Responsive image
博碩士論文 etd-0131112-184523 詳細資訊
Title page for etd-0131112-184523
論文名稱
Title
具動態供應電源的功率管理技術於一新型收發機架構以作為非接觸生命徵兆之感測
Novel Transceiver Structure with Power Management Technique by Dynamic Supply for Non-contact Vital Sign Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-05
繳交日期
Date of Submission
2012-01-31
關鍵字
Keywords
轉換器、功率管理技術、生命徵兆檢測器、電流再利用、低功耗
Transformer, Current-reused, Vital sign detection, Power management technique, Low power
統計
Statistics
本論文已被瀏覽 5676 次,被下載 444
The thesis/dissertation has been browsed 5676 times, has been downloaded 444 times.
中文摘要
功率管理技術被利用於非接觸式生命徵兆檢測的直降頻非正交微波杜普勒雷達收發機,而此收發機以0.18微米互補式金屬氧化物半導體製程實現。由高速脈衝偏壓所造成的過衝和下衝的暫態波形失真和瞬間切換雜訊會嚴重地影響生命徵兆感測的精確性,故本論文清楚地分析脈衝偏壓的週期、寬度、上升/下降時間和電壓準位。在電路設計方面,低功耗電流再利用的功率放大器藉由雙主迴圈轉換器和巴倫器可以維持足夠的輸出功率。為了達到理想的功率消耗和轉導增益於接收模式,所提出具有差動電感的低雜訊放大器可以提供所需的雜訊匹配和增加轉導增益。平行方向開關可以被獲得於接收和發射路徑之間的極佳隔離度。具有理想脈衝偏壓的接收機比直流偏壓下的傳統接收機減少60%的整體消耗功率,且藉由可調相位移器可以去除空檢測點和直流偏移。
Abstract
The power management technique is employed in the direct down-conversion non-quadrature microwave Doppler radar transceiver for the non-contact vital sign detection based on 0.18 µm CMOS technology. The overshoot and undershoot types of the transient waveform distortion and the simultaneous switching noise (SSN) caused by the high speed pulse signal will severely influence the accuracy for the vital sign detection, so that this investigation clearly analyzes the pulse period, pulse width, rise/fall times and the voltage levels of the pulse bias. In the circuit design, the low power current-reused (CRU) power amplifier (PA) can maintain enough output power by using the crucial double primary transformer (DPTF) and balun. The presented LNA with a differential inductor can provide the noise matching needed and increase the transducer gain in order to achieve the optimal power consumption and the transducer gain in the Rx mode. The excellent isolation between the Tx and Rx mode is obtained with the new parallel directed switch. The overall power consumption of the presented transceiver with the optimal pulse bias is 60% lower than the conventional transceiver with the direct current (DC) bias, and the null detection point and DC offset can be eliminated by the tunable phase shifter.
