Responsive image
博碩士論文 etd-0130113-185450 詳細資訊
Title page for etd-0130113-185450
論文名稱
Title
適用FlexRay具製程、溫度補償80/400 MHz時脈產生器與電池管理系統之高壓傳送接收器
An 80/400 MHz Clock Generator with Process and Temperature Compensation for FlexRay Systems and High-Voltage Transceiver for BMS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-24
繳交日期
Date of Submission
2013-01-30
關鍵字
Keywords
電池連接管理器、高壓傳送接收器、電池管理系統、低功率、喚醒偵測器、時脈產生器、車載網路
clock generator, FlexRay, wake-up detector, low power, battery management system, high-voltage transceiver
統計
Statistics
本論文已被瀏覽 5655 次,被下載 329
The thesis/dissertation has been browsed 5655 times, has been downloaded 329 times.
中文摘要
本論文包含兩主題:適用FlexRay車載網路系統之具製程、溫度補償80/400 MHz時脈產生器,以及適用電池管理系統之高壓傳送接收器。
第一個主題探討適用FlexRay車載網路系統之具製程、溫度補償80/400 MHz時脈產生器與喚醒偵測器。本時脈產生器設計,提供FlexRay系統一個穩定時脈,不受溫度與製程影響,適用溫度範圍為-40 ℃~125 ℃,為全電路積體化(Full on chip)設計,無需任何離散元件,並適用10 Mbps與50 Mbps匯流排速率。另外,本設計中加入一喚醒偵測器設計,完成一個適用FlexRay匯流排驅動器之低功率類比接收端,於低功率閒置狀態下功率消耗僅240.9 uW。因此匯流排驅動器可使用低功率喚醒偵測器來監控匯流排訊號(BP、BM),提供匯流排驅動器之電源管理,減少電力消耗。
第二個主題探討電池管理系統之高壓傳送接收器,本設計的高壓傳送接收器提供電池管理系統(Battery management systems, BMS)一個解決高壓與低壓兩側之間的數位訊號傳輸方式,無須使用光耦合器或隔離器,同時可以鏈結之方式疊接電池模組,提供一高電壓之電池系統,並將電池模組之資訊傳輸至電池管理系統(BMS)。其設計規格適用於6~8個磷酸鋰鐵或鋰三元電池芯(Battery cell),提供電池連接管理器(Battery interconnect module, BIM)間雙向數位訊號傳輸通道,傳輸速率(Data Rate)可達到2 Mbps,並具低延遲性,其傳輸延遲(Propagation delay)小於33 ns。
Abstract
This thesis consists of two topics: The first topic is an 80/400MHz clock generator with process and temperature compensation and a wake-up detector for FlexRay sys-tems; the second topic is a high-voltage transceiver for battery management systems (BMS).

The clock generator in the first topic is able to provide FlexRay systems a stable clock, which is immune to temperature (-40 ℃~125 ℃) and process variations. Notably, the clock generator is carried out fully on a single chip without any additional discrete components. This design will meet 10 Mbps and 50 Mbps throughput requirements in a single channel. The wake-up detector is included in a low-power analog receiver with 240.9 uW power consumption in the idle low-power mode.

