Responsive image
博碩士論文 etd-0131113-134235 詳細資訊
Title page for etd-0131113-134235
論文名稱
Title
適用生醫系統之具製程及溫度補償振盪器與連續逐次逼近式類比數位轉換器
A Process and Temperature Compensation Oscillator and A Successive-Approximation Register Analog to Digital Converter for Biomedical Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-24
繳交日期
Date of Submission
2013-01-31
關鍵字
Keywords
電荷分享電容、振盪器、連續逐次逼近式類比數位轉換器、溫度補償
temperature compensation, oscillator, charge sharing architecture, SAR ADC
統計
Statistics
本論文已被瀏覽 5718 次,被下載 774
The thesis/dissertation has been browsed 5718 times, has been downloaded 774 times.
中文摘要
本論文包含適用於生醫晶片系統設計之兩個主題:具製程及溫度補償振盪器,以及連續逐次逼近式類比數位轉換器。
第一個主題提出一具製程及溫度補償振盪器,可應用於植入式脊椎電刺激系統。本設計以差動環形振盪器為主要架構,搭配一具製程及溫度補償之補償電路,依照製程或環境溫度的改變,其輸出之補償電壓將回授給予差動環形振盪器,使振盪器產生一不隨製程及溫度改變之時脈頻率,並以電晶體及電阻代替常見的BJT作為抗溫度飄移元件,有效縮小面積,並使頻率飄移量於溫度0 ~ 100 °C間,可達到小於3.07 %。整體電路以TSMC 0.25 μm 60V HV Mixed-Signal 1P3M Polycide CMOS製程實現,並以實際量測來佐證本設計之正確性。
第二個主題提出一連續逐次逼近式類比數位轉換器,可應用於FPW過敏原感測系統。以一對取樣電容對輸入電壓取樣,再將此電壓輸入比較器進行比較,其結果輸出至開關控制邏輯進行判斷並輸出對應控制訊號,電容陣列之各位元電容將對應該控制訊號對取樣電容進行充電或放電。其中電容陣列架構採用電荷分享式架構,並將電容陣列分為兩段式(Split array)以求減少MSB之電容值,進而使整體電路面積縮小。整體電路以TSMC 0.18 μm Mixed-Signal 1P6M Polycide CMOS製程實現。
Abstract
This thesis consists of two topics, i.e., a process and temperature compensation oscillator and a successive-approximation register analog to digital converter, which are mainly designed for biomedical system applications.
The first topic presents a process and temperature compensation oscillator for an implantable spinal cord stimulation system. This design is basically a ring-based oscillator, particularly including a temperature and process compensation circuit to provide a compensation bias voltage to stabilize the frequency such that the variations of the temperature and process can be reduced. To reduce the chip size, we use transistors and resistors to replace the conventional BJT as the temperature compensation component. The frequency variation verified on silicon is less than 3.07 % in the temperature range from 0 to 100 °C. This design is realized using TSMC 0.25 μm 60V HV BCD CMOS technology.
The second topic presents a successive-approximation register analog to digital converter (SAR ADC) for FPW-based antibody sensing systems. The input voltages are sampled by the sampling capacitors and compared by a comparator. Then, the comparison result will be transmitted to the following switch control logic. The capacitors in the array will charge or discharge the sampling capacitors based on the control signal generated by the switch control logic. The capacitor array is based on a charge sharing architecture, where a split capacitor array is used to reduce the size of the MSB capacitor. The proposed design is realized using TSMC 0.18 μm CMOS technology.
目次 Table of Contents
摘要 i
Abstract ii
圖次 v
表次 viii
第一章 概論 1
1.1 前言 1
1.2 相關文獻與研究討論 3
1.2.1 具補償功能之振盪器 3
1.2.2 連續逐次逼近式類比數位轉換器 6
1.3 研究動機 10
1.4 論文大綱 10
第二章 具製程及溫度補償振盪器 11
2.1 簡介 11
2.2 具製程及溫度補償振盪器 11
2.3 具製程及溫度補償振盪器電路設計 12
2.3.1 差動環形振盪器 12
2.3.2 複製電路 14
2.3.3 製程溫度補償電路 15
2.3.4 電壓穩壓器 19
2.3.5 雙端單端轉換電路 21
2.4 電路模擬與預計規格 22
2.4.1 補償效果模擬分析 22
2.4.2 未補償模擬分析 26
2.4.3 預計規格與效能比較 27
2.5 晶片佈局 29
2.6 晶片實作與測量結果 31
2.6.1 晶片量測結果與分析 32
2.6.2 預計規格與實測結果 34
2.7 結果與討論 35
第三章 連續逐次逼近式類比數位轉換器電路架構 36
3.1 簡介 36
3.2 連續逐次逼近式類比數位轉換器電路架構 36
3.3 連續逐次逼近式類比數位轉換器電路設計 40
3.3.1 電荷分享電容陣列 40
3.3.2 靴帶式取樣開關 43
3.3.3 動態電壓比較器 45
3.3.4 非同步控制邏輯產生電路 47
3.3.5 開關控制邏輯電路 48
3.4 電路模擬及預計規格 50
3.4.1 非同步控制邏輯功能驗證 50
3.4.2 開關控制邏輯功能驗證 51
3.4.3 SAR_ADC功能驗證 52
3.5 晶片佈局 54
3.6 結果與討論 55
第四章 結論與未來工作 56
參考文獻 59
參考文獻 References
[1] C.-H. Hsu, S.-B. Tseng, Y.-J. Hsieh, and C.-C. Wang, “One-time implantable spinal cord stimulation system prototype,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 5, pp. 490-498, Oct. 2011.
