Responsive image
博碩士論文 etd-0130102-124318 詳細資訊
Title page for etd-0130102-124318
論文名稱
Title
降低遙場渦電流檢測評估誤差之研究
Study on Reducing Evaluation Error of Remote Field Eddy Current Testing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-01-08
繳交日期
Date of Submission
2002-01-30
關鍵字
Keywords
變異分析、數學補償法、遙場渦電流、換熱器
Remote Field Eddy Current, Heat exchanger, Analysis of Variance, Mathematical Compensation Method
統計
Statistics
本論文已被瀏覽 5727 次,被下載 4683
The thesis/dissertation has been browsed 5727 times, has been downloaded 4683 times.
中文摘要
利用遙場渦電流檢測技術來評估換熱器管之腐蝕缺陷深度時,支撐板訊號因支撐板厚度、管孔直徑、管外徑與管孔間之間隙值及管壁厚度值而產生變動。因支撐板訊號的變動而缺陷深度評估誤差也跟隨著產生。本文則藉由實驗及統計上的變異分析來探討上述四個因素之影響程度。由實驗結果分析可以得到這四個影響因素都是會造成支撐板訊號角度偏移,但除管子厚度值的影響外其餘因子所造成之偏移皆不是很大,因此所導致的深度評估差距都在工程實務上可接受的範圍內。而利用遙場渦電流檢測技術來檢測使用中的管子時,常會因使用中管子厚度與標準管厚度有差異,而導致用標準管所建立的評估曲線不適用於使用中管子之缺陷評估。
依據ASTM E2096-00(2000)標準,我們可使用頻率補償法來補償因管子厚度變化所造成的評估誤差。但使用頻率補償法無法量測使用中管子之厚度且此法存在著需花費許多時間在補償調整步驟上的缺點。在本文中依集膚深度理論而推導出一個數學補償方法來做厚度差異的補償,經由理論推導及實驗驗證結果得知此方法具合理性及可行性。由此數學補償方法可克服頻率補償法的缺點且可解決換熱器管束中的管子很難測厚之問題。

Abstract
While evaluating the depth of corrosive defect through Remote Field Eddy Current (RFEC) Testing technology, the researcher tried to investigate the signals of supporting plate which may produce variations by the thickness of supporting plate, diameter of tube hole in supporting plate, the value of crevice between tube and tube hole and tube wall thickness. Errors of evaluation of defect depth may consequently be identified or measured by the variations of the support plate signal. This study explores the effects of above four factors by experiments and an analysis of variance in statistics. By the analysis of experimental results, the researcher found the four influential factors would cause angle deviation of supporting plate signals. Except the factor of tube wall thickness, the deviation is not so substantial that the difference of evaluation in depth was consequently fallen into an acceptable range of engineering practices.
When utilizing the remote field eddy current testing technique to test inservice tubes, the researcher found the thickness of inservice tube is normally different from the specified thickness of a standard tube. This variation consequently resulting in an evaluation curve produced by a standard tube may not lead to proper assessment of defects in inservice tube. To deal with the problem many researchers used a frequency compensation method to compensate for the evaluation error contributed by the variation of tube thickness on the basis of the standard ASTM E2096-00(2000). But the use of the frequency compensation method did not measure the inservice tube thickness and thus produced a drawback of consuming much time for the adjustment steps of compensation. Therefore, a mathematical compensation method was introduced in this study for the compensation of thickness variation derived from skin depth theory. This method in the present experiment is proven to be both feasible and reasonable through the derivation of the methodology. Generally, this study aims to apply the mathematical compensation method to overcome the drawback of frequency compensation method and to solve the problem of the difficulty in measuring inservice tube wall thickness in heat exchanger bundles.

