Responsive image
博碩士論文 etd-0131110-130512 詳細資訊
Title page for etd-0131110-130512
論文名稱
Title
尋找(魚銜)亞目的近親及探討葉鯛科魚類的親緣關係
In search of Callionymoidei (Teleostei: Perciformes) relatives and the inferred phylogeny of Glaucosomatidae
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-11
繳交日期
Date of Submission
2010-01-31
關鍵字
Keywords
分子系統發生學、飽和分析、(魚銜)亞目、葉鯛科
Molecular phylogeny, Callionymoidei, Saturation analysis, Glaucosomatidae
統計
Statistics
本論文已被瀏覽 5701 次,被下載 32
The thesis/dissertation has been browsed 5701 times, has been downloaded 32 times.
中文摘要
鱸形系(Percomorpha)是棘鰭魚類(Acathomorpha)中最分歧的一群,群內關係尚未有定論。而其中的鱸目(Perciformes)是魚類中最大的一個目,共計有20 亞目160 科。
亞目間之親緣關係基於選用的特徵不同而眾說紛紜,目前以日本學者用mtDNA全序列做為探索高階分類群關係的主流。此外,還有其他學者研究採用核基因序列來探討相關之問題。最近莫顯蕎教授對鱸目鰕虎魚亞目(Gobioidei)的類緣關係的研究發現,基於骨骼特徵,鰕虎魚亞目是(魚銜)亞目(Callionymoidei)、海蛾科(Pegasidae)與豹鲂鮄目(Dactylopteriformes)的姐妹群。本研究以此論說為基礎,以粒線體基因體資訊及曾被採用過的核基因28S rRNA、Histone 3、rhodopsin,建立葉鯛科(Glaucosomatidae)之種間類緣關係,並發現臺灣的灰葉鯛(Glaucosoma buergeri)與澳洲之灰葉鯛應屬於不同物種,且得到形態證據的支持。並確認葉鯛之姐妹群為擬金眼鯛科(Pempheridae),與以耳石及魚鰾等之形態證據所推論的關係相同。在此發現(魚銜)亞目並非一單系群。其中鼠(魚銜)科之近親為海龍魚亞目(Syngnathoidei)之魚類,蜥(魚銜)科之近親為喉盤魚亞目(Gobiesocoidei)之魚類。在粒線體基因體資訊的應用上,因日本學者未做其選用之DNA 序列的變異飽和度探討,故在此檢查粒線體DNA 序列及本研究中選用之其他基因的變異情形,對其做遺傳差異與分類階層相關的統計檢測,觀察變異是否達到飽和,並討論其在不同分類類目(category)中之適用性及類緣關係研究上的應用。
Abstract
Percomorpha is the most diverse group of Acanthomorpha, and the interrelationships among the members are unsettled. Perciformes, one order of Percomorpha, is the largest fish order with 160 families placed in 20 suborders. The relationships among the suborders of Perciformes remain conflicting between the hypotheses of phylogenetic relationships based on different characters. Presently, major studies on relationships of higher taxa are from Japanese based on the mitogenome, and the other studies were based on nuclear gene sequences. Mok recently suggest a hypothesis of the Gobioidei, it is the sister group to a clade which includes the Callionymoidei, Dactylopteriformes, and possibly Pegasidae, based on osteological characters. Following this, a phylogenetic hypothesis of the Callionymoidei based on mitochondrial and nuclear genes was conducted, and the Taiwanese and Australian specimens of G. buergeri might be treated as different species. Morphological differentiation in the sagitta in these two groups points to the same conclusion. The Pempheridae is the sister group of the Glaucosomatidae that is demonstrated by molecular evidences. It is the same with the relationship based on the morphological characters, such as otolith and swimbladder, etc. The monophyly of Callionymoidei is not recovered in this study. The Syngnathoidei may be the closest group of Callionymidae, and the Gobiesocoidei is suggested to be closest with Draconettidae. In the application of mitogenomic information, the sequcences selected by Japanese have not been decided to be unsaturated, so I made statistical inference of the variation for mitochondrial sequences and selected nuclear genes. I have found out the variation-saturated genes and discuss the application of these sequences to phylogenetic studies derived from these datasets in this study.
