Responsive image
博碩士論文 etd-0131112-184231 詳細資訊
Title page for etd-0131112-184231
論文名稱
Title
一種嶄新的功率管理機制應用於非接觸式感測系統
A Novel Power Management Technique Applied in Non- Contact Vital Sign Detection System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-05
繳交日期
Date of Submission
2012-01-31
關鍵字
Keywords
非接觸式生命感測器、直流偏移、功率管理、相位位移器、綠色能源、零感測點
phase shifter, null detection point, non-contact vital sign sensor, power management, green energy, DC offset
統計
Statistics
本論文已被瀏覽 5682 次,被下載 348
The thesis/dissertation has been browsed 5682 times, has been downloaded 348 times.
中文摘要
本論文提出一種新的功率管理技術應用於非接觸式生理感測器,此技術結合脈衝概念用來取代傳統直流偏壓,以降低其直流功率消耗。本感測器整合E類功率放大器、低雜訊放大器、單刀雙擲開關以及天線於玻纖基板。本研究將在系統正常運作且不失特性之前提下,探討脈衝機制的最佳設計方法,使功率放大器於整體脈衝週期明顯地降低功率消耗並且能夠提供良好的準確度。本感測器採用簡單的直接降頻架構結合可調式相位位移器避免零感測點的發生以及改善直流偏移約14 mV左右。本感測器施加最佳脈衝週期1 ms與脈衝寬度0.3 ms之下,能夠完整感測到人體的生理訊號(呼吸、心跳),並且成功將消耗功率由50 mW下降至32.5 mW,約40 %的功率改善,達到低功率消耗之目的。
Abstract
This paper presents a novel power management analysis method to reduce the power consumption for the non-contact vital sign sensor. The sensor consisting of the class-E power amplifier (PA), low noise amplifier (LNA), single pole double through (SPDT) switch, and circularly polarized antenna (CPA) is integrated on the Flame Retardant Class 4 (FR-4) epoxy-glass laminate substrate. The appropriate pulse width and pulse period are determined to decrease the power consumption and accurately detect the human physiological signals (respiration and heartbeat). A simple direct down-conversion architecture with a tunable phase shifter is utilized to eliminate the null detection point and the direct current (DC) offset. The overall power consumption of the proposed sensor with the novel power management technique is only 40 % of the conventional system with the DC bias, which can be utilized for the green energy application.
目次 Table of Contents
摘要 i
目錄 iii
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 生理感測器探討 1
1.2 功率管理技術探討 2
1.3 論文內容綱要 4
第二章 射頻電路設計考量 5
2.1 射頻收發機架構 5
2.1.1 固定中頻超外差接收機 5
2.1.2 直接降頻接收機 6
2.2 增益 10
2.3 雜訊 11
2.3.1 熱雜訊 11
2.3.2 射雜訊 12
2.3.3 閃爍雜訊 12
2.3.4 雜訊指數 12
2.4 非線性現象 16
2.4.1 諧波失真 16
2.4.2 1dB增益壓縮點 17
第三章 前端電路設計與整合 18
3.1 功率放大器設計 18
3.1.1 E類功率放大器之工作原理 18
3.1.2 E類功率放大器之製作考量 20
3.1.3 實驗結果與討論 21
3.2 低雜訊放大器設計 25
3.2.1 電路匹配 25
3.2.2 實驗結果 27
3.3 單刀雙擲開關設計 31
3.3.1 PIN二極體工作原理 31
3.3.2 PIN二極體開關設計 32
3.3.3 實驗結果 33
3.4 圓極化天線設計 36
3.4.1 天線設計 36
3.4.2 實驗結果 37
3.5 電路整合 40
3.5.1 實驗結果 40
第四章 低功率之非接觸式生理感測系統 44
4.1 簡介 44
4.2 非接觸式生理感測 46
4.2.1 相關理論 46
4.2.2 零感測點與直流偏移的改善 49
4.3 功率管理技術 58
4.3.1 脈衝偏壓的影響 58
4.3.2 脈衝偏壓之設計考量 65
4.3.3 設計流程 67
4.3.4 最佳脈衝偏壓設計 68
4.3.5 實驗結果與討論 71
4.4 人體移動感測 79
4.4.1 實驗結果與討論 79
第五章 結論與未來展望 84
參考文獻 85
附錄 A 單刀雙擲開關切換時間 89
附錄 B不同架構的量測結果 91
附錄 C雙天線生理感測器架構 103
參考文獻 References
[1] C. Li, Y. Xiao, and J. Lin, "Design guidelines for radio frequency non-contact vital sign detection," in Proc. 29th Annu. Int. IEEE EMBS Conf., Lyon, France, 2007, pp. 1651-1654.
[2] B. K. Park, O. Boric-Lubecke, and V. M. Lubecke, "Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems," IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1073-1079, 2007.
[3] C. Li, Y. Xiao, and J. Lin, "A 5GHz double-sideband radar sensor chip in 0.18um CMOS for non-contact vital sign detection," IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 494-496, 2008.