目次 Table of Contents
目錄
頁數
摘 要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 11
1.3 本文組織架構 14
第二章 遙場渦電流基本理論及檢測原理 16
2.1 遙場渦電流之數學理論 16
2.1.1 遙場渦電流之方程式 16
2.1.2 遙場渦電流之滯後效應 19
2.2 遙場渦電流檢測原理 21
2.3 集膚深度理論 23
第三章 實驗數據統計分析理論及影響遙場渦電流準確度原因探討 31
3.1 實驗數據之變異分析及檢定原理 31
3.2 檢測準確度影響因素分析及實驗規劃 33
3.2.1 支撐板厚度值及管孔大小二個因素對支撐板訊號角度之影響 37
3.2.1.1 案例一 37
3.2.1.2 案例二 39
3.2.1.3案例三 40
3.2.1.4案例四 41
3.2.2 管子與支撐板管孔邊緣間之間隙值對支撐板訊號的影響 43
3.2.3 管子壁厚值對支撐板訊號角度之影響 45
第四章 數學補償模式之理論推導 46
第五章 實驗測試結果分析及討論 52
5.1 影響檢測準確度因素之實驗結果分析及討論 52
5.1.1 支撐板厚度值與管孔大小對支撐板訊號角度之影響結果 52
5.1.1.1 案例一 52
5.1.1.2 案例二 56
5.1.1.3案例三 59
5.1.1.4案例四 62
5.1.1.5綜合討論 65
5.1.2 管子與支撐板管孔邊緣間之間隙值對支撐板訊號的影響結果 66
5.1.3 管子壁厚值對支撐板訊號角度之影響結果 71
5.2 數學補償模式應用之結果分析及討論 73
5.2.1 ASTM E2096的頻率補償方法 73
5.2.1.1 案例一. 73
5.2.1.2 案例二 74
5.2.2 數學補償模式 74
5.2.2.1 案例一 74
5.2.2.2案例二 75
5.2.3綜合討論 76
第六章、 結論與建議 82
附錄 A 86
參考文獻 90


參考文獻 References
1. Schmidt, T.R. “History of the Remote-Field Eddy Current Inspection Technique, ” Materials Evaluation, Vol.47, No.1, pp. 14-22 (1989).
2. Mackintosh, D.D., Atherton, D.L. and Sullivan, S.P. “Remote-Field Eddy Current Signal Analysis in Small-Bore Ferromagnetic Tubes, ” Materials Evaluation, Vol. 51, No.4, pp. 492-495 (1993).
3. Schmidt, T.R.“The Remote Field Eddy Current Inspection Technique , ” Materials Evaluation, Vol. 42, No.2, pp. 225-230 (1984).
4. Mackintosh, D.D., Atherton, D.L. , Schmidt, T.R. and Russell, D.E. “Remote Field Eddy Current for Examination of Ferromagnetic Tubes ,” Materials Evaluation, Vol. 54, No.6, pp. 652-657 (1996).
5. Brown,D.J. and Le, Q.V.“Application of the Remote-Field Eddy Current Technique to The In-Service Inspection of Ferromagnetic,” Materials Evaluation, Vol. 47, No.1, pp. 47-55, (1989).
6. Sullivan, S., Atherton, D.L. and Schmidt, T.R.“Comparing a One-Dimensional Skin Effect Equation with Through Transmission Eddy Current Phenomena, ” British Journal of Nondestructive Testing, Vol. 32, No.2, pp. 71-75 (1990).
7. Kilgore, R.J. and Ramchandran, S. ,“Remote-Field Eddy Current Testing of Small-Diameter Carbon Steel Tubes, ”Materials Evaluation, Vol. 47, No.1, pp. 32-36(1989).
8. Maclean, M.D.“Defect Characterization by the Remote Field Eddy Current Technique in Small-Diameter Tubing, ” Materials Evaluation, Vol. 47, No.1, pp. 24-28 (1989).
9. Atherton, D.L., Czura, W., and Schmidt, T.R. “ Finite Element Calculations for Shields in Remote-Field Eddy Current Tools,” Materials Evaluation, Vol. 47, No. 9, pp.1084-1088 (1989)
10. Atherton, D.L., Czura, W., Schmidt, T.R., Sullivan, S. and Toal, C. “Use of Magnetically-Saturated Regions in Remote Field Eddy Current Tools,” Journal of Nondestructive Evaluation, Vol. 8, No. 1, pp.37-43 (1989)
11. Atherton, D.L., Mackintosh, D.D., Sullivan, S.P., Dubois, J.M.S. and Schmidt, T.R. “Remote Field Eddy Current Signal Representation,” Materials Evaluation, Vol. 51, No. 7, pp.782-789 (1993)
12. Atherton, D.L., and Czura, W. “ Finite Element Calculations for Remote Field Eddy Current Inspection Tools , ” Electrosoft, Vol. 2, No. 2/3, pp.157-174 (1991)
13. Mackintosh, D.D., Atherton, D.L. and Puhach, P.A. “ Through-Transmission Equations for Remote-Field Eddy Current Inspection of Small-Bore Ferromagnetic Tubes,” Material Evaluation, Vol. 51, No. 6 , pp.744-748 (1993)
14. Harold, R. L., “ Analysis of Variance in Experimental Design,” Springer-Verlag, pp13-46 (1991).
15. Olive, J. D., Virginia, A. C., “Applied Statistics: Analysis of Variance and Regression ,” John Wiley & Sons, pp 70-156(1987).