目次 Table of Contents
Contents
Acknowledgments …... i
Abstract (in Chinese) .. ii
Abstract ... iii
Contents .. v
Table contents ... vi
Figure contents . vi
1. General introduction .... 1
2. Saturation analysis .. 6
2.1 Introduction .... 6
2.2 Materials and methods ... 6
2.2.1 Selection of the molecular markers .... 6
2.2.2 Plotting the mean of mutations between pairs of taxa against their taxonomic category ...8
2.3 Results and discussion ... 8
3. Phylogeny of Glaucosomatidae inferred from molecular evidence ..10
3.1 Introduction .... 10
3.2 Materials and methods ... 11
3.2.1 Materials examined ... 11
3.2.2 Amplification and sequencing .. 12
3.2.3 DNA alignment 13
3.2.4 Phylogenetic analyses 14
3.3 Results .. 15
3.3.1 Sagitta of Glaucosoma species . 15
3.3.2 Molecular phylogeny . 16
3.4 Discussion .. 17
4. Immediate relatives of Glaucosomatidae .. 20
4.1 Introduction .... 20
4.2 Materials and methods ... 20
4.2.1 Taxonomic sampling .. 20
4.2.2 Amplication and sequencing 21
4.2.3 DNA alignment 21
4.2.4 Phylogenetic analyses 21
4.3 Results .. 22
4.3.1 16S ribosomal RNA ... 22
4.3.2 Cytochrome c oxidase subunit I .... 22
4.3.3 28S ribosomal RNA ... 23
4.3.4 Histone 3 23
4.3.5 Rhodopsin ... 23
4.4 Discussion .. 23
5. Immediate relatives of Callionymoidei 25
5.1 Introduction .... 25
5.2 Materials and methods ... 26
5.2.1 Taxonomic sampling .. 26
5.2.2 Amplification and sequencing .. 27
5.2.3 DNA alignment 27
5.2.4 Phylogenetic analysis 27
5.3 Results .. 28
5.3.1 16S ribosomal RNA ... 29
5.3.2 Cytochrome c oxidase subunit I .... 29
5.3.3 Mitochondrial tRNAs 30
5.3.4 28S ribosomal RNA ... 30
5.3.5 Histone 3 30
5.3.6 Rhodopsin ... 30
5.4 Discussion .. 31
6. Conclusion .... 34
References ... 36
Table .. 45
Figure . 53
Appendix 74
Curriculum vitae .... 151

Table Contents
Table 1. Classification of taxa included in phylogentic analyses of Glaucoso- matidae and corresponding GenBank accession numbers ...45
Table 2. Primers used in this study 47
Table 3. Classification of taxa included in the study of relatives of Calliony- moidei and corresponding GenBank accession number ...50

Figure Contents
2. Saturation analysis
Fig. 1. Mutational saturation analysis for the genes used in the phylogenetic analysis ...53
3. Phylogeny of Glaucosomatidae inferred from molecular evidence
Fig. 2. The most-parsimonious tree with all nucleotides weighted equally 53
Fig. 3. The 50% majority rule consensus tree of the 9990 pooled trees from the two independent Bayesian analyses of 16S, COI , Cytb and rho- dopsin data set ..54
Fig. 4. Internal (or medial) view of the left saccular otoliths (sagitta), ante- rior to the left and ventral to the top ...54
4. Immediate relatives of Glaucosomatidae
Fig. 5. Phylogenetic tree based on 16S rDNA using the Neighbor-Joining method ....55
Fig. 6 The most-parsimonious tree from 16S rDNA data set with all nucleo- tides weighted equally ....56
Fig. 7. The 50% majority rule consensus tree from the Bayesian analyses of 16S data set ....56
Fig. 8. Phylogenetic tree based on COI using the Neighbor-Joining method ..57
Fig. 9. Phylogenetic tree based on COI (third codon position are excluded) using the Neighbor-Joining method ....58
Fig. 10. The most-parsimonious tree from COI data set with all nucleotides weighted equally ... 59
Fig. 11. The 50% majority rule consensus tree from the Bayesian analyses of COI data set ....59
Fig. 12. Phylogenetic tree based on 28S rDNA using the Neighbor-Joining method ....60
Fig. 13. The most-parsimonious tree from 28S data set with all nucleotides weighted equally ... 60
Fig. 14. The 50% majority rule consensus tree from the Bayesian analyses of 28S data set ....61