[4] C. Li, Y. Xiao, and J. Lin, "Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body," IEEE Trans. Microw. Theory Tech., vol. 54, pp. 4464-4471, 2006.
[5] B. Razavi, "Design considerations for direct-conversion receivers," IEEE Trans. Circuits Syst., vol. 44, pp. 428-435, 1997.
[6] M. Iwamoto, A. Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended Doherty amplifier with high efficiency over a wide power range," IEEE Trans. Microw. Theory Tech., vol. 49, pp. 2472-2479, 2001.
[7] B. Sahu and G. A. Rincon-Mora, "A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply," IEEE Trans. Microw. Theory Tech., vol. 52, pp. 112-120, 2004.
[8] B. Sahu and G. A. Rincon-Mora, "A high-efficiency, dual-mode, dynamic, buck-boost power supply IC for portable applications," in Proc. VLSI Design 2005, pp. 858-861.
[9] G. Hanington, P.-F. Chen, P. M. Asbeck, and L. E. Larson, "High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications," IEEE Trans. Microw. Theory Tech., vol. 47, pp. 1471-1476, 1999.
[10] Y.-S. Jeon, J. Cha, and S. Nam, "High-efficiency power amplifier using novel dynamic bias switching," IEEE Trans. Microw. Theory Tech., vol. 55, pp. 690-696, 2007.
[11] A. Shirvani, D. K. Su, and A. Wooley, "A CMOS RF power amplifier with parallel amplification for efficient power control," in Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International, 2001, pp. 156-157, 442.
[12] F. H. Raab, B. E. Sigmon, R. G. Myers, and R. M. Jackson, "L-band transmitter using Kahn EER technique," IEEE Trans. Microw. Theory Tech., vol. 46, pp. 2220-2225, 1998.
[13] A. Khanifar, N. Maslennikov, R. Modina, and M. Gurvich, "Enhancement of power amplifier efficiency through dynamic bias switching," in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 2047-2050 Vol.3.
[14] 林軒安, "ZigBee 射頻接收單晶片與UWB射頻低雜訊放大器之設計," 國立中正大學電機工程研究所, 民國九十五年.
[15] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design: Prentice-Hall, 1997.
[16] P. L. a. M. Steyaert, LNA-ESD Co-Design for Fully Integrated CMOS Wireless Receivers: Springer, 2005.
[17] H. Hillbrand and P. Russer, "An efficient method for computer aided noise analysis of linear amplifier networks," IEEE Trans. Circuits Syst., vol. 23, pp. 235-238, 1976.
[18] 張嘉展, 張盛富, 無線通訊射頻晶片模組設計: 全華圖書公司.
[19] N. O. Sokal and A. D. Sokal, "Class E-a new class of high-efficiency tuned single-ended switching power amplifiers," IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, 1975.
[20] J. J. a. M. Steyaert, CMOS Cellular Receiver Front-Ends: from Specification to Realization: Springer, 2002.
[21] R. H. Caverly and G. Hiller, "Distortion in p-i-n diode control circuits," IEEE Trans. Microw. Theory Tech., vol. 35, pp. 492-501, 1987.
[22] S. D. Targonski and D. M. Pozar, "Design of wideband circularly polarized aperture-coupled microstrip antennas," IEEE Trans. Antennas Propag., vol. 41, pp. 214-220, 1993.
[23] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, "Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring," IEEE Trans. Microw. Theory Tech., vol. 52, pp. 838-848, 2004.
[24] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, "Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the ka-band," IEEE Trans. Microw. Theory Tech., vol. 54, pp. 2023-2032, 2006.
[25] D. C. Champeney, Fourier Transforms and their Physical Applications: New York: Academic, 1973.
[26] J. Qin, O. M. Ramahi, and V. Granatstein, "Novel planar electromagnetic bandgap structures for mitigation of switching noise and EMI reduction in high-speed circuits," IEEE Trans. Electromagn. Compat., vol. 49, pp. 661-669, 2007.
[27] T. Hakoda, T. Sakusabe, T. Takahashi, and N. Schibuya, "Study on noise reduction effect using the decoupling capacitor with resistor on power distribution line," in Proc. 2008 Pan-Pacific EMC Joint Meeting PPEMC’08 (Tokyo), 2008, pp. 863-866.
[28] S. Voranantakul and J. L. Prince, "Efficient computation of signal propagation delay with overshoot and undershoot-control in VLSI interconnections," IEEE Trans. on Components, Hybrids and Manufacturing Technology, Vol. 16, No. 1, pp. 146-151, 1993.
[29] Agilent Technologies, "Agilent 81110A 165/330MHz Agilent 81104A 80 MHz pulse/data generator, reference guide."
[30] T. Kamgaing and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 21-23, 2003.
[31] W.-T. Huang, S.-Y. Tan, Y.-J. Chang, and C.-C. Tuan, "A novel design for evaluating simultaneous switching noise within an enhanced IBIS model." vol. 9: World Scientific and Engineering Academy and Society (WSEAS), pp. 42-59.
[32] IEEE Standard 802, "Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs)," Institute of Electrical and Electronic Engineers.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code