[2] F. Mounaim, M. Sawan, and S. Bedard, “Implantable neuro-monito-stimulation system dedicated to enhance the bladder functions,” in Proc. IEEE Conf. Biomed. Circuit and Syst. (BioCAS), pp. 198-201, Nov. 2006.
[3] S. Ethier and M. Sawan, “Exponential current pulse generation for efficient very high-impedance multisite stimulation,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 1, pp. 30-38, Feb. 2011.
[4] K. Kurita, T. Hotta, T. Nakano, and N. Kitamura, “PLL-based BiCMOS on-chip clock generator for very high speed microprocessor,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 585-589, Apr. 1991.
[5] X. Zhang and A. B. Apsel, “A process compensated 3-GHz ring oscillator,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 581-584, Jun. 2009.
[6] K. Lasanen, E. R. Ruotsalainen, and J. Kostamovaara, “A 1-V, self-adjusting, 5-MHz CMOS RC-oscillator,” in Proc. IEEE Int. Symp. Circuit and Syst. (ISCAS), pp. 337-380, May 2002.
[7] C.-Y. Yu, J.-Y. Yu, and C.-Y. Lee, “A low voltage all-digital on-chip oscillator using relative reference modeling,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 9, pp. 1615-1620, Sep. 2012.
[8] K. Sundaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
[9] C.-F. Tsai, W.-J. Li, P.-Y. Chen, Y.-Z. Lin, and S.-J. Chang, “On-chip reference oscillators with process, supply voltage and temperature compensation,” in Proc. Int. Symp. Next-Generation Electronics (ISNE), pp. 108-111, Dec. 2010.
[10] C.-C. Wang, G.-N. Sung, P.-C. Chen, and C.-L. Wey, “A transceiver front end for electronic control units in FlexRay-based automotive communication systems,” IEEE Trans. Circuits Syst. I-Reg. Papers, vol. 57, no. 2, pp. 460-470, Feb. 2010.
[11] Y.-S. Shyu and J.-C. Wu, “A process and temperature compensated ring oscillator,” in Proc. IEEE Asia Pacific Conf. (ASIC), pp. 283-286, Aug. 1999.
[12] J. Tang and F. Tang, “Temperature and process independent ring-oscillator using compact compensation technic,” in Proc. Anti-Counterfeiting Security and Identification in Commun. (ASID), pp. 49-52, Jul. 2010.
[13] N. Reddy, M. Pattanaik, and S. S. Rajput, “0.4V CMOS based low power voltage controlled ring oscillator for medical applications,” in Proc. IEEE Region 10 Conf. (TENCON), pp. 1-5, Nov. 2008.
[14] K. N. Leung, C. H. Lo, P. K. T. Mok, Y. Y. Mai, W. Y. Leung, and M. J. Chan, “Temperature-compensated CMOS ring oscillator for power-management circuits,” Electronics Lett., vol. 43, no. 15, pp. 786-787, Jul. 2007.
[15] A. Dieguez, A. Arbat, A. Sanuy, R. Casanova, M. Rossinyol, and J. Samitier, “A wake-up circuit with temperature compensated clock in 1.2V-0.13μm CMOS technology,” in Proc. IEEE Int. Conf. Electronics, Circuits and Syst. (ICECS), pp. 367-370, Dec. 2007.
[16] H. J. Gould, B. J. Sutton, A. J. Beavil, R. L. Beavil, N. McCloskey, H. A. Coker, D. Fear, and L. Smurthwaite, “The biology of IgE and the basis of allergic disease,” Annual Review of Immunology, vol. 21, pp. 579-628, Apr. 2003.
[17] 蕭瑋志, “彎曲平板波過敏原感測系統之分貝線性可程式化變增益放大器與具數位校正之電壓峰值偵測器,” 國立中山大學電機工程學系碩士班論文, 2012.
[18] H. A. Hassan, I. A. Halin, I. B. Aris, and M. K. B. Hassan, “Design of 8-bit SAR-ADC CMOS,” in Proc. IEEE Student Conf. on Research and Develop. (SCOReD), pp. 272-275, Nov. 2009.