Fig. 15. Phylogenetic tree based on H3 using the Neighbor-Joining method ..61
Fig. 16. The most-parsimonious tree from H3 data set with all nucleotides weighted equally ....62
Fig. 17. The 50% majority rule consensus tree from the Bayesian analyses of H3 data set ...62
Fig. 18. Phylogenetic tree based on rhodopsin using the Neighbor-Joining method ....63
Fig. 19. The most-parsimonious tree from rhodopsin data set with all nucleo- tides weighted equally....63
Fig. 20. The 50% majority rule consensus tree from the Bayesian analyses of rhodopsin data set ....64
5. Immediate relatives of Callionymoidei
Fig. 21. Phylogenetic tree based on 16S rDNA using the Neighbor-Joining method ....64
Fig. 22. The most-parsimonious tree from 16S rDNA data set with all nu- cleotides weighted equally ...65
Fig. 23. The 50% majority rule consensus tree from the Bayesian analyses of 16S data set ....65
Fig. 24. Phylogenetic tree based on COI using the Neighbor-Joining method ....66
Fig. 25. Phylogenetic tree based on COI (third codon position are excluded) using the Neighbor-Joining method ....66
Fig. 26. The most-parsimonious tree from COI data set with all nucleotides weighted equally ...67
Fig. 27. The 50% majority rule consensus tree from the Bayesian analyses of COI data set ....67
Fig. 28. Phylogenetic tree based on tRNAs using the Neighbor-Joining method ....68
Fig. 29. The most-parsimonious tree from tRNAs data set with all nucleo- tides weighted equally ....68
Fig. 30. The 50% majority rule consensus tree from the Bayesian analyses of tRNAs data set...69
Fig. 31. Phylogenetic tree based on 28S using the Neighbor-Joining method ....69
Fig. 32. The most-parsimonious tree from 28S data set with all nucleotides weighted equally ...70
Fig. 33. The 50% majority rule consensus tree from the Bayesian analyses of 28S data set ...70
Fig. 34. Phylogenetic tree based on H3 using the Neighbor-Joining method ..71
Fig. 35 The most-parsimonious tree from H3 data set with all nucleotides weighted equally ...71
Fig. 36. The 50% majority rule consensus tree from the Bayesian analyses of H3 data set ...72
Fig. 37. Phylogenetic tree based on rhodopsin using the Neighbor-Joining method ....72
Fig. 38. The most-parsimonious tree from rhodopsin data set with all nucleo- tides weighted equally ....73
Fig. 39. The 50% majority rule consensus tree from the Bayesian analyses of rhodopsin ....73
參考文獻 References
References
Allen, L. G. 1984. Gobiesociformes: development and relationships. Pages 629-636. In Moser, H. G., W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr., and S. L. Richardson, editors. Ontogeny and systematics of fishes. Special Publication Number 1, American Society of Ichthyologists and Herpetologist.
Arnason, U., A. Gullberg, A. Janke, J. Joss, and C. Elmerot. 2004. Mitogenomic analyses of deep gnathostome divergences: a fish is a fish. Gene 333:61-70.
Avise, J. C., and D. Walker. 1999. Species realities and numbers in sexual vertebrates: Perspectives from an asexually transmitted genome. Proceedings of the National Academy of Sciences, USA 96:992–995.
Brown, W. M. 1985. The mitochondrial genome of animals. Pages 95-130. In MacIntyre R., editor. Molecular Evolutionary Genetics. Plenum, New York.
Chen, J. T. F., and M. J. Yu. 1986. A synopsis of the vertebrates of Taiwan. (Revised and enlarged 3rd Ed.). Taipei: Commercial Books Co. (In Chinese)
Chen, W. -J., C. Bonillo, and G. Lecointre. 2003. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Molecular Phylogenetics and Evolution 26:262–288.
Chen, W. –J., R. Ruiz-Carus, and G. Orti. 2007. Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. Journal of Fish Biology Supplement B:202-218.