16. Graybill, F. A. , “Theory and Application of the Linear Model,” Wadsworth, pp 654-655(1976).
17. 黃俊英,多變量分析,第52-65頁,中國經濟企業研究所,台北(1986)。
18. 馮文俊,應用線性迴歸,第6-35頁,五南圖書出版公司,台北(1996)。
19. 張輝煌,統計與機率,第225頁,建興出版社,台北(1990)。
20. ASME ‘Boiler and Pressure Vessel Code’ SECTION II Part A, Material Specifications (1988).
21.ASTM E2096, ‘Standard Practice for In Situ Examination of Ferromagnetic Heat-Exchanger Tubes Using Remote Field Testing’ (2000).
22. Dodd, C. V., “ Application of a Phase-Sensitive Eddy Current Instrument,” Materials Evaluation, Vol. 22, No. 6, pp.260-262 (1964).
23. Dodd, C. V., “A Portable Phase –Sensitive Eddy Current Instrument,” Materials Evaluation, Vol. 26, No. 3, pp.33-36 (1968).
24. Dodd, C. V., “ Solutions to Electromagnetic Induction Problems,” Ph.D. dissertation, University of Tennessee, Knoxville, June (1967).
25. Muzhitskii, V. F., and Smirnov, A. S., “ Phase-Sensitive Method of Electromagnetic Flaw Detection,” Soviet Journal of Nondestructive Testing, pp. 7-13(1973).
26. Lord, W., and Palanisamy, R., “Development of Theoretical Models for Nondestructive Testing Eddy-Current Phenomena,” in Eddy-Current Characterization of Materials and Structures, ed. G. Birnbaum and G. Free, STP 772, ASTM, Philadelphia, PA. (1981).
27. Kituta, T., Fisher, J. L., Rowland, S. N., and Jolly ,W. D., “ Far-Field Eddy Current Model for Carbon Steel Gas Pipes,” the 5th International Symposium on Offshore Mechanics and Arctic Engineering (OMAE), Dallas, TX (1985).
28. Rowland, S. N., Burkhardt, G., and Birring, A. S., “ Electromagnetic Methods to Detect Corrosion in Aircraft Structure,” Review of Progress in Quantitative Nondestructive Evaluation , Vol. 5B, pp. 1549-1557 (1985).
29. Rowland, S. N., “ Examination of Carbon Steel Tubing,” Materials Evaluation, Vol. 43 , No. 11, pp.1382-1383 (1985).
30. Palanisamy, R., “ Finite Element Modeling of Eddy Current Nondestructive Testing Phenomena, ” Ph.D. dissertation, Colorado State University (1980).
31. Palanisamy, R., “ Theoretical Prediction of Remote-Field Eddy Current Response for the Nondestructive Evaluation of Metallic Tube,” Journal of Applied Physics, Vol. 61, No. 8, Part IIA, pp. 3202-3204 (1987).
32. Atherton, D. L., Szpunar, B., and Sullivan, S., “ The Application of Finite-Element Calculations to the Remote-Field Inspection Technique,” Materials Evaluation, Vol. 45, No. 9, pp. 1083-1086 (1987)
33. Lord, W., Sun ,Y.-S., Udpa, S. S., and Nath, S., “ A Finite Element Study of the Remote-Field Eddy Current Phenomenon,” IEEE Transactions on Magnetic, Vol. 24, No.1, pp. 435-438 (1988).
34. Ida, N., Palanisamy, R., and Lord, W., “ Eddy Current Probe Design Using Finite Element Analysis,” Materials Evaluation, Vol. 41, No. 12, pp. 1389-1394 (1983).
35. Shatat, A., Atherton, D. L., “ Remote Field Eddy Current Inspection of Support Plate Fretting Wear,” Materials Evaluation, Vol. 55, No 3, pp 361-366 (1997).
36. 陶旺斌、周在杞,電磁檢測,杭空工業出版社,北京 (1995)。


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code