目次 Table of Contents
目錄--------------------------------------------------------------------I
圖目錄---------------------------------------------------------------III
表目錄--------------------------------------------------------------VIII
第一章 緒論--------------------------------------------------------1
1.1 研究背景與動機--------------------------------------------1
1.2 章節規畫-----------------------------------------------------4
第二章 射頻接收機架構和變壓器理論介紹-----------------5
2.1 固定中頻超外差接收架構--------------------------------5
2.1.1 鏡像訊號的問題--------------------------------------6
2.2 直接降頻接收架構-----------------------------------------7
2.2.1 本地振盪信號溢漏-----------------------------------8
2.2.2 偶次諧波失真-----------------------------------------9
2.2.3 直流偏移----------------------------------------------10
2.2.4 正交訊號不匹配-------------------------------------11
2.2.5 閃爍雜訊----------------------------------------------12
2.3 低中頻接收機---------------------------------------------12
2.4 電壓器基本理論------------------------------------------13
2.4.1 理想變壓器-------------------------------------------13
2.4.2 耦合電感變壓器-------------------------------------14
2.4.3 耦合電感器等效電路-------------------------------15
2.4.4 平行變壓器設計-------------------------------------16
2.4.5 平行變壓器的重要參數----------------------------19
第三章 2.4 GHz CMOS之低功率消耗的前端電路設計-20
3.1 低雜訊放大器設計---------------------------------------20
3.1.1 電路架構選擇----------------------------------------21
3.1.2 差動式電感-------------------------------------------28
3.2 功率放大器設計------------------------------------------31
3.2.1 電路架構選擇----------------------------------------31
3.2.2 巴倫器-------------------------------------------------39
3.2.3 功率結合轉換器-------------------------------------45
3.3 開關設計---------------------------------------------------48
3.4 模擬結果---------------------------------------------------61
3.5 討論---------------------------------------------------------51
第四章 功率管理技術設計-------------------------------------64
4.1 傳輸線的阻抗與反射------------------------------------64
4.2 瞬間切換雜訊---------------------------------------------66
4.3 動態偏壓設計---------------------------------------------68
4.3.1 設計流程介紹----------------------------------------69
4.4 模擬結果---------------------------------------------------75
4.5 討論---------------------------------------------------------84
第五章 結論-------------------------------------------------------89
參考文獻-----------------------------------------------------------90
附錄A 脈衝信號定義和介紹------------------------------------94
附錄B 混頻器設計-----------------------------------------------97
參考文獻 References
[1]B. K. Park, O. Boric-Lubecke, and V. M. Lubecke, "Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems," IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073-1079, May 2007.
[2]A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovacs, "Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring," IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[3]C. Li, Y. Xiao, and J. Lin, "A 5GHz double-sideband radar sensor chip in 0.18 μm CMOS for non-contact vital sign detection," IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 7, pp. 494-496, July 2008.
[4]C. Li, Y. Xiao, and J. Lin, "Design guidelines for radio frequency non-contact vital sign detection," in Proc. 29th Annu. Int. IEEE EMBS Conf., Lyon, France, pp. 1651-1654, Aug. 2007.
[5]B. Sahu and G. A. Rincon-Mora, "A high-efficiency linear RF power amplifier with a power-tracking dynamically adaptive buck-boost supply," IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 112-120, Jan. 2004.
[6]F. H. Rabb, B. E. Sigmon, R. G. Myers, and R. M. Jackson, “L-band transmitter using Kahn EER technique,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 12, pp. 2220-2225, Dec. 1998.
[7]M. Iwamoto, A. Williams, P. F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended Doherty amplifier with high efficiency over a wide power range," IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2472-2479, Dec. 2001.
[8]F. Roewer and U. Klcinc, "A novel class of complementary folded-cascode opamps for low-voltage," IEEE J. Solid-State Circuits, vol. 31, no. 8, pp. 1080-1086, Aug. 2002.
[9]L. Zheng, H. C. Yao, F. Tzeng, and P. Heydari, "Design and analysis of a current-reuse transmitter for ultra-low power applications," in Proc Int. Symp. Circuits and Systems (ISCAS), pp. 1317-1320, May 2009.
[10]H. H. Hsieh and L. H. Lu, "Design of ultra-low-voltage RF frontends with complementary current-reused architectures," IEEE Trans. Microw. Theory Tech., vol. 55, no. 7, pp. 1445-1458, July 2007.
[11]J. Javidan, M. Atarodi, and H. C. Luong, "High power amplifier based on a transformer-type power combiner in CMOS technology," IEEE Trans. Circuits Syst. II, vol. 57, no. 11, pp. 838-842, Nov. 2010.
[12]K. H. An et al., "Power-combining transformer techniques for fully-integrated CMOS power amplifiers," IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[13] 張盛富, 張嘉展, "無線通訊射頻晶片模組設計-射頻系統篇",全華圖書股份有限公司, 2008.
[14] Svitek, R.; Raman, S., "DC offsets in direct-conversion receivers: characterization and implications," IEEE Micro., vol. 6, no. 3, pp. 76-86, Sep. 2005.