[19] U.-F. Chio, H.-G. Wei, Y. Zhu, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “Design and experimental verification of a power effective flash-SAR subranging ADC,” IEEE Trans. Circuits Syst. II-Exp. Briefs, vol. 57, no. 8, pp. 607-611, Aug. 2010.
[20] I. Ahmed, J. Mulder, and D. A. Johns, “A 50MS/s 9.9mW pipelined ADC with 58dB SNDR in 0.18 μm CMOS using capacitive charge-pumps,” in Proc. IEEE Int. Solid-State-Circuit Conf. (ISSCC) Dig. Tech. Papers, pp. 164-165, Feb. 2009.
[21] A. Imani and M. S. Bakhtiar, “A two-stage pipelined passive charge-sharing SAR ADC,” in Proc. IEEE Asia Pacific Conf. on Circuit Syst. (APCCAS), pp. 141-144, Dec. 2008.
[22] C.-C. Liu, Y.-T. Huang, G.-Y. Huang, S.-J. Chang, C.-M. Huang, and C.-H. Huang, “A 6-bit 220-MS/s time-interleaving SAR ADC in 0.18 μm digital CMOS process,” in Proc. Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), pp. 215-218, Apr. 2009.
[23] S. G. Talekar, S. Ramasamy, G. Lakshminarayanan, and B. Venkataramani, “A low power 700MSPS 4bit time interleaved SAR ADC in 0.18 "μm" CMOS,” in Proc. IEEE Region 10 Conf. (TENCON), pp. 1-5, Jan. 2009.
[24] T. Yang and Z. Li, “A 7-bit 26-MS/s SAR ADC in 0.18 μm CMOS process for WSN application,” in Proc. High Speed Intelligent Commun. (HSIC), pp. 1-4, May 2012.
[25] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[26] M. Kandala, R. Sekar, C. Zhang, and H. Wang, “A low power charge-redistribution ADC with reduced capacitor array,” in Proc. Int. Symp. Quality Eletron. Design (ISQED), pp. 44-48, Mar. 2010.
[27] A. Dey and T. K. Bhattacharyya, “Low power 120 KSPS 12bit SAR ADC with a novel switch control method for internal CDAC,” in Proc. IEEE Int. SoC Conf. (SOCC), pp. 76-80, Sep. 2011.
[28] J. Craninckx and G. Van der Plas, “A 65fJ/conversion-step 0-to-50MS/s 0-to-0.7mW 9b charge-sharing SAR ADC in 90 nm digital CMOS,” in Proc. IEEE Int. Solid-State-Circuit Conf. (ISSCC) Dig. Tech. Papers, pp. 246-600, Feb. 2007.
[29] Y.-J. Chen, J.-H. Tsai, M.-H. Shen, and P.-C. Huang, “A 1-V 8-bit 100kS/s-to-4MS/s asynchronous SAR ADC with 46fJ/conv.-step,” in Proc. Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), pp. 1-4, Apr. 2011.
[30] T. G. Rabuske, F. A. Rabuskey, and C. R. Rodrigues, “A novel energy efficient digital controller for charge sharing successive approximation ADC,” in Proc. IEEE Latin American Symp. Circuit and Syst. (LASCAS), pp. 1-4, Feb. 2011.
[31] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Van der Plas, and J. Craninckx, “An 820μW 9b 40MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS,” in Proc. IEEE Int. Solid-State-Circuit Conf. (ISSCC) Dig. Tech. Papers, pp. 238-610, Feb. 2008.
[32] H.-W. Chen, Y.-H. Liu, Y.-H. Lin, and H.-S. Chen, “A 3mW 12b 10MS/s sub-range SAR ADC,” in Proc. IEEE Asian Solid-State Circuit Conf. (ASSCC), pp. 153-156, Nov. 2009.
[33] D. Osipov and Y. Bocharov, “Behavioral model of split capacitor array DAC for use in SAR ADC design,” in Proc. Ph.D. Research in Microelectronics Electronics (PRIME), pp. 1-4, Jul. 2012.
[34] W. Guo and S. Mirabbasi, “A low-power 10-bit 50-MS/s SAR ADC using a parasitic-compensated split-capacitor DAC,” in Proc. IEEE Int. Symp. Circuits and Syst. (ISCAS), pp. 1275-1278, May 2012.
[35] S. Oza and N. M. Devashrayee, “Low voltage bootstrap switch using 0.18 μm technology,” Int. J. Advanced Engineering and Applications, vol. 1, no. 4, pp. 20-24, Jan. 2010.
[36] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd ed. Piscataway, NJ: IEEE Press, 2010.
[37] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. London, U.K.: Oxford Univ. Press, 2002.
[38] T.-J. Lee, D. Shmilovitz, Y.-J. Hsieh, and C.-C. Wang, “Temperature and process compensation clock generator using feedback TPC bias,” in Proc. IEEE Int. Conf. IC Design & Tech. (ICICDT), pp. 1-4, May 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code