The second topic presents a high-voltage transceiver for BMS. The transceiver provides a mechanism for digital data communication between high voltage domain and low voltage domain in the BMS, where no optical coupler and digital isolator is needed. The maximum data rate provided by the transceiver between any two battery intercon-nect modules (BIM) is measured up to 2 Mbps such that the low-latency feature is ensured.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖次 v
表次 viii
第一章 概論 1
1.1 前言 1
1.2 相關技術與文獻探討 4
1.2.1 FlexRay之技術與探討 4
1.2.2 電池管理系統傳輸之技術與探討 5
1.3 研究動機 8
1.4 論文大綱 8
第二章 FlexRay車載系統之具製程、溫度補償80/400 MHz時脈產生器
與喚醒偵測器 9
2.1 簡介 9
2.2 80/400 MHz時脈產生器 10
2.3 20、25 MHz震盪器電路設計 11
2.3.2 複製電路 14
2.3.3 製程與溫度補償電路 15
2.3.4 雙端轉單端的電路 16
2.4 鎖相迴路架構 17
2.4.1 相位頻率偵測器 18
2.4.2 電荷泵浦 19
2.4.3 壓控震盪器 19
2.4.4 除頻器 21
2.5 喚醒偵測器 22
2.5.1 喚醒偵測器電路 23
2.5.2 比較器架構 25
2.6 40/800 MHz時脈產生器電路模擬 26
2.6.1 時脈產生器模擬結果 26
2.6.2 預計規格 29
2.7 喚醒偵測器電路模擬 30
2.7.1 喚醒偵測器模擬結果 30
2.7.2 預計規格 32
2.8 晶片佈局 32
2.8.1 時脈產生器佈局平面圖 32
2.8.2 喚醒偵測器佈局平面圖 33
2.9 晶片實作與量測結果 34
2.9.1 時脈產生器晶片實作與量測結果 34
2.9.2 喚醒偵測器晶片實作與量測結果 36
2.10 結果與討論 40
第三章 電池管理系統之高壓傳送接收器 41
3.1 簡介 41
3.2 高壓傳送接收器整體架構 42
3.3 高壓傳送接收器電路設計 44
3.3.1 傳送器 44
3.3.2 接收上層BIM之接收器 45
3.3.3 接收下層BIM之接收器 46
3.3.4 運算放大器 47
3.3.5 磁滯比較器 48
3.4 高壓傳送接收器電路模擬 49
3.4.1 傳送接收器模擬結果 49
3.4.2 預計規格 51
3.5 晶片佈局 52
3.6 結果與討論 53
第四章 研究結果與結論 55
參考文獻 59
參考文獻 References
[1] http://www.fujitsu.com
[2] http://www.can-cia.org
[3] FlexRay Communications System - Electrical Physical Layer Specification V2.1 Rev B, (http://www.flexray.com), 2006.
[4] J. Garche and A. Jossen, “Battery management systems (BMS) for increasing battery life time,” in Proc. 3rd Int. Conf. Telecommun. Energy Special, pp. 81-88, May 2000.
[5] D. Danilov and P. H. L. Notten, “Adaptive battery management systems for the new generation of electrical vehicles,” in Proc. Vehicle Power and Propulsion Conf., pp. 317-320, Sep. 2009.
[6] Y.-S. Lee and M.-W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1297-1307, Oct. 2006.
[7] Y. Wu, X. Liao, W. Chen, and D. Chen, “A battery management system for elec-tric vehicle based on ZigBee and CAN,” in Proc. IEEE Int. Congress on Image and Signal Processing (CISP), vol. 5, pp. 2517-2521, Oct. 2011.
[8] http://itri.org.tw
[9] NXP, TJA1080A, FlexRay transceiver, Rev. 5, Feb. 2011.
[10] FUJITSU, MB88121, FlexRay Communication Controller, Nov. 2006.
[11] Infineon, SAK-CIC310-OSMX2HT, FlexRay Communication Controller, June. 2007.
[12] Austriamicrosystems, AS8221, FlexRay Transceiver. 2009.
[13] G. Caruso, “FlexRay transceiver in a 0.35 um CMOS high-voltage technology,” in Proc. Design, Automation and Test in Europe (DATE), vol. 2, pp. 1-5, Mar. 2006.
[14 ]陳柏誠, ” FlexRay車載網路實體層之傳接器與時脈產生器,” 國立中山大學電機工程學系碩士班碩士論文, 2008.
[15] C.-C. Wang, G.-N. Sung, P.-C. Chen, and C.-L. Wey, “A transceiver front end for electronic control units in FlexRay-based automotive communication systems,” IEEE Trans. Circuits and Systems I (TCAS-I), vol. 57, no. 4, pp. 460-470, Feb. 2010.
[16] C.-C. Wang, C.-L. Chen, T.-H. Yeh, Y. Hu, and G.-N. Sung, “A high speed transceiver front-end design with fault detection for FlexRay-based automotive communication systems,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 434-437, May 2011.
[17] C.-C. Wang, G.-N. Sung, and P.-C. Chen, “A transceiver design for electronic control unit (ECU) nodes in FlexRay-based automotive communication systems,” in Proc. IEEE Int. Conf. on Consumer Electronics (ICCE), pp. 1-2, Jan. 2008.