[15] J. R. Long, "Monolithic transformers for silicon RF IC design," IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sep. 2000.
[16] E. Frlan, S. Meszaros, M. Cuhaci, and J.Weigh, "Computer-aided design of square spiral transformers and inductors," in Proc. IEEE MTT-S, pp. 661-664, June 1989.
[17] M. W. Green, G. J. Green, R. G. Arnold, J. A. Jenkins, and R. H. Jansen, "Miniature multilayer spiral inductors for GaAs MMICs," in proc. GaAs IC Symp., pp. 303-306, Oct. 1989.
[18] S. M. Su and S. M. Wu, "Analysis and modeling of IPD for spiral inductor on glass substrate," Proc. Of IEEE Intl. Conference on Microwave and Millimeter wave Tec., vol. 3, pp. 1274-1277, April 2008.
[19] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise ampli?er,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, May 1997.
[20] Y. L. Wei, S. H. Hsu, and J. D. Jin, “A low-power low-noise ampli?er for K-band application,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
[21] T. Sowlati and D. M. W. Leenaerts, “A 2.4 GHz 0.18 μm CMOS self-biased cascode power ampli?er,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1318-1324, Aug. 2003.
[22] C. Yoo and Q. Huang, “A common-gate switched, 0.9W class-E power amplifier with 41% PAE in 0.25 μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 823-830, May 2001.
[23] V. Vathulya, T. Sowlati, and D. M. W. Leenaerts, “Class-1 Bluetooth power amplifier with 24-dBm output power and 48% PAE at 2.4 GHz in 0.25-μm CMOS,” in Proc. Eur. Solid-State Circuits Conf., pp. 84-87, Sep. 2001.
[24] K. H. An, Y. Kim, O. Lee, K. S. Yang, H. Kim, J. J. Chang, W. Woo, C.-H. Lee, and J. Laskar, “A monolithic voltage-boosting parallel-primary transformer structures for fully integrated CMOS power ampli?erdesign,” in Proc. IEEE RFIC Symp., pp. 419-422, June 2007.
[25] M.-C. Yeh, R.-C. Liu, Z.-M. Tsai, and H. Wang, “A miniature low-insertion-loss, high-power CMOS SPDT switch using ?oating-body technique for 2.4- and 5.8-GHz applications,” in IEEE RFIC Symp., pp. 451-454, Jun. 2005.
[26] Y. Jin and C. Nguyen, “Ultra-compact high-linearity high-power fully integrated dc–20-GHz 0.18-μm CMOS T/R switch,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 30-36, Jan. 2007.
[27] Z. Gu, D. Johnson, S. Belletete, D. Fryklund, “A high power DPDT MMIC switch for broadband wireless applications,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. A173-A176, June 2003.
[28] M.-C. Yeh, R.-C. Liu, Z.-M. Tsai, and H. Wang, “A miniature low-in-sertion-loss, high-power CMOS SPDT switch using ?oating-body technique for 2.4- and 5.8-GHz applications,” in IEEE RFIC Symp., pp. 451-454, Jun. 2005.
[29] Z. Li and K. O, “15-GHz fully integrated nMOS switches in a 0.13-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2323-2328, Nov. 2005.
[30] C. H. Wu, H. T. Chou, Y. G. Lyu, "A 4 mW current-reused WiMAX LNA with resistance-feedback topology in 0.18 μm CMOS," in Proc. APMC, pp.370-373, Dec. 2010.
[31] Y. S. Wang and L. H. Lu, “5.7-GHz low-power variable gain LNA in 0.18-μm CMOS,” Electron. Lett., vol. 41, no. 2, pp. 66-68, Jan. 2005.
[32] Y. L. Wei, S. H. Hsu, and J. D. Jin, “A low-power low-noise ampli?er for K-band application,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
[33] W. Kluge et al., “A fully integrated 2.4GHz IEEE 802.15.4 compliant transceiver for ZigBee applications,” in IEEE ISSCC Dig. Tech. Papers, pp. 1470-1479, Feb. 2006.