Colgan, D. J., A. McLauchlan, G. D. F. Wilson, S. P. Livingston, G. D. Edgecombe, J. Macaranas, G. Cassis, and M. R. Gray. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46:419–437.
Dettai, A., and G. Lecointre. 2004. In search of notothenioid (Teleostei) relatives. Antarctic Science 16(1):71-85.
Dettai, A., and G. Lecointre. 2005. Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. Comptes Rendus Biologies 328:674-689.
Derome, N., W. –J. Chen, A. Dettaï, C. Bonillo, and G. Lecointre. 2002. Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Molecular Phylogenetics and Evolution 24:139–152.
Easteal, S. 2000. Evolutionary annotation of the genome. Molecular Biology and Evolution 17: 1775.
Elmerot, C., U. Arnason, T. Gojobori, and A. Janke. 2002. The mitochondrial genome of the pufferfish, Fugu rubripes, and ordinal teleostean relationships. Gene 295: 163-172.
Fowler, H. W. 1931. Contributions to the biology of the Philippine Archipelago and adjacent regions. The fishes of the families Pseudochromidae, Lobotidae, Pempheridae, Priacanthidae, Lutjanidae, Pomadasyidae and Teraponidae, collected by the United States Bureau of Fisheries steamer “Albatross”, chiefly in Philippine seas and adjacent waters. Bulletin of the United States National Museum 100:1–388.
Fricke, R. 1983. Revision of the Indo-Pacific genera and species of the dragonet family Callionymidae (Teleostei). Braunschweig: Verlag von J. Cramer.
Fricke, R. 2002. Annotated checklist of the dragonet families Callionymidae and Draconettidae (Teleostei: Callionymoidei), with comments on callionymoidei), with comments on callionymid fish classification. Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) 645:1-103.
Gosline, W. A. 1970. A reinterpretation of the teleostean fish order Gobiesociformes. Proceedings of the California Academy of Science Series 4 37(19):363-382.
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95–98.
Hayashi, M., K. Hagiwara, and H. Hayashi. 1986. Osteology of the cling fishes in Japan (Family: Gobiesocidae). Science Reports of the Yokosuka City Museum 34:39-66.
Huelsenbeck, J. P., and F. Ronquist. 2005. Bayesian analysis of molecular evolution using MrBayes. Pages 183-232. In Nielsen, R. editor. Statistical Methods in Molecular Evolution. New York, NY: Springer.
Helfman, G. S., B. B. Collette, and D. E. Facey. 1997. The diversity of fishes. Oxford: Blackwell Science.
Hennig, W. 1966. Phylogenetics systematics. Urbana, IL: University of Illinois Press.
Hillis, D.M., and M. T. Dixon. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly review of Biology 66:411–453.
Houde, E. D. 1984. Callionymidae: development and relationships. Pages 637-640. In Moser H. G., W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Jr. Kendall, and S. L. Richardson, editors. Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists. Special Publication No. 1.
Inoue, J. G., M. Miya, K. Tsukamoto, and M. Nishida. 2001. A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Molecular Phylogenetics and Evolution 20(2):275-285.
Inoue, J. G., M. Miya, T. Tsukamoto and M. Nishida. 2003. Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Molecular Phylogenetics and Evolution 26:110-120.
Inoue, J. G., M. Miya, K. Tsukamoto, and M. Nishida. 2004. Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Molecular Phylogenetics and Evolution 32: 274-286.
Inoue J. G., M. Miya, B. Venkatesh, and M. Nishida. 2005. The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene. 349:227-35.
Ishiguro, N. B., M. Miya, and M. Nishida. 2003. Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the “Protacathopterygii”. Molecular Phylogenetic and Evolution 27: 476-488.
Johnson, G. D. 1993. Percomorph phylogeny: progress and problems. Bulletin of Marine Science 52:3–28.
Johnson, G. D., and C. Patterson. 1993. Percomorph phylogeny: A survey of acanthomorph charactiers and a new proposal. Bulletin of Marine Science 52:554-626.