[18] C.-L. Chen, S.-C Lin, and C.-C. Wang, “A digital over-temperature protector for FlexRay systems,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 1991-1994, May 2012.
[19] D. Andrea, Battery Management Systems for Large Lithium-Lon Battery Packs, M A: Artech House, 2010, pp. 127-133.
[20] ANALOG DEVICES, “iCoupler® Digital Isolators Protect RS-232, RS-485, and CAN Buses in Industrial, Instrumentation, and Computer Applications,” (http://www.analog.com/library/analogDialogue/), Oct. 2005.
[21] Linear Technology, LTC6802-1, Multicell Battery Stack Monitor, 2009.
[22] ANALOG DEVICES, AD7280, Lithium-Ion Battery Monitor for Hybrid Elec-tric Vehicles, 2008.
[23] Texas Instruments, BQ76PL536, 3 to 6 Series Li-Ion Battery Monitor and Sec-ondary Protection IC, 2011.
[24] M. Schneider, S. Ilgin, N. Jegenhorst, R. Kube, S. Puttjer, K. Riemschneider, and J. Vollmer, “Automotive battery monitoring by wireless cell sensors” in Proc. IEEE Int. Conf. Instrumentation and Measurement Tech. (I2MTC), pp. 816-820, May 2012.
[25] S. Kaeriyama, S. Uchida, M. Furumiya, M. Okada, T. Maeda, and M. Mizuno, “A 2.5 kV Isolation 35 kV/us CMR 250 Mbps digital isolator in standard CMOS with a small transformer driving technique” IEEE J. Solid-State Circuits, pp. 435-443, Feb. 2012.
[26] K. Sundaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
[27] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996.
[28] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed, New York: Oxford University Press, 2002.
[29] K. Kurita, T. Hotta, T. Nakano, and N. Kitamura, “PLL-based BiCMOS on-chip clock generator for very high speed microprocessor,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 585-589, Apr. 1991.
[30] T. Gawa and K. Taniguchi, “A 50% duty-cycle correction circuit for PLL output,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), vol. 4, pp. 21-24, 2002.
[31] 林立平, “使用交流/直流數位切換控制之CMOS可變增益放大器與適用於DVB-T接收器之低抖動80 MHz PLL,” 國立中山大學電機工程學系碩士班碩士論文, 2005.
[32] A. Gundel and N.W. Carr, “A low jitter CMOS PLL clock synthesizer with 20-400 MHz locking range,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 3111-3114, May 2007.
[33] R. J. Baker, H. W. Li, and D. E. Boyee, CMOS Circuit Design, Layout, and Sim-ulation, 3rd., New Jersey: John Wiley & Sons, 2010.
[34] L. Wang, Y.-Z. Xiong, S.-M. Hu, and T.-G. Lim, “Design of a true-sigle-phase-
clock divider in 0.13µm CMOS,” in Proc. IEEE Int. Symp. Elect. Design of Ad-vanced Packaging & Systems (EDAPS), pp. 1-4, Dec. 2010.
[35] C.-L. Chen, Y. Hu, W. Luo, C.-C. Wang, and C.-Y. Juan, “A high voltage analog multiplexer with digital calibration for battery management systems,” in Proc. IEEE Int. Conf. on IC Design & Technology (ICICDT), pp. 1-4, May 2012.
[36] R. Horgervorst, J.-P. Tero, G.-H. Eschauzier, and J.-H. Huijsing, “A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, no. 12, pp. 1505-1513, Dec. 1994.
[37] C.-C. Wang, C.-L. Chen, J.-J. Li, and G.-N. Sung, “A low power wake up detec-tor for ECU nodes in an automobile FlexRay system,” in Proc. IEEE Int. Conf. on Consumer Electronics (ICCE), pp. 519-520, Jan. 2011.
[38] C.-C. Wang, C.-L. Chen, J.-J. Li, and C.-Y. Juan, “Configurable active star de-sign for automobile FlexRay systems,” in Proc. IEEE Int. Conf. on Consumer Electronics (ICCE), pp. 301-302, Jan. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code