Meeting, 54 (1997).
(85) A. Kouchiyama, I. Ichimura, K. Kishima, T. Nakao, K. Yamamoto, G. Hashimoto, A. Iida, K. Osato, Jpn. J. Appl. Phys. 40, 792 (2001).
(86) P. Heremans, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, IEEE Photon Technol. Lett. 9, 1367 (1997).
(87) C. King, L. Lin, M. Wu, IEEE Photon Technol Lett 8, 1349 (1996).
(88) T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, H. Sato, Appl. Opt. 38, 2991 (1999).
(89) M. Wang, H. Su, Appl. Opt. 37, 7568 (1998).
(90) M. Wei and I. Su, Optics Express 12, 5777 (2004).
(91) O. Wada, J. Electrochem. Soc. 131, 2373 (1984).
(92) M. Stern and T. Jay, Opt. Eng. 33, 3547 (1994).
(93) N. Craft and A. Feldblum, Appl. Opt. 31, 1735 (1992).
(94) H. Kim, D. Lee, Y. Sung, Y. Lee, G. Yeom, J. Lee, S. Chae and T. Kim, Proceedings of the 1st UK NitrideConference, 10 (1999).
(95) Y. Sung, H. Kim, Y. Lee, J. Lee, S. Chae, Y. Park and G. Yeom, Mater. Sci. Eng. B 82, 50 (2001).
(96) Si. Park, H. Jeon, Y. Sung, and G. Yeom, Appl. Optics 40, 3698 (2001).
(97) T. Fujita, H. Nishihara and J. Koyama, Opt. Lett. 7, 578 (1982).
(98) M. Gaevski, M. Shatalov, S. Wu and A. Khan, Mater, Res. Soc. Symp. Proc. 916, (2006)
(99) M. Wang and H. Su, Optical Lett. 23, 876 (1998).
(100) I. Schnitzer, E. Yablonovitch, C. Caneau, T. Mitter and A. Schere, Appl. Phys. Lett., 63, 2174 (1993).
(101) M. Khizar, Z. Fan, K. Kim, J. Lin and H. Jiang, Appl. Phys. Lett., 86, 173504 (2005).
(102) T. Oder, J. Shakya, J. Lin and H. Jiang, Appl. Phys. Lett., 82, 3692 (2003).
(103) H. Choi, C. Liu, E. Gu, Appl. Phys. Lett., 84, 2253 (2004).
(104) Z. Liau, D. Mull, C. Dennis and R. Williamson, Appl. Phys. Lett., 64, 1484 (1994).
(105) M. Peake, S. Sun and S. Hersee, J. Electron. Matt., 29, 86 (2000).
(106) S. Park, H. Jeon, Y. Sung and G. Yeom, Appl. Opt., 40, 3698 (2001).
(107) Y. Fu, N. Bryan, Rev. Scient. Instr., 71, 2263 (2000).
(108) I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. mitter, and A. Schere, Appl. Phys. Lett. 63, 2174 (1993).
(109) D. Kim, H. Lee, N. Cho, Y. Sung, and G. Yeom, Jpn. J. Appl. Phys. 44, L18 (2005).
(110) C. Chang, S. Chang and Y. Su, IEEE Photo. Tech. Lett. 16, 750 (2004).
(111) X. Cao, S. Pearton, A. Zhang, G. Dang, F. Ren, R. Shul, L. Zhang, R. Hickman and J. Hove, Appl. Phys. Lett. 75, 2569 (1999).
(112) J. Brown, J. Ramer, K. Zheng, L. Lester, S. D. Hersee and J. Zolper, Mat. Res. Soc. Symp. Proc., 855 (1995).
(113) J. Zolper, D. Rieger, A. Baca, S. Pearton, J. Lee and R. Stall, Appl. Phys. Lett. 69, 538 (1996).
(114) L. Wu, S. Chang, Y. Su, R. Chuang, Y. Hsu, C. Kuo, W. Lai, T. Wen, J. Tsai and J. Sheu, Sol. Stat. Elec. 47, 2027 (2003).
(115) C. Lin, J. Dai, R. Jiang, J. Zheng, Z. Yang, C. Yu and W. Lee, Phys. Status Solidi C 3, 2182 (2006).
(116) C. Huh, K. S. Lee, E. J. Kang and S. J. Park, J. Appl. Phys. 93, 9383 (2003).
(117) R. Knizikevičius, Appl. Surf. Sci. 228, 227 (2004).
(118) R. J. Young, J. R. Cleaver, and H. Ahmed: J. Vac. Sci. Technol. B 11, 234 (1993).
(119) L. R. Harriott: Jpn. J. Appl. Phys. 33, 7094 (1995).
(120) L. Giannuzzi and F. Stevie, Introduction to focused ion beams, (Springer, New York, 2005).
(121) I. Chry and J. Steckl, J. Vac. Sci. Technol. B 19, 2547 (2011).
(122) Y. B. Hahn, R. J. Choi, and J. H. Hong, J. Appl. Phys., 92, 1189 (2002).
(123) R. Korntner, H. Loeschner, and E. Platzgummer, 8th Euro FIB User Group Meeting (2004).
(124) C. Eddy, J. Molnar, J. Electron. Mater. 28, 314 (1999).
(125) M. Khizar, Z. Fan, K. Kim, J. Lin and H. Jiang, Appl. Phys. Lett. 86, 173504 (2005).
(126) I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Schere, Appl. Phys. Lett. 63, 2174 (1993).
(127) H. Ohanion, Physics, (W. W. Norton & Company, New York, 1985).
(128) F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini and R. Proietti, Jpn. J. Appl. Phys. 43, 3772 (2004).
(129) Y. Fu, N. Bryan, Appl. Optics. 40, 5872 (2001).
(130) T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, Appl. Optics. 26, 587 (1987).
(131) T. Kim, A.J. Danner and K.D. Choquette, Electron. Lett. 41, 49 (2005).
(132) A. Tseng, J. Micromech. Microeng. 14, R15 (2004).
(133) J. Kim, H. Luo, Y. Xi, M. Shah, T. Gessmann and E. Schubert, J. Electrochem. Soc. 153, G105 (2006).
(134) D. Adams and M. Vasile, J. Vac. Sci. Technol. B 24, 836 (2006).
(135) M. Lee and K. Kuo, Jpn. J. Appl. Phys. 45, 2447 (2006).
(136) P. Nellen and R. Brönnimann, Meas. Sci. Technol. 17, 943 (2006).
(137) Y. Fu, N. Bryan and O. N. Shing, Opt. Express 7, 141 (2000).
(138) Y. Sun and S. R. Forrest, J. Appl. Phys. 100, 073106 (2006).
(139) B. Morgan, and C. M. Waits, J. Microelectromech. Syst. 13, 113 (2004).
(140) M. Khizar, Z. Fan, K. Kim, J. Lin and H. X. Jiang, Appl. Phys. Lett. 86, 173504 (2005).
(141) A. Kowalik, K. Góra, Z. Jaroszewicz, and A. Kołodziejczyk, Microelectron. Eng. 77, 347 (2005).
(142) Y. Fu, N. Bryan, Opt. Eng. 39, 3008 (2000).
(143) C. Madigan, M. Lu and J. Sturm, Appl. Phys. Lett. 76, 1650 (2000).
(144) G. Gu, D. Garbuzov, P. Burrows, S. Venkatesh and S. Forrest, Opt. Lett. 22, 396 (1997).
(145) H. Choi, C. Liu and E. Gu, Appl. Phys. Lett. 84, 2253 (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.159.150
論文開放下載的時間是 校外不公開

Your IP address is 18.119.159.150
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code