[34] I. Kwon, Y. Eo, S.-S. Song, K. Choi, H. Lee, and K. Lee, “A fully integrated 2.4-GHz CMOS RF transceiver for IEEE 802.15.4,” in IEEE Radio Freq. Integrated Circuits Symp. Dig., pp. 275-278, Jun. 2006.
[35] J. J. Kang, R. M. Weng, C. Y. Liu, "A low-power CMOS power amplifier for IEEE 802.11a applications," IEEE APMC, pp.1628-1630, Dec. 2009.
[36] A. Shameli and P. Heydari, “A novel ultra-low power (ULP) low noise ampli?er using differential inductor feedback,” in Proc. European Solid-State Circuits Conf. (ESSCIRC), pp. 352-355, Sep. 2006.
[37] O. Lee, K. H. An, H. Kim, D. H. Lee, J. Han, K. S. Yang, C.-H. Lee, H. Kim, and J. Laskar, “Analysis and design of fully integrated high power parallel-circuit class-E CMOS power ampli?ers,” IEEE TCS-I, vol. 57, no. 3, pp. 725-734, Mar. 2010.
[38] R. Achar and M. S. Nakhla, "Simulation of high-speed interconnects," Proceedings of the IEEE, vol. 89, no. 5, pp. 693-728, May 2001.
[39] A. Kabbani and A. J. Al-Khalili, “Estimation of ground bounce e?ects on CMOS circuits,” IEEE Trans. Comp. Packag. Technol., vol. 22, pp. 316-325, June 1999.
[40]IEEE Standard 802, "Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs)," Institute of Electrical and Electronic Engineers, Oct. 2003.
[41] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance bene?ts in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838-848, Mar. 2004.
[42] S. Chun, M. Swaminathan, L. D. Smith, J. Srinivasan, Z. Jin, and M. K. Iyer, “Modeling of simultaneous switching noise in high speed systems,” IEEE Trans. Adv. Packag., vol. 24, pp. 132–142, May 2001.
[43] L. D. Smith, “Simultaneous switch noise and power plane bounce for CMOS technology,” in Proc. IEEE 8th Topical Meeting Electrical Performance Electron. Packag., pp. 163–166, Oct. 1999.
[44] Jiang Long et al., "A novel direct-conversion structure for non-contact vital sign detection system," Proc. Int. Symposium of Antennas and Propagation, pp. 1282-1285, Nov. 2008.
[45] E. Bogation, "Signal integrity - simplified," Prentice Hall, 2004.
[46] Agilent Technologies, "Agilent 81110A 165/330MHz Agilent 81104A 80 MHz Pulse/Data Generator, Reference Guide,"
[47]M. Camus, B. Butaye, L. Garcia, M. Sie, B. Pellat, and T. Parra, "A 5.4 mW/0.07 mm^2 2.4 GHz front-end receiver in 90 nm CMOS for IEEE 802.15.4 WPAN standard," IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1372-1383, June 2008.
[48]W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe, and D. Eggert, "A fully integrated 2.4GHz IEEE 802.15.4 compliant transceiver for ZigBee applications," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2767-2775, June 2006.
[49]T. K. Nguyen, J. Kim, N. S. Seong, N. S. Kim, V. H. Le, Q. H. Duong, S. K. Han, and S. G. Lee, "A low power CMOS transceiver for 915 MHz-band IEEE 802.15.4b standard," In Proc. IEEE Asian Solid-State Circuits. Conf., pp. 168-171, Nov. 2007.
[50]A. D. Droitcour, V. M. Lubecke, J. Lin, and O. Boric-Lubecke, "A microwave radio for Doppler radar sensing of vital signs," in IEEE MTT-S Int., vol.1, pp. 175-178, 2001.
[51]A. D. Droitcour, O. Boric-Lubecke, V. Lubecke, J. Lin, and G. Kovacs, “Range correlation effect on ISM band I/Q CMOS radar for non-contact vital signs sensing,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1945–1948, June 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code