Johnson, G. D., and E. O. Wiley. 2007. Percomorpha. Version 09 January 2009 (under construction). Available:http://tolweb.org/Percomorpha/52146/2007.01.09 in The Tree of Life Web Project, Available:http://tolweb.org/
Kawaguchi, A., M. Miya, and M. Nishida. 2001. Complete mitochondrial DNA sequence of Aulopus japonicus (Teleostei: Aulopiformes), a basal Eurypterygii: longer DNA sequences and higher-level relationships. Ichthyological Research 48:213–223.
Kawahara, R., M. Miya, K. Mabuchi, S. Lavoué, J. G. Inoue, T. P. Satoh, A. Kawaguchi, and M. Nishida. 2008. Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives): a new perspective based on whole mitogenome sequences from 75 higher teleosts. Molecular Phylogenetics and Evolution 46:224-236.
Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Paabo, F. X. Villablanca, and A. C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86:6196-6200.
Lavoué, S., M. Miya, J. G. Inoue, K. Saitoh, N. B. Ishiguro, and M. Nishida. 2005. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: implications for higher-level relationships within the Otocephala. Molecular Phylogenetics and Evolution 37(1):165-77.
Lavoué, S., M. Miya, K. Saitoh, N. B. Ishiguro, and M. Nishida. 2007. Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences. Molecular Phylogenetics and Evolution 43(3):1096-1105.
Lê, H.L.V., G. Lecointre, and R. Perasso. 1993. A 28S rRNA based phylogeny of the Gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Molecular Phylogenetics and Evolution 2:31–51.
Leis, J. M., and B. M. Carson-Ewart, editors. 2000. The larvae of Indo-Pacific coastal fishes. An identification guide to marine fish larvae. Fauna Malesiana Handbooks 2 (soft cover edition 2004). E. J. Brill, Leiden.
Li, C., G. Lu, and G. Orti. 2008. Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. Systematic Biology 57(4):519-539.
Liu, S.-H., W.-B. Yeh, and H.-K. Mok. 2009. Phylogeny of Glaucosomatidae inferred from molecular evidence. Journal of Fish Biology. In press.
Mabuchi K., M. Miya, Y. Azuma, and M. Nishida. 2007. Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evolutionary Biollogy 7:10.
Masuda, H., K. Amaoka, C. Araga, T. Uyeno, and T. Yoshino. 1984. The fishes of the Japanese Archipelago. Vol. 1 (text). Tokyo, Japan: Tokai University Press.
McKay, R. J. 1997. An annotated and illustrated catalogue of the pearl perches known to date. FAO species catalogue. Vol. 17. Pearl Perches of the World (Family Glaucosomatidae). Rome: FAO United Nations.
Miya, M. and M. Nishida. 2000. Use of mitogenomic information in Teleostean molecular phylogenetics: a tree-based exploration under the Maximum-parsimony optimality criterion. Molecular Phylogenetics and Evolution 27(3):437-455.
Miya, M., A. Kawaguchi, and M. Nishida. 2001. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Molecular Biology and Evolution 18 (11):1993-2009.
Miya, M., H. Takeshima, H. Endo, N. B. Ishiguro, J. G. Inoue, T. Mukai, T. P. Satoh, M. Yamaguchi, A. Kawaguchi, K. Mabuchi, S. M. Shirai, and M. Nishida. 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 26(1):121-138.
Miya, M., T. P. Satoh, and M. Nishida. 2005. The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biological Journal of the Linnean Society 85:289-306.
Nakabo, T. 1982. Revision of the family Draconettidae. Japanese Journal of Ichthyology 28(4):355-367.
Nakabo, T. 1983. Revision of the dragonets (Pisces: Callionymidae) found in the waters of Japan. Publications of the Seto Marine Biological Laboratory 27(4-6): 193-259.
Nelson G. 1989. Phylogeny of major fish groups. In B. Fernholm, K. Bremer, L. Brundin, H. Jornvall, L. Rutberg, and H. -E. Wanntorp, editors. The hierarchy of life. Elsevier, Amsterdam.
Nelson, J. S. 1976. Fishes of the world. Wiley, New York.
Nelson, J. S. 1984. Fishes of the world. 2nd edition. Wiley, New York.
Nelson, J. S. 1994. Fishes of the world. 3rd edition. Wiley, New York.
Nelson, J. S. 2006. Fishes of the World. 4th edition. New York: John Wiley & Sons Inc.
Nolf, D., and E. Steurbaut. 1989. Evidence from otoliths for establishing relationships between gadiforms and other groups. Pages 37-45. In Cohen, D. M. editor. Papers on the systematics of Gadiform fishes. Science Series Vol. 32. Los Angeles, CA: Natural History Museum of Los Angeles County.
Nohara M., M. Nishida, M. Miya, and T. Nishikawa. 2005. Evolution of the mitochondrial genome in Cephalochordata as inferred from complete nucleotide sequences from two epigonichthys species. Journal of Molecular Evolution 60(4):526-37.
Page. R. D. M., and E. C. Holmes. 1998. Molecular Evolution: A phylogenetic approach. Blackwell Science.
Palumbi, S. R. 1996. Nucleic acids II: the polymerase chain reaction. In Hillis, D., C. Moritz, and B. K. Mable, editors. Molecular Systematics. Sunderland, MA: Sinauer Associates.
Posada, D., and K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818.
Posada, D., and T. R. Buckley. 2004. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53:793–808.
Rasmussen, A. -S. and U. Arnason. 1999. Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fish within the tree of bony fish. Journal of Molecular Evolution 48:118–123.
Ronquist, F., and J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.
Rosen D. E. 1973. Interrelationships of higher teleostean fishes. Pages 397-513. In Greenwood P. H., R. S. Miles, and C. Patterson, editors. Interrelationships of fishes. Academic Press, London.
Saitoh, K., M. Miya, J. G. Inoue, N. B. Ishiguro, and M. Nishida. 2003. Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography. Journal of Molecular Evolution 56(4): 464-472.
Saitoh K., T. Sado, R. L. Mayden, N. Hanzawa, K. Nakamura, M. Nishida, and M. Miya. 2006. Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences. Journal of Molecular Evolution 63(6):826-41.
Shen, S. C. 1984. Synopsis of fishes of Taiwan. Taipei: Southern Material Centre, Inc. (in Chinese)
Smith, Wm. L. and W. C. Wheeler. 2004. Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data. Molecular Phylogenetics and Evolution 32:627–646.
Smith, Wm. L., and W. C. Wheeler. 2006. Venom evolution widespread in fishes: a road map for the bioprospecting of piscine venoms. Journal of Heredity 97:206–217.
Stiassny M. L. J., L. R. Parenti, and G. D. Johnson, editors. 1996. Interrelationships of Fishes. Acadeic Press, San Diego.
Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0 beta 10. Sunderland, MA: Sinauer Associates.
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.
Tominaga, Y. 1986. The relationships of the families Glaucosomatidae and Pempherididae. Pages 595-599. In Uyeno, T., R. Arai, T. Taniuchi, and K. Matsuura, editors. Indo-Pacific fish biology Tokyo: Ichthyological Society of Japan.
Ward, R. D., T. S. Zemlak, B. H. Innes, P. R. Last, and D. N. Hebert. 2005. Barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London B 360:1847–1857.
Wiley, E. O. 1981. Phylogenetics. The theory and practice of phylogentic systematics. New York, NY: John Wiley & Sons.
Wiley, E. O., G. D. Johnson, and W. W. Dimmick. 2000. The interrelaitonships of Acanthomorph fishes: a total evidence approach using molecular and morphological data. Biochemical systematics and ecology 28:319-350.
Winterbottom, R. 1993. Search for the gobioid sister group (Actinopterygii: Percomorpha). Bulletin of Marine Science 52(1):395-414.
Yamanoue Y., M. Miya, K. Matsuura, N. Yagishita, K. Mabuchi, H. Sakai, M. Katoh, and M. Nishida. 2007. Phylogenetic position of tetraodontiform fishes within the higher teleosts: Bayesian inferences based on 44 whole mitochondrial genome sequences. Molecular Phylogenetics and Evolution 45(1):89-101.
Zaragüeta-Bagils, R., S. Lavoué, A. Tillier, C. Bonillo, and G. Lecointre. 2002. Assessment of otocephalan and protacanthopterygian concepts in the light of multiple molecular phylogenies. Comptes rendus biologies 325 (12):1191-1207.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.187.121
論文開放下載的時間是 校外不公開

Your IP address is 18.221.187.121
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code